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Background: The COVID-19 pandemic caused by SARS-CoV-2 has led to
millions of deaths worldwide, and vaccination efficacy has been decreasing
with each lineage, necessitating the need for alternative antiviral therapies.
Predicting host–virus protein–protein interactions (HV-PPIs) is essential for
identifying potential host-targeting drug targets against SARS-CoV-2 infection.

Objective: This study aims to identify therapeutic target proteins in humans that
could act as virus–host-targeting drug targets against SARS-CoV-2 and study
their interaction against antiviral inhibitors.

Methods: A structure-based similarity approach was used to predict human
proteins similar to SARS-CoV-2 (“hCoV-2”), followed by identifying PPIs
between hCoV-2 and its target human proteins. Overlapping genes were
identified between the protein-coding genes of the target and COVID-19-
infected patient’s mRNA expression data. Pathway and Gene Ontology (GO)
term analyses, the construction of PPI networks, and the detection of hub gene
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modules were performed. Structure-based virtual screening with antiviral
compounds was performed to identify potential hits against target gene-
encoded protein.

Results: This study predicted 19,051 unique target human proteins that interact
with hCoV-2, and compared to the microarray dataset, 1,120 target and infected
group differentially expressed genes (TIG-DEGs) were identified. The significant
pathway and GO enrichment analyses revealed the involvement of these genes in
several biological processes and molecular functions. PPI network analysis
identified a significant hub gene with maximum neighboring partners. Virtual
screening analysis identified three potential antiviral compounds against the
target gene-encoded protein.

Conclusion: This study provides potential targets for host-targeting drug
development against SARS-CoV-2 infection, and further experimental validation
of the target protein is required for pharmaceutical intervention.

KEYWORDS

COVID-19, virus–host target proteins, structural-based similarity, PPI network, SARS-
CoV-2

1 Introduction

At present, severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) has spread rapidly, infecting ~769 million people
globally, including ~6 million reported deaths as of 16 August 2023
(https://covid19.who.int/). Treatment options for COVID-19
disease include oral medications and intravenous therapy for
mild and severe patients, while vaccines are primarily
administered as a preventive measure (Ali et al., 2020; Morse
et al., 2020; Martín-Sánchez et al., 2023). The use of vaccines
initially curbed the SARS-CoV-2 pandemic. However, with the
emergence of the Omicron variant (Fan et al., 2022), the efficacy
of vaccination against the infection has decreased with each viral
lineage. Antiviral drug candidates have provided effective treatment
against viral infections, yet their use may be limited by the rapid
evolutionary rate of viruses and the possibility of resistance
emerging (Dai et al., 2020; Dolgin, 2021; Burki, 2022). Therefore,
it is essential to continue the development of alternative antiviral
therapies to combat the ongoing threat of emerging viral infections.
Host-directed therapy (HDT) has gained momentum in the past
decade (Tripathi et al., 2021). Host-targeting drugs with a low
evolutionary divergence compared to viruses may avoid
treatment failure. Similarities in motif sequence or protein
structures between the virus and host proteins can provide clues
for predicting virus–human protein–protein interactions (PPIs)
(Mariano and Wuchty, 2017; Liu X. et al., 2021). Thus,
investigating these PPIs between a virus and its human host
could contribute to discovering the viruses’ potential human host
target proteins (Liu X. et al., 2021).

Although finding intraspecies PPIs is common, predicting PPIs
among different species is rare; therefore, this study may allow
researchers to understand not only how a pathogenic protein
interacts with its host on a molecular level but also how such
interactions function in a more extensive cellular network (Lee
et al., 2008). In this study, to elucidate the host–virus
protein–protein interactions (HV-PPIs), a structure-based
interaction approach was implemented to identify PPIs among

human proteins (HPs) with known interactions that are
structurally similar to viral proteins (Franzosa and Xia, 2011;
Keskin et al., 2016; Rajasekharan et al., 2016). The primary
limitation of using a structure-based interaction approach is the
inadequate availability of three-dimensional structures and protein
interaction of either pathogens or their host (Mariano and Wuchty,
2017). However, several studies have used a structural similarity
approach to identify human–pathogen PPIs. Davis et al. were the
first to demonstrate the use of 3D structural homology for predicting
interspecies PPIs. They scanned the genomes of the host and
pathogen for proteins similar to known putative interactions,
using structural information, and filtered the remaining
interactions based on the biological context for various human
pathogens (Davis et al., 2007).

Similarly, Doolittle and Gomez (2011) predicted
502 interactions between HIV and human proteins by using the
structure similarity between nine HIV-1 proteins and human
proteins with known interactions, functional data from RNAi
studies, and cellular component annotation from the Gene
Ontology database (Doolittle and Gomez, 2011). Sagar et al.
(2021) used a structural similarity approach to identify
host–pathogen interactions between 10 Zika virus (ZIKV)
proteins and their two distinct hosts, human and D. melanogaster
(Sagar et al., 2021). Based on previous studies, it has been proposed
that if there are pairs of structure-similar virus–host proteins with
known interacting host proteins, the target host proteins may also
interact with the viral proteins (Sagar et al., 2021). Furthermore,
these target host proteins could either enhance the function of the
virus or have an inhibitory effect. Hence, exploring the common
pathways, molecular functions, biological processes, cellular
compartments, and other properties of the host proteins
interacting with the virus can help inhibit infectious disease.
These virus–host-targeting proteins may act as a potential drug
target for the design of antiviral inhibitors.

The present study used a structure-based similarity approach
to predict human host proteins similar to SARS-CoV-2 (“hCoV-
2”), followed by the identification of PPIs between hCoV-2 and its
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target human proteins from different protein interaction
databases (referred to as “T_hCoV-2”). Additionally,
overlapping genes were identified between the protein-coding
genes of T_hCoV-2 and COVID-19-infected patient’s messenger
RNA (mRNA) expression data obtained from the NCBI-GEO.
The overlapped genes between target and infected groups (TIG-
DEGs) were further processed to identify differentially expressed
genes (DEGs). Pathway and Gene Ontology (GO) enrichment
analyses, construction of PPI networks, and detection of hub gene
modules for TIG-DEGs were performed. Last, structure-based
virtual screening with an antiviral compound database was
performed to identify potential hits against the target gene-
encoded protein. The vision of the present study was to
identify target proteins in humans that may act as host-
targeting drug targets against SARS-CoV-2 infection. Further
experimental validation of the target protein is required for
pharmaceutical intervention against SARS-CoV-2.

2 Materials and methods

2.1 Viral protein structure collection

The experimentally determined three-dimensional structures
of SARS-CoV-2 [envelope protein (PDB ID: 7K3G), main protease
(PDB ID: 5R7Y), spike glycoproteins (PDB ID: 6VSB, 6VXX),
HR2 domain (PDB ID: 6LVN, 6M1V), NSP2 (PDB ID: 7MSW,
7MSX), NSP3 (PDB ID: 6W02, 6W6Y, 6W9C), NSP7 (PDB ID:
6WTC), NSP8 (6M5I), NSP9 (PDB ID: 6W9Q, 6W4B, 6WCI),
NSP12 (PDB ID: 6XEZ, 6M71), NSP13 (PDB ID: 5RL6), NSP14
(PDB ID: 7DIY), NSP15 (PDB ID: 6VWW, 7K0R), NSP16 (PDB
ID: 6W4H), ORF3a (PDB ID: 6XDC), ORF7a (PDB ID: 6W37),
and ORF8 (PDB ID: 7JTL)] were obtained from the RCSB
Database (https://www.rcsb.org/) (Rose et al., 2017). The
remaining coronavirus structures [membrane protein (M),
NSP4, and ORF6] that are not available in the Protein Data
Bank (PDB) were modeled using Contact-guided Iterative
Threading ASSEmbly Refinement (C-I-TASSER) (https://
zhanggroup.org/C-I-TASSER/), an extended version of
I-TASSER for high-accuracy protein structure and function
predictions (Zheng et al., 2021). The modeled structures of M
protein, NSP4, and ORF6 were verified using the Structural
Analysis Verification Server (SAVES) program (https://saves.
mbi.ucla.edu/) and protein structure analysis (ProSA)-web
program (https://prosa.services.came.sbg.ac.at/prosa.php?
pdbCode=1zyb) (Wiederstein and Sippl, 2007). The structural
quality (PROCHECK) (Laskowski et al., 1993), non-bonded
interactions (ERRAT) (Colovos and Yeates, 1993), and energy
profile or Z-score (ProSA using molecular mechanics force field)
were thoroughly checked and calibrated. The Z-scores obtained for
the M protein, NSP4, and ORF6 were close to the related native
conformations regarding their residue length, as determined by
X-ray and NMR structures available in the RCSB database.
Additionally, nearly 83%–88% of residues in these respective
modeled structures were found to occupy favorable allowed
regions in the Ramachandran plot (Hooft et al., 1997). It
indicates that the modeled structures are high quality and likely
biologically relevant.

2.2 Identification of structurally similar
proteins among SARS-CoV-2 and its host

The structurally similar human proteins of SARS-CoV-2 were
obtained by submitting the PDB IDs of viral protein structures
(either known or C-I-TASSER-generated) to the Dali webserver
(http://ekhidna2.biocenter.helsinki.fi/dali/) (Holm, 2022). In this
study, only the Homo sapiens proteins with structural similarity
score (Z-score) ≥ 2 were considered structurally similar proteins of
the respective SARS-CoV-2 protein and are referred to as “hCoV-2”
proteins. The PDB codes of hCoV-2 obtained from Dali were
mapped to their corresponding UniProt ID and gene names by
the UniProt Retrieve/ID mapping tool (https://www.uniprot.org/id-
mapping) (Pundir et al., 2016).

2.3 Refinement of predictions

The Dali database may contain multiple structures of the same
proteins in the PDB, which could result in repetitive interaction
predictions. This issue can arise with certain SARS-CoV-2 proteins
with multiple PDB structures, leading to repeating similar
predictions. Hence, duplicate PDB IDs were removed before
converting them to UniProt accession ID and gene names for
target prediction. In addition, multiple hCoV-2 proteins (human
proteins structurally similar to SARS-CoV-2) can have common
cellular partners. Among these, unique pairs of interactions between
human UniProt accession and SARS-CoV-2 proteins were
considered.

2.4 Prediction of SARS-CoV-2–host protein
interactions

Human endogenous protein interactors of SARS-CoV-2 were
identified by obtaining the target protein interactors of hCoV-2
during various cellular processes. These cellular partners of hCoV-2
were obtained from HPRD (https://www.hprd.org/), BioGRID
(https://thebiogrid.org/), HIPPIE (http://cbdm-01.zdv.uni-mainz.de/
~mschaefer/hippie/), and MINT (https://mint.bio.uniroma2.it/)
databases and are referred to as T_hCoV-2 (target protein
interactors of hCOV-2) (Baolin et al., 2007; Licata et al., 2012;
Alanis-Lobato et al., 2017; Oughtred et al., 2019). These datasets
are from literature-curated interactions established through in vitro
and/or in vivo methods among human proteins. These cellular
proteins, known to interact with hCoV-2 proteins, are presumed to
interact with SARS-CoV-2 proteins due to their structural similarities
with hCoV-2 proteins.

2.5 Comparison with the pre-processed
dataset and differentially expressed
gene analysis

The target protein interactors of hCoV-2, referred to as T_
hCoV-2, of each of the SARS-CoV-2 proteins, were merged into one
dataset corresponding to their HUGO Gene Nomenclature
Committee (HGNC) symbols (https://www.genenames.org/) by

Frontiers in Genetics frontiersin.org03

Tasneem et al. 10.3389/fgene.2024.1292280

https://www.rcsb.org/
https://zhanggroup.org/C-I-TASSER/
https://zhanggroup.org/C-I-TASSER/
https://saves.mbi.ucla.edu/
https://saves.mbi.ucla.edu/
https://prosa.services.came.sbg.ac.at/prosa.php?pdbCode=1zyb
https://prosa.services.came.sbg.ac.at/prosa.php?pdbCode=1zyb
http://ekhidna2.biocenter.helsinki.fi/dali/
https://www.uniprot.org/id-mapping
https://www.uniprot.org/id-mapping
https://www.hprd.org/
https://thebiogrid.org/
http://cbdm-01.zdv.uni-mainz.de/%7Emschaefer/hippie/
http://cbdm-01.zdv.uni-mainz.de/%7Emschaefer/hippie/
https://mint.bio.uniroma2.it/
https://www.genenames.org/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1292280


eliminating the duplicate gene IDs to avoid redundancy. Pre-
processed data corresponding to COVID-19 mRNA expression
profiling were obtained from the NCBI-GEO (https://www.ncbi.
nlm.nih.gov/geo/) (Jha et al., 2022). The unique target genes of T_
hCoV-2 are then compared with the COVID-19 patient gene sample
dataset from which only the overlapping genes between targets and
infected datasets were considered for further DEG analyses.

To identify DEGs between T-hCoV-2 and COVID-19 samples, a
two-sample statistical t-test was used, followed by obtaining their
log2 (fold change) and Benjamin–Hochberg (BH) p − value through
the limma R package (Ritchie et al., 2015). Genes with BH p <
0.05 and |log2 (FC) | > 2 were considered DEGs. DEGS with log2
(FC) > 2 and log2 (FC) < −2 were categorized as up- and
downregulated, respectively. The DEGs that overlapped between
targets and infected groups were referred to as TIG-DEGs.

2.6 Pathway, Gene Ontology terms, and PPI
network construction of TIG-DEGs

Pathway and GO term enrichment data for TIG-DEGs were
compiled using various libraries, i.e., Kyoto Encyclopedia of genes
and genomes (KEGG) and GO-biological process (BP), GO-
molecular function (MF), and GO-cellular compartment (CC)
terms available within the Enrichr database (https://maayanlab.
cloud/Enrichr/) (Kuleshov et al., 2016). All the pathways and GO
terms corresponding to p < 0.01 were determined as statistically
significant.

The genes corresponding to the enrichment analysis were then
merged into one dataset (eliminating duplicate gene names) and
subjected to PPI network construction using the STRING
v11.5 web-based tool (https://string-db.org/) (Szklarczyk et al.,
2021). The construction of this PPI network was based on the
highest confidence score >0.9, and it was visualized using Cytoscape
v3.9.1 (Shannon et al., 2003). The topological properties of the PPI
network were analyzed using the NetworkAnalyzer plugin in
Cytoscape. Furthermore, the Molecular Complex Detection
(MCODE) plugin was used to identify highly correlated gene
clusters/modules within the PPI network. The parameters set in
MCODE for cluster detection were as follows: “degree cutoff = 2,”
“node score cutoff = 0.2,” “k-score = 2,” “max. depth = 100,” and “cut
style = haircut.” The top-scoring genes in the PPI cluster were
considered the hub genes.

2.7 Target identification and preparation for
molecular docking

The RPS3 gene has the most significant interaction partners of
the top-scoring PPI cluster genes. Ribosomal protein subunit 3
(RPS3) is a protein-coding gene involved in the viral mRNA
translation pathway. Since the viruses exploited the ribosomal
proteins and the ribosomal biogenic processes to facilitate their
replication, the RPs have been considered effective targets for
developing antiviral agents (Dong et al., 2021). The three-
dimensional electron microscopy structure of the human
ribosomal subunit, PDB ID: 6ZLW (resolution: 2.60 Å), bounded
to the SARS-CoV-2 NSP1 protein, was downloaded from the

Protein Data Bank (https://www.rcsb.org/) (Rose et al., 2017).
The two α-helices of NSP1 (residues: 154–179) of SARS-CoV-
2 directly interact with RPS3, RPS2, and the phosphate backbone
of rRNA helix 18 (h18) of 40S ribosomal protein. This interaction
with RPS3, RPS2, and h18 rigidly anchors NSP1, obstructing the
mRNA entry channel. Therefore, for this study, we took a
subcomplex comprising RPS3, RPS2, and h18 as the targets for
the molecular docking studies.

2.8 Virtual screening and ligand structure
preparation

An in silico high-throughput virtual screening of known
therapeutic COVID-19 drugs from the PubChem library was
obtained (https://pubchem.ncbi.nlm.nih.gov/#query=covid-19)
(Kim et al., 2019). The total search results were filtered thrice for
final docking studies. Following are the filters for the selection of
final screened compounds: filter 1, database filters (molecular
weights should be from 100 to 500 g/mol, rotatable bond count
from 0 to 7, h-bond acceptor count from 0 to 10, the polar area from
0 to 150 Å2, and XlogP from −6.3 to 5); filter 2, calculation of
physicochemical properties (no Lipinski’s rule violations, no lead
likeness violations, and high GI absorption) using the SwissADME
web server (http://www.swissadme.ch/) (Daina et al., 2017); and
filter 3, calculation of pharmacokinetics and toxicological properties
(cLogP, solubility, TPSA, drug-likeness, drug score, mutagenic,
tumorigenic, irritant, and reproductive effective) using the Osiris
Property Explorer (Sander, 2001).

The 3D structures of the final screened compounds were
generated using the OpenBabel program (O Boyle et al., 2011).
The 2D SDF files were used as input files for OpenBabel for
converting them to 3D structures, followed by energy
minimization in MMFF94 force field (Halgren, 1996). Finally, all
the structures of ligands were converted to the PDBQT format with
appropriate rotatable bonds.

2.9 Molecular docking

The PDBQT file of the subcomplex receptor was prepared using
Kollman united atom charges for molecular docking study using
AutoDockTools v 1.5.6 (Singh and Kollman, 1984; Morris et al.,
2009). As the subcomplex receptor contained two proteins and one
nucleic acid, the tentative binding site for the inhibitor is unknown.
Hence, a blind docking study using AutoDock Vina (v1.1.2) was
performed (Trott and Olson, 2009). Grid point spacing was set at
1 Å, grid point 56 was taken in each direction of the grid box, and the
concerned box was centered at the subcomplex receptor. The ligands
bind to two probable sites of the subcomplex receptor—one at the
rRNA h18 (ligand-binding site-I) and another at the RPS3 protein
(II). The best three conformations of each ligand at two binding
locations were identified after cluster analysis according to their
lowest binding energy. The receptor–ligand hydrogen bond
interactions were analyzed using the Swiss PDB viewer (Guex
and Peitsch, 1997) and visualized using PyMOL v 2.5 (the
PyMOL Molecular Graphics System, Version 1.2r3pre,
Schrödinger, LLC).
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TABLE 1 List of 20 SARS-CoV-2 proteins selected for identifying structurally similar human host proteins.

S. no. SARS-CoV-2 protein Chain Method Sequence length Resolution (Å)

1 Envelope protein

7K3G A NMR 31 NA*

2 NSP2

7MSW A EM 638 3.76

7MSX A EM 638 3.15

3 Papain-like protease (NSP3)

6W02 A X-ray 170 1.5

6W6Y A X-ray 170 1.45

6W9C A X-ray 317 2.7

4 Main protease (NSP5)

6LU7 A X-ray 306 2.16

5 NSP7

6WTC-A A X-ray 86 1.85

6 NSP8

6M5I-A A X-ray 198 2.5

7 NSP9

6W9Q-A A X-ray 133 2.05

6W4B-A A X-ray 117 2.95

6WC1-A A X-ray 116 2.4

8 RNA-dependent RNA polymerase (NSP12)

6XEZ-A A EM 932 3.5

6M71-A A EM 942 2.9

9 Helicase (NSP13)

5RL6 A X-ray 601 1.92

10 NSP14

7DIY B X-ray 294 2.69

11 NSP15

6VWW A X-ray 370 2.2

7K0R A EM 362 3.3

12 NSP16

6W4H A X-ray 301 1.8

13 ORF3a

6XDC A EM 284 2.9

14 ORF7a

6W37 A X-ray 67 2.9

15 ORF8

7JTL A X-ray 107 2.04

(Continued on following page)
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3 Result

3.1 Identification of structurally similar
human proteins of SARS-CoV-2 and hCoV-2
host PPIs

We used the Dali Lite webserver to identify human host proteins
that exhibit structural similarity to the proteins of SARS-CoV-2. Twenty
SARS-CoV-2 proteins were selected for this study (17 proteins from
known sources, i.e., available via the RCSB PDB, and 3 proteins
predicted or modeled using the C-I-TASSER program) (Table 1).
The viral protein structures were then submitted to the Dali
webserver to compare 3D structural coordinates of virus and human
host proteins. To make the study more comprehensive and avoid
redundancy, all the structurally similar host proteins for each viral
protein weremerged into one dataset, and duplicates were removed. For
example, for NSP3 of SARS-CoV-2, the human proteins structurally
similar to these three PDB IDs: 6W02, 6W6Y, and 6W9C were merged
into one column, and duplicate human PDB IDs were then removed. A
similar protocol was followed for the other viral proteins, with more
than one PDB ID obtained for this study. It resulted in the identification
of 6,116 human proteins (hCoV-2) similar to 20 SARS-CoV-2 proteins
(Table 2 and Supplementary Table S1).

Afterward, we identified all possible interacting partners of hCoV-2
proteins of the 20 proteins of SARS-CoV-2 from four different
databases (HPRD, MINT, HIPPIE, and BioGRID). The target
protein interactors of hCoV-2 from each database corresponding to
165,051 genes were merged into one unique dataset without duplicates.
A total of 19,051 unique interactors were identified for these 20 SARS-
CoV-2 proteins. These unique interactors are termed T_hCoV-2
proteins (Table 2 and Supplementary Table S2).

3.2 Comparison with the pre-processed
dataset and differentially expressed
gene analysis

The pre-processed SARS-CoV-2 mRNA expression profile
(GSE164805) datasets comprised five controls, and 10 COVID-19

(five mild and five severe) samples were compared with the T_
hCoV-2 genes. The overlapping genes between targets and mRNA
datasets amounted to 8,336 genes (Figure 1A). These genes were
then differentially expressed corresponding to p − value < 0.05 and
|log2(fold change)|> 2. The DEGs overlapping between targets and
infection severity groups were considered TIG-DEGs, which
amount to 1,120 unique genes. Amongst these genes, 663 and
457 were up- and downregulated, respectively (Figure 1B). The
most highly up- and downregulated DEGs were HBD
[ log2(FC)� 6.00] and TEX101 [ log2(FC)� −10.34],
respectively (Figure 1C).

3.3 Pathway and Gene Ontology
enrichment analyses

All the 1,120 TIG-DEGs participated in the Gene Ontology and
pathway enrichment analyses. All the significant pathways and GO-
BP, GO-MF, and GO-CC terms (p − value< 0.01) are shown in
Supplementary Table S3. The most significant pathways and GO-
BP, GO-MF, and GO-CC terms were coronavirus disease
(p − value � 8.49 × 10−08), cellular macromolecule biosynthetic
process (p − value � 1.88 × 10−08), RNA binding (p − value �
5.64 × 10−05), and ribosome (p − value � 1.18 × 10−06)
(Supplementary Table S3). For a more comprehensive
representation, only the top 10 most significant pathways and
GO terms are shown in Figure 2.

3.4 PPI network analysis of TIG-DEGs

A total of 606 genes comprising all the pathways and GO terms
(p − value< 0.01) were inputted into the STRING database. The
PPI network constructed using Cytoscape software included
302 nodes, and 688 edges are shown in Figure 3A. A total of
302 genes out of 1,120 TIG-DEGs participated in the PPI
network at the selected highest confidence level, i.e., > 0.9.
Moreover, Molecular Complex Detection (MCODE) revealed that
the most highly significant cluster with a top score = 18 was selected

TABLE 1 (Continued) List of 20 SARS-CoV-2 proteins selected for identifying structurally similar human host proteins.

S. no. SARS-CoV-2 protein Chain Method Sequence length Resolution (Å)

16 S2 subunit

6LVN A X-ray 36 2.47

6M1V A X-ray 119 1.5

17 Spike protein

6VSB A EM 1288 3.46

Modeled Structures using C-I-TASSER (predicted)

Sequence ID Sequence Length Estimate TM-score**

18 Membrane protein QHD43419 222 0.59

19 NSP4 QHD43415.4 500 0.61

20 ORF6 QHD43420 61 0.50
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TABLE 2 Number of hCoV-2 structurally similar proteins (known and predicted) to the SARS-CoV-2 proteins and its unique host interactors known as T_
hCoV-2 proteins.

S. no. SARS-CoV-2 protein Structure
type

Number of hCoV-2 similar
proteins

Targeted T_hCoV-2
proteins

1 Envelope protein Known 86 5863

2 NSP2 Known 371 1158

3 Papain-like protease (NSP3) Known 83 342

4 Main protease (NSP5) Known 67 204

5 NSP7 Known 393 473

6 NSP8 Known 576 513

7 NSP9 Known 76 90

8 RNA-dependent RNA polymerase
(NSP12)

Known 06 04

9 Helicase (NSP13) Known 466 257

10 NSP14 Known 17 10

11 NSP15 Known 30 33

12 NSP16 Known 60 34

13 ORF3a Known 266 67

14 ORF7a Known 678 825

15 ORF8 Known 628 41

16 S2 subunit Known 995 558

17 Spike protein Known 23 12

18 Membrane protein Predicted 532 8167

19 NSP4 Predicted 08 15

20 ORF6 Predicted 755 385

Total 6,116 19,051

FIGURE 1
(A) Venn plot showing overlapping of pre-processed COVID-19 datasets across the T_hCoV-2 geneset. The blue-colored areas represent genesets
pertaining tomild and severe infected COVID-19microarray data, and green-colored areas represent genesets of T_hCOV-2. (B) Volcano plots show the
distribution of significant (colored plots) and non-significant (black-colored points) genes in the microarray group. (C) Annotation heatmap showing the
expression distribution of top 10 down- and upregulated DEGs across overlapping genes of COVID-19 and T_hCoV-2 datasets.
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amongst all the 17 identified clusters, consisting 19 nodes and
171 edges (Figure 3B). Essential centrality measures such as node
degree, betweenness, closeness, average shortest path length,
clustering coefficient, radiality, and topological coefficient of the
PPI network are provided in Supplementary Table S4. Based on the
centrality measures, the significant hub gene RPS3 (ribosomal
protein subunit 3, degree = 25), with the highest number of
interacting partners, was identified.

3.5 Virtual screening of ligands

The PubChem library was searched with the keyword “COVID-
19,” resulting in 1,709 compounds. The compounds were filtered out
through three filtering processes (Martín-Sánchez et al., 2023):
database filters (Ali et al., 2020), pharmacokinetic properties, and
(Morse et al., 2020) toxicological properties. Through database
filtering, only 886 candidates were selected that have a molecular
weight between 100 and 500 g/mol, rotatable bond count between
0 and 7, h-bond acceptor count between 0 and 10, polar area
between 0 and 150 Å2, and XlogP between −6.3 and 5.
Government organizations, research and development, journal

publishers, and NIH initiatives were selected as the data source
category. The SwissADME webserver was accessed to calculate
pharmacokinetic parameters. After the pharmacokinetic filtration
process, 42 compounds that show zero violations of Lipinski’s rule,
zero lead likeness violations, and high gastrointestinal (GI) were
selected. To calculate toxicological parameters, the OSIRIS Property
Explorer was used to predict the toxicity risks and drug scores of the
42 compounds. The program evaluated the risks of different side
effects, such as mutagenic, irritant, tumorigenic, reproductive
effects, and drug-related properties. Furthermore, the overall drug
score was calculated by summing up various parameters such as
cLogP, solubility (logS), molecular weight, drug-likeness, and
toxicity risk. The final filtration process resulted in
28 compounds showing no toxicity risks and drug score values
between 0.40 and 1.00, making it a good library for further docking
studies (Table 3).

3.6 Molecular docking

In this study, blind docking was performed since the
subcomplex receptor of ribosomal protein has no ligand-

FIGURE 2
Top 10 most significant pathways and GO terms. Most significant pathways and GO-BP, GO-MF, and GO-CC terms were coronavirus disease
(p − value = 8.49 × 10−8), cellular macromolecule biosynthetic process (p − value = 1.88 × 10−8), RNA binding (p − value = 5.64 × 10−5), and ribosome
(p − value= 1.18 × 10−6). KEGG, Kyoto Encyclopedia of Genes andGenomes; GO, GeneOntology; BP, biological process; MF,molecular function; and CC,
cellular compartment.
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binding site (Figures 4A, B). The rotatable bonds of the 28 ligands
were kept flexible, while the subcomplex macromolecule was
adopted as a rigid structure. The analysis of the molecular
docking results shows that most of the ligands screened bind
into two active sites: (I) the center of RPS3 protein and (II) the
head of rRNA helix 18 (Figure 4C). The top three binding poses
with the best binding energies at each ligand-binding site are
given in Table 4. The best binding energies of compound
baicalein, vadadustat, and estetrol are observed at the head of
the rRNA helix 18 site with binding energies −8.24, −8.01,
and −7.98 kcal/mol, respectively. Similarly, baicalein, estetrol,
and 3-{[(3-methyl-1,2,4-oxadiazol-5-yl)methyl]carbamoyl}
benzoic acid show the best binding energies at the center of
RPS3 protein with binding energies −7.54, −7.33, and −7.24 kcal/
mol, respectively. Baicalein has been shown to have the highest
binding pose for both ligand-binding sites. All the compounds
form hydrogen bonds with the rRNA helix18 site that contains
the following nucleotides: U607, C608, U609, G610, G611, G613,
U630, A629, and U631, whereas the RPS3-binding site contains
the following residues: Ala30, Gly33, Arg54, Arg94, Ala100,
Gln101, Glu103, and Ser104 (Table 4). The interactions of
baicalein, estetrol, and vadadustat (rRNA h18) are shown in
Figure 5A, whereas the interactions of baicalein, estetrol, and
3-{[(3-methyl-1,2,4-oxadiazol-5-yl)methyl]carbamoyl}benzoic
acid (RPS3 protein) are shown in Figure 5B. In Figure 5A, (i)
baicalein binds in the region of rRNA h18 through h-bond
interactions with U607, G609, G610, U630, and U631; (ii)
estetrol shows h-bond interactions with U607, U609, G611,
G613, and A629; and (iii) vadadustat forms h-bond
interactions with U608, G610, G611, and U630. Meanwhile, in
Figure 5B, (iv) baicalein binds in the region of RPS3 protein

through h-bond interactions with residues Ala30, Gly33, Arg54,
Arg94, and Ala100; (v) estetrol forms h-bond interactions with
residues Arg94, Ala100, and Gln101; and (vi) 3-{[(3-methyl-
1,2,4-oxadiazol-5-yl)methyl]carbamoyl}benzoic acid forms
h-bond with residues Arg54, Arg94, Gln101, Glu103, and Ser104.

4 Discussion

COVID-19 has highlighted several therapeutic gaps in
healthcare. One of the most significant gaps is the lack of
effective antiviral drugs to treat the disease. Although some drugs
have been repurposed to treat COVID-19, such as remdesivir, their
efficacy is limited, and they are not a cure for the disease. Another
gap is the lack of effective treatments for severe cases of COVID-19.
While some patients recover from the disease with supportive care,
there are still many who die from the disease. There is an urgent
need for more effective treatments to reduce the mortality rate of
COVID-19.

The present study used bioinformatics tools to explore the
structural similarities between human host proteins and SARS-
CoV-2 proteins and their interacting partners. This analysis led
to the identification of an impressive number of 6,116 human
proteins and 19,051 unique interacting partners of SARS-CoV-
2 proteins. Further analyses of the target interactors of hCoV-2
proteins, combined with the differentially expressed genes (DEGs)
of COVID-19 patients, revealed a total of 1,120 TIG-DEGs that
participated in Gene Ontology and pathway enrichment analyses.
Remarkably, the most significant pathways and GO terms identified
were related to coronavirus disease, the cellular macromolecule
biosynthetic process, RNA binding, and ribosome. Subsequently,

FIGURE 3
(A) PPI network comprising 302 nodes and 688 interacting edges constructed using the STRING database corresponding to interaction score >0.9.
The red- and blue-colored nodes signify up- and downregulated proteins, respectively. (B) Top-scoring PPI module consisting 19 nodes and 171 edges,
where the adjacent edges of the RPS3 gene with the highest degree (=25) is highlighted in red. PPI, protein–protein interaction.
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TABLE 3 Physiochemical properties of 28 selected drugs calculated after filtering thrice database filter, pharmacokinetic filter, and toxicological filter. The following drugs show no toxicity risks (mutagenicity,
tumorigenic, irritant, and reproductive effective).

S.no. PubChemID Compound Name Chemical
formula

Osiris Property Explorer Swiss ADME webserver

MW cLogP Solubility Drug-
likeness

Drug
score

TPSA Lipinski Bioavailability Synthetic

1 3365 Fluconazole C13H12F2N6O 306.27 −0.11 −2.17 1.99 0.87 81.65 0 0.55 2.45

2 4236 Modafinil C15H15NO2S 273.35 0.38 −3.84 0.52 0.69 79.37 0 0.55 2.83

3 4594 Omeprazole C17H19N3O3S 345.42 2.09 −2.72 −0.51 0.6 96.31 0 0.55 3.58

4 5329 Sulfamethoxazole C10H11N3O3S 253.28 0.44 −3.02 2.77 0.88 106.6 0 0.55 2.73

5 13730 2′-Deoxyadenosine C10H13N5O3 251.24 −0.89 −2.72 −5.08 0.47 119.31 0 0.55 3.6

6 27125 Estetrol C18H24O4 304.38 2.17 −3.22 −0.61 0.58 80.92 0 0.55 3.99

7 35370 Zidovudine C10H13N5O4 267.24 −1.02 −1.44 2.12 0.91 134.07 0 0.55 3.93

8 73115 1-((2S,3R,4S,5S)-3-fluoro-4-hydroxy-5-
(hydroxymethyl)tetrahydrofuran-2-yl)-5-
methylpyrimidine-2,4(1H,3H)-dione

C10H13FN2O5 260.22 −1.4 −1.3 2.56 0.93 104.55 0 0.55 3.95

9 446541 Mycophenolic acid C17H20O6 320.34 2.3 −3.01 −0.61 0.58 93.06 0 0.56 3.02

10 2566008 1-[4-(5-Chlorothiophen-2-yl)
sulfonylpiperazin-1-yl]ethanone

C10H13ClN2O3S2 308.8 1.67 −1.28 5.94 0.93 94.31 0 0.55 3.08

11 3759658 1-[4-(Thiophene-2-sulfonyl)-piperazin-1-yl]-
ethanone

C10H14N2O3S2 274.36 0.86 −0.52 6.03 0.95 94.31 0 0.55 2.88

12 3803220 2-(4-Acetylpiperazin-1-yl)sulfonylbenzonitrile C13H15N3O3S 293.34 0.7 −1.38 1.42 0.85 89.86 0 0.55 2.62

13 5281605 Baicalein C15H10O5 270.24 2.34 −2.86 0.75 0.75 90.9 0 0.55 3.02

14 5360515 Naltrexone C20H23NO4 341.4 1.58 −3.19 4.67 0.85 70 0 0.55 4.72

15 6453528 Sulodexide C12H17N5O4 295.29 −0.99 −2.44 −0.88 0.6 114.55 0 0.55 4.14

16 9926791 Tofacitinib C16H20N6O 312.37 1.19 −3.59 −2.54 0.46 88.91 0 0.55 3.26

17 15277004 5′-Thiothymidine C10H14N2O4S 258.29 −0.39 −2.28 −0.51 0.65 123.12 0 0.55 3.71

18 23634441 Vadadustat C14H11ClN2O4 306.7 1.2 −3.15 −3.53 0.45 99.52 0 0.56 2.31

19 25126798 Ruxolitinib C17H18N6 306.37 1.68 −3.92 −6.97 0.41 83.18 0 0.55 3.16

20 25271624 Adrafinil, (R)- C15H15NO3S 289.35 0.27 −4.04 0.85 0.7 85.61 0 0.55 3.21

21 27646027 1-acetyl-N-(6-methoxypyridin-3-yl)
piperidine-4-carboxamide

C14H19N3O3 277.32 0.99 −1.93 5.77 0.94 71.53 0 0.55 2.37

22 47110626 1-acetyl-N-(2-hydroxyphenyl)piperidine-4-
carboxamide

C14H18N2O3 262.3 1.36 −1.88 6.08 0.94 69.64 0 0.55 1.75

(Continued on following page)
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the PPI network analysis identified RPS3 as the hub gene in a cluster
of 19 nodes and 171 edges.

It should be noted that the approach of identifying host
proteins structurally similar to viral proteins has been used
before, as evidenced by Gordon et al. (2020). Nonetheless, the
current study identified a much higher number of host proteins
and interacting partners, due to the utilization of a different
method of merging structurally similar host proteins and
removing duplicates. Similarly, the approach of comparing the
target interactors of hCoV-2 proteins with the DEGs of COVID-
19 patients has been used before, as demonstrated by Blanco-
Melo et al. (2020). Despite this, the present study identified a
larger number of TIG-DEGs, indicating greater level of
sensitivity in the methodology used.

The PPI network analysis of TIG-DEGs using Cytoscape
software is a well-established method in systems biology that
allows the identification of hub genes and protein complexes. The
identification of RPS3 as a hub gene in the present study is
particularly noteworthy, as it has also been identified by Prasad
et al. (2021) as a hub gene in their PPI network analysis of SARS-
CoV-2 interactors. The current study and findings from these two
earlier studies suggest that RPS3 could be a potential therapeutic
target for COVID-19.

Last, filtering potential drug candidates from an extensive
library of compounds based on various pharmacokinetic and
toxicological properties is a conventional strategy in drug
discovery (Reyaz et al., 2021; Sultan et al., 2021; Sultan et al.,
2022). This study identified three compounds—baicalein,
vadadustat, and estetrol—with promising properties, such as
binding affinity and residual interaction with RPS3, for
COVID-19 treatment. These compounds could be further
tested in vitro and in vivo for their efficacy. Although different
research groups have tried to investigate that baicalein may act as
an anti-SARS-CoV-2 drug through in vitro analysis, its safety and
efficacy in SARS-CoV-2-infected transgenic animals have not
been studied yet (Huang et al., 2020; Su et al., 2020; Liu H. et al.,
2021; Dinda et al., 2023). However, Song et al. (2021) investigated
the therapeutic effect of baicalein against SARS-CoV-2 both in
vivo and in vitro (Song et al., 2021). Further experimental studies
are recommended to prove that baicalein may act as an effective
anti-COVID-19 molecule.

In summary, this study’s bioinformatics analysis provides novel
insights into the biology of SARS-CoV-2 infection and potential
therapeutic targets. Although some of the methodologies used have
been used before, this study’s findings highlight the importance of
leveraging multiple bioinformatics tools to identify host proteins,
interacting partners, and potential drug candidates. Nonetheless,
further experimental validation is necessary to confirm this study’s
findings and facilitate the translation of these findings into clinically
applicable interventions. This study has some strengths and some
limitations. One of the major strengths of this study is the
comprehensive and systematic approach toward identifying the
host proteins that interact with SARS-CoV-2 proteins and their
potential roles in COVID-19 pathogenesis. This study used multiple
databases and tools to identify the interactors and DEGs in COVID-
19 patients. This approach provides a more comprehensive
understanding of the host–virus interactions and their potential
roles in the disease pathogenesis. This study also identifiedT
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significant pathways and GO terms that could provide potential
targets for drug development. However, this study also has some
limitations that need to be addressed. This study relied solely on in
silico analysis and did not validate the identified DEGs or hub genes

through experimental studies. Additionally, this study used only one
mRNA expression profile dataset, which may not be sufficient to
capture the diversity of gene expression patterns in COVID-19
patients. This study also did not investigate the functional roles

FIGURE 4
(A) Three-dimensional EM structure of the human 40S ribosomal subunit (PDB ID: 6ZLW), bounded to the ribosomal subcomplex and SARS-CoV-
2 NSP1 protein (in red). (B) Magnified figure in cartoon representation of the ribosomal subcomplex comprised RPS3 (in blue), RPS2 (in green), and the
phosphate backbone of rRNA helix 18 (h18) (in yellow) of 40S ribosomal protein. (C) Schematic representation of the two possible ligand-binding site
pockets in the ribosomal subcomplex (I) in the center of RPS3 and (II) the head of rRNA h18 identified through blind docking.

TABLE 4 Top three docking pose prediction results for each ligand-binding sites: (I) the head of rRNA helix 18 and (II) the center of RPS3 protein.

Ligand
Binding site

S.
No.

Compound PubChem
ID

Binding Affinity
(kcal/mol)

H-bond interactions (≤3.50 Å)

I. rRNA helix
18 (h18)

1 Baicalein 5281605 −8.24 U607O3’ (3.12), U607O2’ (3.09), U630O3’ (3.25), U630O2’

(3.27), U630O3’ (3.07), U631OP1 (2.85), U609O4 (3.33),
U631OP1 (3.30), G610OP1 (2.90)

2 Vadadustat 23634441 −8.01 G611N7(3.00), G610N7(3.07), C608N4(3.57),
U630O3’(2.93)

3 Estetrol 27125 −7.98 G613O6 (3.14), G611OP2 (3.19), A629O2’ (3.33), U609OP2

(3.10), U607O2’ (2.92)

II. RPS3 protein 1 Baicalein 5281605 −7.54 Arg54NH2(3.29), Arg94NH1(3.22), Ala100OB(2.95),
Gly33NB(3.60), Ala30OB(3.55)

2 Estetrol 27125 −7.33 Arg94NH1(2.68), Gln101OE1(3.04), Ala100OB(2.70),
Ala100OB(3.31)

3 3-{[(3-methyl-1,2,4-oxadiazol-5-yl)
methyl]carbamoyl}benzoic acid

61865966 −7.24 Ser104OG(2.88), Gln101OE1(3.59), Gln101NE2(2.87),
Arg54NH2(3.04), Glu103OB(3.05), Ser104OG(3.27),
Arg94NH1(3.00)
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of the identified hub gene containing RPS3, which limits the
understanding of its potential importance in COVID-19
pathogenesis.

5 Conclusion

In conclusion, the current study provides a comprehensive and
systematic approach to identifying potential therapeutic targets for
COVID-19 by exploring the structural similarity of human host
proteins to SARS-CoV-2 proteins and investigating their
interactions and pathways. This study identified 19,051 unique
interactors for SARS-CoV-2 proteins, 1,120 differentially
expressed genes, and a significant hub gene containing RPS3. The
screening of the PubChem library identified three compounds,
baicalein, vadadustat, and estetrol, with the best binding energies
and residual interaction with the target molecule. Overall, current
findings suggest that exploring the human host proteins’
interactions and pathways can provide valuable insights for
developing effective treatments for COVID-19.
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