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Lung tumors are a leading cause of cancer-related death worldwide. Lung
cancers are highly heterogeneous on their phenotypes, both at the cellular
and molecular levels. Efforts to better understand the biological origins and
outcomes of lung cancer in terms of this enormous variability often require of
high-throughput experimental techniques paired with advanced data analytics.
Anticipated advancements in multi-omic methodologies hold potential to reveal
a broader molecular perspective of these tumors. This study introduces a
theoretical and computational framework for generating network models
depicting regulatory constraints on biological functions in a semi-automated
way. The approach successfully identifies enriched functions in analyzed omics
data, focusing on Adenocarcinoma (LUAD) and Squamous cell carcinoma (LUSC,
a type of NSCLC) in the lung. Valuable information about novel regulatory
characteristics, supported by robust biological reasoning, is illustrated, for
instance by considering the role of genes, miRNAs and CpG sites associated
with NSCLC, both novel and previously reported. Utilizing multi-omic regulatory
networks, we constructed robust models elucidating omics data
interconnectedness, enabling systematic generation of mechanistic
hypotheses. These findings offer insights into complex regulatory mechanisms
underlying these cancer types, paving the way for further exploring their
molecular complexity.
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1 Introduction

Lung cancer (LC) is one of the most prevalent and deadliest forms of cancer
globally–ranks second for cancer incidence and first for cancer mortality–. It is
responsible for the highest cancer mortality rates worldwide. LC is broadly categorized
into two primary types: non-small cell lung cancer (NSCLC) and small cell lung cancer
(SCLC), with NSCLC being the more prevalent form (Huang et al., 2022). NSCLC accounts
for approximately 85% of all lung cancer cases and exhibits a particularly low 5-year survival
rate, estimated at just 13%. The remaining 15% of cases are attributed to SCLC. Moreover,
within the NSCLC category, three primary histopathological subtypes are recognized. These
subtypes include adenocarcinoma (LUAD), comprising 45%–50% of NSCLC cases,
squamous cell carcinoma (LUSC), with a prevalence of 30%–35%, and large cell
(undifferentiated) carcinoma, accounting for 5%–10% of cases (Wang et al., 2022). LC
often manifests with subtle early symptoms, and it is frequently diagnosed at an advanced
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stage, rendering treatment more complex. Typical indicators may
include persistent coughing, chest discomfort, breathing difficulties,
unexplained weight loss, fatigue, and recurrent respiratory
infections (Dritsas and Trigka, 2022). The treatment approaches
for lung cancer hinge on several factors, including the cancer type,
stage, and the overall health status of the patient. These therapeutic
modalities may involve surgical intervention, radiation therapy,
chemotherapy, targeted therapies, and immunotherapy. Timely
detection and the application of effective treatment are decisive
in enhancing survival rates and the overall quality of life for
individuals grappling with lung cancer (Araghi et al., 2023).

Numerous diagnostic approaches have been proposed for
identifying lung cancer subtypes, encompassing methods like
computed tomography (CT) and pathological examination. In
recent years, as sequencing technologies have advanced, liquid
biopsy has emerged as a non-invasive and efficient means of
early cancer detection and targeted therapy (Crowley et al., 2013;
Howlader et al., 2020). Furthermore, diverse techniques operating at
various biological levels have been used, such as the assessment of
single nucleotide variations, DNA methylation, and quantifying
miRNA expression (Hao et al., 2017; Ahmed et al., 2022; Wang
et al., 2022).

In the context of contemporary biomedical research, high-
throughput technologies have sparked a revolution by facilitating
large-scale genome-wide association studies and enabling the
exploration of global transcript levels. Additionally, the
integration of multi-omics data in cancer research has provided a
systems biology approach, leveraging the synergies between diverse
molecular descriptions. Nevertheless, the pursuit of comprehensive
mechanistic insights remains an ongoing challenge (Hasin et al.,
2017; Argelaguet et al., 2018). To construct comprehensive genomic
and transcriptomic regulatory maps able to capture lung cancer
complexity, we need to analyze numerous gene expressions and
high-dimensional genetic variants. This process typically involves
several approaches to multivariate regression analysis (Harpole Jr
et al., 1995; Farhangfar et al., 2014), interestingly, genetic regulatory
connections are inherently sparse, with a single variant influencing
only a small fraction of gene expressions (Zhou et al., 2016).

In the field of bioinformatics research, numerous multiomics
methods have been introduced, to name a few, J. Wang et al. (Wang
et al., 2022) developed a precise multiomics risk model for predicting
Tumor Mutational Burden (TMB) in patients with LUAD. This
model integrated gene/miRNA expression and DNA methylation
data sourced from The Cancer Genome Atlas (TCGA). By
considering these multiomic features, the model was able to
capture subtle alterations within the tumor microenvironment,
leading to a more accurate prediction of TMB. On a related note
(Song et al., 2023), conducted a comprehensive investigation into the
impact of Intratumor Heterogeneity (ITH) on the effectiveness of
bispecific antibody (bsAb) immunotherapy in patients with advanced
NSCLC. Their study leveraged advanced techniques, such as Digital
Spatial Profiling (DSP), Next-Generation Sequencing (NGS), and the
nCounter platform, to analyze transcriptomic and proteomic data
derived from over 100 Regions of Interest (ROIs). Multiomic
approaches have been succesfully applied to improve prognostics
on a number of neoplasms, such as colon (Yang et al., 2020), liver
(Chaudhary et al., 2018) and breast cancer (Xie et al., 2018), even
PanCancer studies have been developed (Chai et al., 2021).

In view of these facts, here we resort to Sparse Generalized
Canonical Correlation Analysis (SGCCA) to analyze DNA
methylation, gene expression, and miRNA from LUAD and
LUSC data from TCGA. SGCCA, a potent statistical method
with LASSO penalization (Tenenhaus et al., 2014), which
identifies correlated features in extensive datasets. SGCCA was
coupled with ARACNE (Margolin et al., 2006) to reveal features
and their interconnections and evaluate the role of relevant
methylation sites, miRNAs and mRNAS in oncogenic
mechanisms. In summary, in this article, we probe these
integrative approaches to explain intricate biological complexities
in the context of lung cancer.

2 Methods

The following analyses (see Figure 1) were performed with R
programming language version 4.3.0 (R Core Team, 2022) and can
be found on the GitHub repository at https://github.com/
arriagajorge/Lung-76-cancer-multiomics.

2.1 Acquisition and preprocessing data

The TCGAbiolinks package (Silva et al., 2017) was employed to
acquire the TCGA dataset. For our study, we selected samples from
unique patients with concurrent Illumina Human Methylation 450,
RNA-seq, and miRNA-seq data. These criteria limited our sample
size to 188 for the Lung Adenocarcinoma subtype (LUAD) with
5 samples from normal tissue and 72 for the Lung Squamous Cell
Carcinoma subtype (LUSC) with 3 samples from normal tissue.

Samples for the methylation analysis were obtained with the
Infinium HumanMethylation450 BeadChip, which covers 99% of
RefSeq genes at transcription repressive sites around promoters and
transcription favorable sites (Zhou et al., 2017; Wang et al., 2018). Since
we measured three distinct techniques, methylation beadchip, RNAseq,
andmiRNAseq, we treated them as separate omics entities referred to as
CPG sites, transcripts, and miRNAs. Incorporating the entire set of
features, our aim was to capture the highest number of interactions
possible. Subtype classification per cancer type was also downloaded
from the GDC metadatada (Colaprico et al., 2016; Mounir et al., 2019)
Consequently, GDC samples were manually merged, to achieve a
satisfactory sample size into LUAD and LUSC subtypes.

Omics preprocessing was performed according to published
guidelines (Dedeurwaerder et al., 2011) using biomaRT. The
initial step involved the normalization of the transcripts for
length and GC content by using the full method, content biases
with the NOIseq package (Tarazona et al., 2015) and EDASeq

package (Risso et al., 2011) full normalization.
Transcripts and miRNAs with zero counts at the low counts

filter were removed, normalization between samples was performed
using TMM (Trimmed Mean of M-values) (Robinson and Oshlack,
2010). Batch effect was corrected from samples using ARSyNseq by
removing not associated systematic noise with the cancer type
samples (Nueda et al., 2012). microRNAs preprocessing follows
the same steps, excluding any considerations for length or GC bias,
and making use of the median method for sample normalization
(Tam et al., 2015).
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For the CpG analysis, probes that exhibited more than 25%
missing values were eliminated. Transcripts coding for transcription
factors (TF-genes) were tagged using downloaded annotation data.
Finally, nearest neighbor imputation was applied to fill in the
remaining missing values, transforming the data into
M-value matrices.

2.2 Sparse Generalized Canonical
Correlation Analysis (SGCCA)

We applied normalization to each omic by dividing by the
square root of the first eigenvalue, after completing the
preprocessing phase. Subsequently, we merged the normalized
omics data on a patient-by-patient fashion, creating one matrix
per lung cancer type. This way, we guarantee that the impact of each
omic on the successive analysis is determined by its relative variance
(Voillet et al., 2016).

The SGCCA method was conducted by using the mixOmics
package (Rohart et al., 2017). This method was followed exclusively
in cancer samples, i.e., excluding normal samples. The analysis was
performed by providing the algorithm with the different blocks of
data, a corresponding sparsity parameter, along with the number of
components to recover (ncomp), a design matrix, and a covariance-
maximizing function. Cross validation with k = 5 was employed to
select sparsity parameters for each omic taking the sequence [0.01,
0.02, . . ., 0.99] (Ochoa and Hernández-Lemus, 2023).

In each iteration, SGCCA was executed, retrieving a single
component, recording the chosen number of features and the
average variance explained (AVE) (Supplementary Figure S1).
Sparsity parameters were carefully selected to achieve the highest
AVE with the fewest number of features per cancer type, taking
0.01 for CpG sites, 0.02 for transcripts and 0.11 for microRNAS in
LUSC type, while taking 0.30 for CpG sites, 0.01 for transcripts and
0.14 for microRNAS in LUAD type. To equilibrate the variation
among the different values, eigenvalue normalization was
performed, ensuring a balanced representation. Additionally,

separate penalization methods were applied, considering the
varying signal sizes observed in the distinct omics.

Finally, SGCCA analysis was executed for each cancer type by
using the fitted values and notice that as the sparsity value decreases,
the number of selected features also decreases. In the case of each
cancer type, the value of ncomp was set to the number of samples
minus 1, and the default design matrix was utilized with the centroid
function, enabling the incorporation of negative correlation. Due to
the application of LASSO penalization, the feature selection by
SGCCA is susceptible to some degree of instability. To replicate
the filtering method in miRDriver (Bose and Bozdag, 2019), we
conducted 100 iterations of SGCCA for each lung cancer type,
employing random subsets, consisting of half of the samples each
time. Subsequently we retained only those features that were selected
in at least 70% of iterations (Supplementary Figure S2).

2.3 Functional enrichment analysis

The SGCCA results produced a sparse matrix consisting of
loadings that represent the contribution of each feature to every
component, with non-zero loadings, which can be examined for
functional enrichment. All the features were mapped, including
CpG probes, miRNA precursors, and transcripts, to Entrez gene IDs,
with direct annotation available for transcripts and miRNAs at
Entrez, and for translating CpG probes to Entrez IDs, we
obtained the genes affected by each probe from the microarray
annotation file. The group of features with non-zero loadings in all
SGCCA components was analyzed separately using an over-
representation analysis, with Entrez IDs used as input.

Enrichment analyses were performed using the clusterProfiler
package (Yu et al., 2012) in the KEGG database (Kanehisa et al.,
2017) and biological processes in the gene ontology (Consortium,
2021). Over-representation testing was conducted on functions that
exhibited exclusive enrichment in a single dataset. To achieve this,
we grouped the exclusively enriched functions based on GO slim
and KEGG classes.

FIGURE 1
Summary of the procedure.
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The resulting p-values from the enrichment were adjusted for
multiple testing using the Bonferroni method, then, the association
between the grouped categories and the subtypes was evaluated
using Fisher’s test. We executed a separate gene set enrichment
analysis (GSEA) (Shi and Walker, 2007) using only transcript data
to investigate functions affected by differential expression, while
using the clusterProfiler package to execute the GSEA without
applying a p-value cutoff, to obtain GSEA enrichment scores for
each of the functions that were over-represented in the
SGCCA results.

Finally, the obtained scores revealed whether functions were
over-represented among the features associated with different omics
and enriched among genes that exhibited altered expression
(Supplementary Tables S1–4).

2.4 Network construction and analysis

Then, the selected functions were represented as a network to
construct potential regulatory models. As a result, we obtained all
the features that covaried with the features responsible for the
functional enrichment, to target this set (Supplementary Figure S3).

We estimate the mutual information (MI) between each pair of
nodes by running ARACNE-multicore (https://github.com/
josemaz/aracne-multicore), a recent version of the algorithm
developed by Margolin et al. (2006). ARACNE-multicore works
in parallel to accelerate the estimation of mutual information
between gene pairs. This allowed us to remove all pairs with MI
lower than the median value for known regulatory interactions.

Then, we extracted a submatrix from the original dataset and ran
ARACNE-multicore to identify regulatory interactions. To capture
CpG interactions, we retrieved information from the microarray
annotation file, considering the potential influence of position
overlap on gene expression. For transcripts, we utilized TFtargets
package https://github.com/slowkow/tftargets and for miRNAs, we
employed the multiMiR package (Ru et al., 2014).

The infotheo package (Meyer, 2008) was used to calculate
mutual information (MI) values for the regulatory interactions.
Instead of estimating all pairs involving a specific feature in the
matrix (as ARACNE does), we decided to focus on a specific set of
predetermined pairs. The threshold was determined for the
regulatory interactions by selecting the median MI values instead
of the mean to prevent outliers from dominating from having a
superior influence on the threshold determination. Considering MI
values to vary across different types of pairs, we obtained different
thresholds for CpG-transcript, CpG-miRNA, TF transcript-
transcript, and miRNA-transcript edges in similar way as in
(Ochoa and Hernández-Lemus, 2023).

Comparation of MI values distribution between different types
of edges was developed using Kolmogorov-Smirnov test, we decide
to choose the lowest median MI from the regulatory interactions
when the distribution showed no significant differences, as the single
threshold. This allowed more MI interactions to be included in the
final network.

For the MI network visualization, we employed cytoscape

(Otasek et al., 2019) by using RCy3 package (Gustavsen et al.,
2019) and for analysis we used the igraph package (Csardi and
Nepusz, 2006). For miRNA differential expression analysis we

performed eBayes limma functions (Smyth, 2004) and
normalized using voom (Law et al., 2014). Due to the absence
of previous batch-effect correction in the methylation data, we
employed the missMethyl package (Phipson et al., 2015) in
differential analysis to mitigate systematic errors (Marabita
et al., 2013).

Making use of Pubmed databases we searched for biological
roles associated with each neighbor of a functional node,
interactions between node pairs and the databases containing
predicted regulatory links using multiMir package. This
approach constructed a regulatory model for the functions
enriched in the SGCCA through a satisfactorily automated manner.

2.5 Analysis of central and topological
measures within the gene
expression networks

With the information obtained through the networks, we
activated the NetworkAnalyzer tool. This tool served as a
resource for quantifying key metrics pertaining to network
topology. Our ensuing analysis focused on the Average Shortest
Path Length, Betweenness Centrality, Closeness Centrality,
Neighborhood Connectivity, and Topological Coefficients. The
Average Shortest Path Length metric computed the average of
the shortest paths between all pairs of nodes, offering insight into
the overall efficiency of information transfer within the network.
Activating the Betweenness Centrality metric allowed us to identify
nodes crucial for information flow, acting as essential links in the
network. Enabling Closeness Centrality aided us in identifying
nodes with shorter average distances to others, signifying their
centrality in the network. The Neighborhood Connectivity
parameter explore into the local connectivity of nodes within
immediate neighborhoods, uncovering nodes with pronounced
local influence. Topological Coefficients provided insights into
the influence of nodes on the overall network structure, with
higher coefficients indicating a more significant role in
maintaining network integrity. We interpreted these metrics in
conjunction with biological reports for each transcript and
miRNA reported to identify key nodes and their potential
implications in the molecular mechanisms for LUAD and LUSC.

2.6 CpG sites identification and
measurement

For the identification of CpG sites as promoters or enhancers we
loaded the genomic annotation information using the
TxDb.Hsapiens.UCSC.hg38.knownGene package (Huang
et al., 2022) and extracted promoter regions located 1,000 base
pairs upstream and up to the transcription start site. Additionally,
we obtained enhancer coordinates from the ENCODE project (de
Souza, 2012) stored in a BED file (“ENCFF596CUU.bed.gz”) using the
data.table package. Subsequently, we converted the enhancer
and promoter data into GRanges formats for efficient intersection
analysis. To enhance the compatibility of the datasets, we created data
frames from the GRanges objects, specifying element types as
“promoter” or “enhancer” and combining the information into a
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unified dataframe. The resulting dataframe included essential details
such as genomic coordinates, width, strand, and element type. For
further analysis, we focused on CpG sites associated with genes of
interest. Leveraging the Ensembl database through the biomaRt

package, we obtained the Ensembl transcript IDs (ENST IDs) for the
list of selected CpG sites related to LUAD and LUSC data. The
retrieved ENST IDs were then merged with the previously generated
dataframe containing promoter and enhancer information. The final
output is a consolidated dataset that associates CpG sites with their
respective promoters and enhancers information for further
downstream analysis and interpretation.

To calculate the distances between key CpG sites and the main
node genes, we first converted the genomic coordinates of both
genes and CpG sites into numeric values. We implemented a
midpoint function, facilitating the determination of the midpoint
for a given genomic region, which was crucial for distance
calculations. Applying this function, we calculated the midpoint
of the main genes for each network. To ensure consistency, gene
names were uniformly converted to lowercase. Distances were then
systematically calculated between the midpoint of the central gene
and the midpoints of CpG sites associated with each LUAD and
LUSC network. The results were organized into a distance data
frame, where each row represented a target CpG site and its
corresponding distance from the main gene node.

2.7 Cox regression analysis

To explore potential clinical implications, we employed a Cox
regression analysis utilizing patient survival data to evaluate the
significance of gene interactions specifically associated with the onset
of LUSC or LUAD. Survival data from individuals diagnosed with
LUSC and LUAD were assembled, and gene interactions linked were
systematically identified. These identified interactions were
subsequently integrated as explanatory variables within the Cox
regression model. Our hypothesis asserts that these gene interactions
would demonstrate statistical significance in the model, thereby
confirming their crucial involvement in the onset of LUSC or LUAD.

Survival data from individuals diagnosed with LUSC and LUAD
were assembled, and gene interactions linked were systematically
identified. These identified interactions were subsequently
integrated as explanatory variables within the Cox regression
model. Our hypothesis asserts that these gene interactions would
demonstrate statistical significance in the model, thereby supporting
their involvement in the onset of LUSC or LUAD.

For a comprehensive and in-depth exploration, we invite you to
examine the associated GitHub repository (https://github.com/
arriagajorge/Lung-cancer-multiomics/tree/master/Cox%20analisys).

3 Results and discussion

3.1 Representation of genetic interactions in
LUAD and LUSC networks by categories and
types of relationships

Our primary objective was to determine whether relationships
between biological functions enriched through different sets of features

in various datasets, when enriched multiple times, shared common
underlying features and interactions. We observed that certain
functions appeared frequently among the co-selected features in our
analyses. Typically, functions that share common features can be
identified through existing annotation databases. However, we
aimed to go beyond these databases by leveraging our multi-omic
integration strategy. This approach allowed us to uncover cross-linking
patterns that might connect seemingly independent functions across
different layers of biological data. Basically, we sought to understand
how seemingly unrelated functions might be linked through shared
patterns of variation in multi-omic data. To investigate these potential
connections, we constructed networks based on mutual information
(MI). MI is a measure that quantifies the degree of dependence or
information shared between two variables, in our case, features and
functions. These MI networks underwent a rigorous filtering process,
in which we retained only the interactions that had a high probability
of being regulatory. To determine the appropriate threshold for this
filtering, we used MI values associated with known regulatory
interactions. Specifically, we selected the median MI value as the
minimum threshold required for considering an edge in the
network as potentially indicative of regulatory relationships.

The network components we generated in this manner, provided
a visual representation of the relationships between features and
functions. These network components included features that had
been annotated as participants in specific functions. The underlying
assumption in our approach was that features selected through co-
selection, which displayed correlated patterns with functional features,
might also be involved in the regulation of these functions. The
network includes nodes representing miRNAs, CpGs and transcripts
that code for transcription factors. The threshold we applied during
filtering aimed to exclude interactions primarily driven by simple co-
variation while retaining those interactions that were more likely to
have biological significance and serve as indicators of potential
regulatory interactions within the network. In the Cytoscape
visualizations presented, we adopted a visual encoding scheme that
indicate important insights into the nature of interactions within the
network. Specifically, activation interactions were depicted using bold
lines, while functional associations were denoted with dashed lines.
Subtle connections between genes, characterized by their relatively
lower functional relevance or minor influence within the context of
lung cancer, were illustrated by slender lines. Such linkages may
signify indirect connections or associations of less pronounced
significance; however, they still bear relevance within the broader
network context.

The selection of this representation is supported by the high quality
and reliability of the data from TCGA, the presence of attributes that
describe specific relationships, and their biological relevance to lung
cancer. In the following sections, we will present and discuss relevant
findings, following a systematic approach. First, we will explore the data
from LUAD, and subsequently, we will delve into the data from LUSC.

3.2 Expression of miR-125b-1, miR-125b-
2 and miR-199a-2 is associated to LUAD
development

MiR-125b-1 is produced by the long non-coding RNA
(lncRNA) MIR100HG, its overexpression has been associated
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with oncogenic events, including abnormalities such as
chromosomal translocation (t (2; 11) (p21; q32)). However, there
is currently no evidence linking this miRNA to the development of
NSCLC (Wang et al., 2020; Ashton et al., 2022). Whereas, it has been
reported miR-125b-2 is generated from the miRNA cluster miR-
99a/let-7c/miR-125b-2, located on chromosome 21. Studies suggest
that inhibiting its expression may lead to a loss of differentiation in
lung epithelial cells (Lee et al., 2005). On the other hand, the miR-
199 family is a highly conserved group of miRNAs consisting of two
members, miR-199a and miR-199b. Currently, two types of pre-
miRNAs have been identified for miR-199a: pre-miR-199a–1 and
pre-miR-199a-2. As a crucial member of the miRNA family, miR-
199a has been implicated in various types of tumors, acting as either
a suppressor or a promotor (Yang et al., 2021). In the context of
NSCLC, miR-199a has been found to be significantly downregulated
compared to normal tissue. Previous studies have consistently
reported miR-199a as a tumor suppressor in NSCLC, and its
reduced expression has been attributed to methylation
abnormalities (Meng et al., 2022).

Drago et al., (Drago-García et al., 2017), previously utilized
mutual information (MI) to study mir-199, constructing networks
using data from both tumor and control tissues. Their findings
indicated that this miRNA plays a crucial role in the transcriptional
dynamics of breast cancer as well as normal tissue. However, as of
now, gene expression networks have not been employed to explain
the complexities of the development and (co)expression patterns of
this particular miRNA in the context of LUAD.

The generated networks highlight the presence of connections
between miR-125b-1 and miR-125–2 (Figures 2A). Additionally, a
relationship is observed involving miR-125b-1, miR-125b-2, and
miR-199a-2 (Figures 2B). Furthermore, an independent network is
formed by miR-199a-2 (Figures 2C). Regarding Figures 2A network,
it is evident that bothmiRNAs exhibit minimal connections between
two genes: FLT3 and ZNF334. FLT3 has been identified as being
overexpressed in hematologic malignancies, such as acute
myelogenous leukemia (Gilliland and Griffin, 2002). On the other
hand, upregulation of ZNF334 has been associated with
hepatocellular carcinoma (HCC), and triple-negative breast

cancer (TNBC) (Yang et al., 2023). This limited association
suggests that it is necessary to do an exhaustive research in
FLT3 and ZNF334 properties related to NSCLC and re-evaluate
its impact in the disease development. In the miR-125b-1; miR-
125b-2; miR-199a-2 network, it is evident that the connection
between the two first and mir-199a-2 is minimal. This
observation aligns with existing information regarding the
activity of these miRNAs in NSCLC. The methylated state of
miR-199a-2 in tumor tissue, along with the overexpression of
miR-125b-1 and miR-125b-2, supports this finding.

Furthermore, a connection between miR-199a-2 and two other
genes, KCNB1 and ARHGDIG, can be observed. KCNB1 has been
linked to colorectal and gastric cancer (Farah et al., 2020) while
ARHGDIG (Rho GDP dissociation inhibitor gamma) is associated
with vasopressin-related water reabsorption (Deckers et al., 2017).
However, the information regarding their involvement in NSCLC
remains unclear.

A significant correlation was observed in Figures 2C between
mir-199a-2 and the C8orf76 gene. Notably, recent studies have
demonstrated that silencing C8orf76 expression can effectively
inhibit lung metastasis (Wang et al., 2019). This finding leads us
to hypothesize that there is a reciprocal relationship between these
two biomarkers in terms of their oncogenic activities that have not
been explored yet.

To assess the potential clinical implications arising from the
interaction among mir-125-b1, mir-125-b2, and mir-199-a2, a
comprehensive examination was undertaken employing a Cox
proportional hazards model. Upon meticulous adjustment of the
Cox model, outcomes revealed statistically significant positive
coefficients for mir-125-b1 and mir-125-b2 genes, with associated
p-values of 0.029 and 0.016, respectively. These discerned
associations imply a substantive correlation with patient survival
within the context of lung cancer, suggesting that alterations in the
expression or activity of mir-125-b1 or mir-125-b2 may have a
considerable influence on patient outcomes. It is pertinent to note,
that the individual microRNA, mir-199-a2, did not attain statistical
significance (p-value = 0.181). Despite the lack of individual
significance for mir-199-a2, its inclusion proves to be crucial for

FIGURE 2
miR-125b-1, miR-125b-2 and miR-199a-2 functional subnetworks in LUAD. Circles represent CpGs, while squares symbolize transcripts. CpGs are
identifiedwith the gene symbol they affect; otherwise, the probe ID is used. Node size corresponds to its degree, with purple borders denoting proteins as
transcription factors. Links’ strength is measured by mutual information between nodes. (A) miR-125b-1 and miR-125b-2 show connections with miR-
199a-2. (B,C)MiR-199a is significantly downregulated in NSCLC and known as a tumor suppressor. The reciprocal relationship betweenmiR-199a-2
and C8orf76 suggests unexplored oncogenic activities.
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the observed significance attributed to the mir-125-b1 and mir-125-
b2 genes. This is evident in the loss of statistical significance when
the model incorporates mir-125-b1 and mir-125-b2 genes alone,
with p-values of 0.18 and 0.17, respectively. This underscores the
interdependence of mir-199-a2 in conjunction with mir-125-b1 and
mir-125-b2 in influencing the survival dynamics in LUAD.

3.3 CAPN2 is strongly related to potential
GPR27-regulation in LUAD

Calpains (CAPNs) constitute a family of cytosolic cysteine
proteases activated by calcium (Zhang et al., 2018). Among the
various isoforms, Calpain-2 (CAPN2) is recognized for its crucial
involvement in biological processes, including cell migration,
cytoskeletal remodeling, signal transduction and cell motility.
Recent investigations conducted by Xu et al. (2019) showed that
CAPN2 is upregulated in NSCLC and is correlated with a poor
5 year survival rate. Furthermore it has been proposed that
inhibiting CAPN2 promotes apoptosis and inhibits proliferation
of NSCLC.

Our work revealed intriguing associations between
CAPN2 and the GAL3ST2 and GPR27 genes (Figure 3).
GAL3ST2 upregulation has been linked to robust expression in
metastatic breast cancer tumors and prostate cancer (Guerra et al.,
2015; Qin et al., 2016). On the other hand, the interactions of
CAPN2 with GAL3ST2 and GPR27 as potential LUSC biomarkers,
have been associated with methylation of the 3p11-p14 promoter
region, a phenomenon observed in epithelial and cervical cancer
(Lando et al., 2015). There is no currently direct evidence
suggesting that GAL3ST2 or GPR27 are involved in NSCLC
development. However, their presence in the network led us to
consider the possibility of GPR27 potential involvement in
regulatory processes within LUAD. Further investigations need
to be done to elucidate the precise roles of GAL3ST2 and GPR27 in
the context of LUAD and their potential interactions
within CAPN2.

Following adjustments to the Cox model, a statistically
significant positive coefficient was discerned for the CAPN2 gene
(p-value = 0.047), thereby signifying a substantive association with
survival within the context of lung cancer. This implies that
alterations in CAPN2 expression or activity may exert an
influence on patient survival. It is essential to note, that the
individual CpG nodes GAL3ST2 and GPR27 did not
independently exhibit statistical significance (p-values of
0.132 and 0.116, respectively). Although the CpG nodes
GAL3ST2 and GPR27 did not attain individual statistical
significance, their inclusion proves to be essential for the
observed significance concerning the CAPN2 gene. This is
evident from the loss of significance when the model exclusively
incorporates the CAPN2 gene (p-value >0.5).

3.4 PFN2 and TBL1XR1 are related to a
potential LUSC-associated transcript

Profilin-2 (PFN2) belongs to the family of the actin-binding
proteins, and its expression is commonly linked with the nervous

system, playing a role in neurotransmitter exocytosis (Ling et al.,
2021). Recent research has demonstrated that PFN2 upregulates
the expression of Smad2 and Smad3 through an epigenetic
mechanism. Additionally, this upregulation of PFN2 and Smad
expression has been associated with an unfavorable prognosis of
lung cancer patients (Tang et al., 2015). Transducin (β)-like 1 X-
linked receptor 1 (TBL1XR1) has been implicated in high
metastatic rates observed in breast, gastric, and stomach
cancers. Moreover, its overexpression in NSCLC cell lines has
been shown to drive cell survival, proliferation, and metastases
(Zhang et al., 2020).

While both genes show high expression in lung cancer patients
with a poor prognosis, we have identified another significant gene
that may potentially correlate with the expression of these genes
(Figure 4). Plectin (PLEC) is a protein known to be involved in
binding andmodulating the proto-oncogene tyrosine-protein kinase
FER and the energy-controlling AMP-activated protein kinase
(Wesley et al., 2021). However, the relationship between PLEC
and PFN2 or TBL1R1 remains unexplored, and its impact in
NSCLC has been scarcely studied, with its most recent report
being in squamous cell lineages (Nie et al., 2023).

The Cox model revealed statistically significant positive
coefficients for the TBL1XR1 gene and the interaction
between PLEC and TBL1XR1 genes. The associated p-values
of 0.029 underscore the substantive nature of these associations,
particularly within the landscape of lung cancer survival. These
findings suggest that variations in the expression or activity of
TBL1XR1 and PLEC may have a considerable influence on
patient survival. It is essential to emphasize that the
individual CpG node PFN2 did not achieve statistical
significance (p-value = 0.852). While the independent impact
of PFN2 did not reach statistical significance, its indispensability
becomes apparent considering the observed significance linked
to the PLEC gene and TBLXR1. This is highlighted by the
decrease in statistical significance when the model involves
only the PLEC and TBLXR1 genes, yielding p-values of
0.11 and 0.33, respectively.

FIGURE 3
CAPN2 upregulation in NSCLC, linked to poor survival, involves
cell migration and motility. While direct evidence is lacking for
GAL3ST2 and GPR27 in NSCLC development, their presence with
CAPN2 suggests GPR27 potential regulatory role in LUAD.
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3.5 Inhibition of LRP1 might be related with
TBXAS1 increment in LUSC

The low-density lipoprotein receptor-related protein 1 (LRP1),
is a large transmembrane receptor (abundantly produced by
fibroblasts). In both, LUAD and LUSC, it has been demonstrated
that LRP1 decreases its expression compared to healthy tissues,
while in other tissues like brain cancers its expression increases,
suggesting that LRP1 plays a role in glioma growth (Lopes et al.,
1994). Thromboxane A synthase 1 (TBXAS1) is known to play
functional roles in processes such as neoplastic transformation,
including cell motility and invasion, proliferation, and
therapeutic resistance (Ashton et al., 2022).

Our research has revealed a relationship between TBXAS1 and
LPR1 in the regulation of gene expression in cancer (Figure 5).
Although TBXAS1 has not been clearly established as a potential
biomarker for lung cancer, it is known that in lung cancer
development, LRP1 downregulates its expression. However, the
direction of TBXAS1 influence on its expression during lung
cancer development remains uncertain. Interestingly, elevated
levels of TBXAS1 have been observed in breast cancer samples
with a poor prognosis (Watkins et al., 2005), suggesting a potential
parallel in lung cancer. These findings lead us to speculate that
TBXAS1 might also be associated with an unfavorable outcome in
lung cancer.

Investigating the clinical implications of LRP1, TBXAS1, and
BCOR using the Cox model we observed interactions among these
genes did not demonstrate statistical significance. However, it is
remarkable that the interaction involving LRP1 approached
significance, presenting a p-value of 0.057.

Investigating LRP1, TBXAS1, and BCOR using the Cox model
we observed interactions among these genes did not demonstrate
statistical significance. However, it is important to highlight that the
interaction related to LRP1 came close to significance (p-value of
0.057). This subtle but suggestive result encourages additional
exploration of the complex relationships between these genes,
emphasizing the necessity for ongoing research to uncover their
potential roles in clinical settings.

3.6 Ribosomal proteins S6 and S18 may be
implicated in LUSC development

Ribosomal protein S6 (RPS6), a 40S ribosomal subunit, has been
extensively investigated and is believed to play a significant role in
stimulating protein translation. Recent data indicate that
phosphorylated RPS6 might serve as a potential tumoral
biomarker (Knoll et al., 2016). In the context of NSCLC,
RPS6 has been observed to be overexpressed, and it is
hypothesized that its downregulation could inhibit tumoral tissue
growth by inducing G0-G1 cell cycle arrest (Chen et al., 2014). SRC
Kinase Signaling Inhibitor 1 (SRCIN1) is a protein-coding gene that
Ye et al. (2016) proposed to be involved in cell proliferation during
NSCLC development when silenced.

The analysis of gene expression data fromNSCLC demonstrated
a strong correlation between RPS6 and SRCIN1 (Figures 6A),
implying a potential interconnected relationship in tumorigenesis.
Based on the data we have acquired, it is hypothesized that a positive
correlation should exist between these two genes. This would entail
mutual upregulation during the progression of LUSC development.
To gain a comprehensive understanding, further investigations are
needed to elucidate the precise mechanism by which these two genes
interact and potentially contribute to the development and
progression of NSCLC.

Furthermore, an association was identified between RPS6 and
the core histone proteins H3C1, H4C1, and H4C15. Nonetheless,
this relationship does not exhibit the same level of significance
observed with SRCIN1. Particularly noteworthy is the correlation
between core histones and MT-CO3. This gene, when dysregulated,
has been investigated for its involvement in cellular metabolic
alterations and its potential role in facilitating the transition of
normal cells into malignant ones. However, the activity of MT-CO3
in NSCLC has not been documented thus far. To evaluate the
potential clinical ramifications of RPS6 interactions with
H4C1 and H3C1, the Cox model showed statistical significance
with positive coefficients for the H4C1 gene, as well as the

FIGURE 5
TBXAS1 shows a link to LRP1 in cancer gene expression
regulation. While TBXAS1 potential as a lung cancer biomarker is
unclear, LRP1 downregulates it during lung cancer development. The
exact influence of TBXAS1 on its expression in LUSC
remains uncertain.

FIGURE 4
Upregulation of PFN2 and TBL1XR1 is linked to an unfavorable
prognosis in LUSC. We also identify PLEC as a significant gene with
potential correlation, but its relationship with PFN2 and
TBL1XR1 remains unexplored in NSCLC.
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interactions between H4C1 with both RPS6 and H3C1 genes.
Additionally, a significant interaction between H3C1 and
RPS6 genes was noted. The associated p-values for these
interactions were 0.0383, 0.0234, 0.0202, and 0.0155, respectively.
These findings underscore a significant correlation with survival
within the context of lung cancer. They suggest that modifications in
the expression or activity of H4C1, H3C1, and RPS6 may manifest a
significant impact on patient survival.

Comparably, overexpression of Ribosomal Protein S18 (RPS18)
has been linked to tumoral growth, particularly in esophageal and
breast cancer (Riehle et al., 2010; Xu et al., 2022). However, there is
no existing report that establishes a correlation between
RPS18 expression and LUSC. On a different note, Ribosomal
Protein S9 (RPS9) has been associated with the inhibition of cell
proliferation (Yang et al., 2021).

Our findings reveal a direct association between RPS18 and
RPS9 in their expression patterns during the progression of LUSC
(Figures 6B). Notably, considering their opposing functions, where
RPS9 expression inhibits cell proliferation in lung cancer development
while RPS18 is significantly overexpressed in cancer, we propose an
inverse relationship between them. This put forward that the
overexpression of one gene implies the inhibition of the other,
with RPS18 being the favored gene in this particular relationship.

Conversely, we have identified a robust association between
RPS18 and the core histone proteins H3C1, H4C1, and H4C15. This
observation leads us to propose that, despite the limited correlation
observed between these histones and ribosomal protein S6 (RPS6),
their connection with RPS18 provides a more substantial basis to
speculate their potential involvement in the progression of NSCLC
and LUSC. We have also observed the formation of connections
between the central node, RPS18, and other genes. Although these
associations exhibit a lower level of affinity, it remains uncertain
whether these genes contribute to the development of LUSC or
NSCLC, as literature has not reported any information concerning
these genes’ roles.

3.7 EIF4G1 and related genes in LUSC
tumorigenesis

Eukaryotic Translation Initiation Factor 4 Gamma 1 (EIF4G1)
has been linked to tumorigenesis and tumor progression. In NSCLC,
its expression has been observed to be significantly higher in tumor
tissues compared to normal lung tissue (Cao et al., 2016; Del Valle
et al., 2021).

The evidence reported suggests that in LUSC, EIF4G1 directly
interacts with six other genes (Figure 7). Among these, only two
genes have been studied and associated with NSCLC, specifically in
LUAD and not LUSC. These genes are ZFHX4, an overexpressed
gene in LUAD linked to more aggressive disease characteristics and
a poor prognosis (Xia et al., 2019), and COL6A6, considered a tumor
suppressor and therapeutic target in LUAD (Ma et al., 2021).
However, among the six EIF4G1-related genes, PLPPR3, which is
not typically associated with lung cancer, stands out as it is linked to
three other genes: ACT, SDC1, and KRT1. Each of these genes has
been previously implicated in lung cancer development (Guo et al.,
2013; Koren et al., 2015; Götte and Kovalszky, 2018). Still, it remains
unclear whether they share any relationship with EIF4G1 expression
during the course of the disease, particularly in LUSC development.

Based on current information, both PNMA8A and PLPPR3 are
implicated in cancer development. In the case of PNMA8A, this
gene has been associated with apoptosis and colorectal cancer (Yang
et al., 2022). On the other hand, PLPPR3 has been less frequently
linked to cancer processes and is primarily associated with
cardiovascular and neurodegenerative diseases (Yurikova et al.,
2019). Considering the potential involvement of these unrelated
genes, PNMA8A and PLPPR3 should not be disregarded in terms of
their potential implications in NSCLC, particularly in LUSC
development.

Upon adjustment of the Cox model, outcomes manifest
statistically significant positive coefficients for the ZFHX4 gene
and the cooperative interplay between ZFHX4 and

FIGURE 6
(A) Significant correlation between RPS6 and SRCIN1 genes in NSCLC was observed. Silencing of SRCIN1 is proposed to promote cell proliferation
during NSCLC development. Additionally, RPS6 and SRCIN1 show strong interconnectedness in tumorigenesis. (B) In LUSC, RPS18 and RPS9
demonstrate a direct association with opposing functions, implying an inverse relationship. Overexpression of RPS18 may favorably inhibit RPS9,
accentuating its role in cancer.

Frontiers in Genetics frontiersin.org09

Díaz-Campos et al. 10.3389/fgene.2024.1282241

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1282241


COL6A6 genes, resulting in p-values of 0.041 and 0.043, respectively.
These discerned patterns imply a correlation with survival. Such
observations suggest that alterations in the expression or
functionality of ZFHX4 and COL6A6 genes could exert a
tangible influence on patient survival. It is crucial to note that
the individual gene node EIF4G1 did not exhibit statistical
significance, as evidenced by a p-value of 0.65.

While the individual significance of EIF4G1 might not be
remarkable, its indispensability becomes apparent in the context
of the observed significance associated with the ZFHX4 gene and
COL6A6. This is evident through the attenuation of significance
when the model involves the ZFHX4 and COL6A6 genes, resulting
in p-values of 0.26 and 0.69, respectively.

3.8 EEF2, LRP1, TRIO and DST might have
mutual interaction in LUSC

There is no reported relationship between EEF2 and LRP1.
However, their roles in lung cancer appear to be opposite. Active
EEF2 promotes tumor growth in lung cancer, whereas active
LRP1 decreases its activity in lung tumor tissue (Meng et al., 2011;
Oji et al., 2014). Whereas the expression of DST is similar to EEF2,
being overexpressed in lung cancer tissues. Recent reports link DST to

the development of LUAD, but there is no information on whether
this gene may be related to the development of LUSC. Notably, TRIO
(The Triple Functional Domain gene) is the only gene in this network
(Figure 8) that has been reported to be associated with LUSC (Garnis
et al., 2005). Based on the previously reported and current
information, it is strongly suggested that the relationship among
these four genes warrants further investigation, particularly the
interactions of EEF2, TRIO, and DST in relation to LRP1, which
is the only gene in this set which is downregulated in lung cancer
development. Understanding the intricate connections between these
genes could provide valuable insights into their potential roles and
contributions in the context of lung cancer.

While ACTB and SFMBT1 are included in this gene interaction
network, it is noteworthy that neither node exhibits a robust
relationship with the rest of the nodes, particularly SFMBT1,
which has not been reported in relation to lung cancer (Pan
et al., 2022). Although ACTB has been previously implicated in
tumor development in lung cancer, its connection with other genes
in this context requires further examination and understanding.

Following adjustment for relevant covariates, our analysis
revealed statistically significant positive coefficients for the
interactions involving LRP1 with both DST and EEF2 genes, as
well as the interaction among the three genes EEF2, LRP1, and DST.
The associated p-values for these interactions were determined to be
0.043, 0.032, and 0.021, respectively. These statistical outcomes
underscore a notable association with survival within the context
of lung cancer. Our findings suggest that alterations in the
expression or activity of EEF2, LRP1, and DST may have a
substantial influence on patient survival outcomes.

3.9 Comparison of central and topological
network measures

Through meticulous examination, we describe centrality
measures, Average Shortest Path Length (ASPL) (Mao and

FIGURE 7
EIF4G1 directly interacts with six genes, including ZFHX4 and
COL6A6, associated with LUAD. PLPPR3, unrelated to lung cancer,
links with ACT, SDC1, and KRT1, previously reported to be implicated in
lung cancer. PNMA8A and PLPPR3 also show implications in
cancer development, however, their involvement in lung cancer is
still unknown.

FIGURE 8
Further investigation into the interactions of EEF2, TRIO, and DST
with LRP1 is crucial, given LRP1 downregulation in lung cancer.
Understanding these connections may explain their roles in lung
cancer. ACTB and SFMBT1 show weak associations in the
network, with SFMBT1 lacking reported links to lung cancer.
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Zhang, 2013), Betweenness Centrality (BC) (Dolev et al., 2010), and
Closeness Centrality (CC) (Borgatti, 2005), along with topological
metrics like Neighbourhood Connectivity (NC) (Estrada and Bodin,
2008) and Topological Coefficients (TC) (Assenov et al., 2008),
providing valuable information on efficiency, connectivity and
collaborative structures in the LUAD and LUSC networks.

We individually assessed the LUAD networks for each
parameter. The resulting means for each parameter revealed a
substantial similarity between the LUAD networks, as indicated
in Table 1. Following this individual assessment, we conducted a
comprehensive evaluation of the data by averaging the means
derived from each network. A significantly low ASPL (1.76)
indicated efficient global connectivity. For our purposes, this
could be indicative of co-expression patterns, where genes tend
to be expressed together in response to certain biological processes
or conditions during LUAD development. The average BC of 0.14 is
relatively high, leading us to suggest that core genes in each network
may be regulators influencing the flow of signals or information in
the gene expression network. The average CC of 0.60 suggests that
nodes can efficiently communicate with each other within the
networks. In the context of LUAD, data suggests that the core
genes of the networks may be potential candidates for therapeutic
targets due to their central roles in the gene expression networks.
Noteworthy NC (5.82) and TC (0.27), imply that groups of genes
within the networks are co-regulated or participate in similar
biological functions, as suggested in the previous sections.
Relatively, low standard deviations across metrics affirmed the
coherence and robustness of the LUAD network structure,
providing valuable insights into its functional organization.

For the LUSC data, we conducted a parallel analysis, individually
analyzing parameters. The means calculated for each parameter
disclosed a marked similarity between the LUSC networks, such as
LUAD networks and is delineated in Table 2. Subsequently, the
means of each LUSC network were averaged and compared with the
LUAD mean (Table 3). The examination of the LUSC networks
revealed an ASPL of 2.11, suggesting that the network is organized in
a way that facilitates rapid and effective communication among
genes in the networks. The average BC of 0.18 indicates that the core
genes may serve as potential network-based biomarkers for LUSC.
Their central roles in the network suggest their importance in the
context of disease, and alterations in their expression or activity

could have significant implications for cancer progression as we
have suggested in the previous sections. The average CC of
0.52 suggest that functionally related genes are tightly connected.
This reflects the presence of cohesive functional modules or
pathways associated with LUSC. Additionally, NC was 3.92,
meaning that if one gene in the network is disrupted,
connectivity between its neighbours can help maintain the overall
stability of the network, while the average TC of 0.24 suggested close
collaborations between nodes, reaffirming that the genes and CpG
sites represented in the networks are involved in similar or
complementary biological functions. The low standard deviation
in the Average Shortest Path Length and Closeness Centrality we
obtained suggests stability in network efficiency.

3.10 CpG sites function as promoters

Analysis of CpG sites was conducted to discern their functional roles
within the gene expression networks. Promoter data for this analysis
were sourced from the UCSC Genome Browser database (Karolchik
et al., 2003) through the TxDb.Hsapiens.UCSC.hg38.knownGene
library, with detailed information available in the GitHub repository.
To identify enhancers, data were directly retrieved from the ENCODE
page, specifically focusing on enhancer data related to human lung tissue,
as released by Jesse Enfreitz’s lab at Stanford. A total of
276,905 promoters and 2,397,507 enhancers were associated with
genes of lung tissue from the UCSC database. Genomic coordinates
for these regulatory elements were generated through BED files, utilizing
information from the ENCODE database. The intersection of these sets
revealed 2,674,412 unique elements, which were subsequently classified
as promoters or enhancers. The initial findings of this intersection are
available at the Github repository, presenting information such as
transcript identifier (ENST ID), genomic coordinates, element type
(promoter or enhancer), and others. Following this, CpG sites were
associated with the identified promoters and enhancers. Using data from
the Ensembl database, transcript identifiers (ENST ID)were obtained for
all CpG sites reported in this study.

Notably, all identified CpG sites were classified as promoters; no
CpG sites with enhancer activity were observed. The consistent
classification of all CpG sites as promoters suggests their potential
involvement in transcription initiation and regulation processes

TABLE 1 Comparison of LUAD networks. Mir199a2 shows a compact network with efficient information transmission, as indicated by its shorter average
path length (1.50). This structural feature aligns with the known regulatory functions of microRNAs, which often exert control over multiple target genes.
The elevated betweenness centrality (0.25) ofmir199a2 suggests its crucial role in orchestrating communicationwithin the network, potentially influencing
pathways associated with cancer progression or other biological processes. On the other hand, CAPN2, displays a network with a longer average path
length (1.781) but higher neighborhood connectivity (11.299) and topological coefficient (0.543). These characteristics point to a more densely
interconnected and clustered network for CAPN2. In a biological context, this might indicate that CAPN2 operates in a modular and tightly regulated
manner, potentially participating in distinct cellular processes or signaling cascades. The lower betweenness centrality of CAPN2 (0.060) suggests a more
distributed influence within its network, consistent with its role as a protease involved in various cellular functions. Furthermore, the network properties of
mir125b-mir199a2 and mir125b exhibit intermediary characteristics, with values falling between those of mir199a2 and CAPN2. This suggests potential
collaborative interactions between mir125b and mir199a2 or unique regulatory roles for mir125b in the context of its network architecture.

CAPN2 net mir125b-mir199a2 net mir199a2 net mir125b net

ASPL 1.781 1.933 1.50 1.821

BC 0.060 0.117 0.25 0.137

CC 0.580 0.539 0.70 0.573

NC 11.299 5.000 2.50 4.500

TC 0.543 0.255 0.00 0.298
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(Yan et al., 2017). Supplementary Table S5 illustrates the association
between CpG sites and regulatory elements. A merging of gene data
with the promoter and enhancer database resulted in a
comprehensive dataset containing detailed information on the
genomic locations of regulatory elements associated with each
gene (Supplementary Table S6). Lastly, distances between genes
of interest and their associated CpG sites were calculated. These
distances represent the difference in midpoint positions between the
genes and their respective CpG sites and can be referred to in
Supplementary Table S7.

4 Conclusion

High-throughput technologies have catalyzed a paradigm shift
by enabling extensive genome-wide association studies and
facilitating the examination of global transcriptomic profiles. The
incorporation of multi-omics data into cancer research has led in a
systems biology perspective, making use of the interconnections
among various molecular characterizations, to name a few, Tian
et al. (2022) developed of a classification approach for Non-Small
Cell Lung Cancer (NSCLC), involving the integration of diverse
multi-omics data to construct a comprehensive background

interaction network. Yang et al. (2019) integrated data from
various omics sources and utilized statistical tests to identify
notable distinctions between cancerous and normal tissues.

In spite of that, the effort to fulfill a mechanistic comprehension
continues to present an enduring challenge. In order to formulate
exhaustive genomic and transcriptomic regulatory charts capable of
summarize the complexity of lung cancer, it is imperative to
scrutinize a multitude of gene expressions and high-dimensional
genetic variations.

Our research methodology is distinctly characterized by its
primary focus on functional analysis within lung cancer subtypes.
Rather than emphasizing classification, this study prioritizes the
understanding of functional implications arising from multi-omic
interactions. To achieve this, we conduct subtype-specific analyses,
delving into the complexities of multi-omic interactions within
different lung cancer subtypes, specifically LUAD and LUSC.
These analyses aim to unveil potential subtype-specific
mechanisms, utilizing ARACNE network analysis method to
scrutinize the intricate relationships between CpG sites, miRNA,
and transcripts within these subtypes. By doing so, we shed light on
regulatory and signaling pathways. Our study’s key objective is to
assess the functional impact of multi-omic interactions. To achieve
this, we employ methods such as functional enrichment analysis and
pathway analysis to uncover the biological consequences and
associations of these interactions. This unique approach offers a
deeper understanding of the functional relevance of multi-omic data
within the context of lung cancer.

Through SGCCA analysis, we successfully identified enriched
functions in DNA methylation, transcript, and miRNA expression
features that showed covariation. However, it is worth noting that
SGCCA does have a drawback, mainly attributed to LASSO’s
instability. To address this concern, we chose to retain only those
features present in over 70% of subsamples, ensuring a more stable
feature set (Ochoa and Hernández-Lemus, 2023).We favor the sparse
method for its reliability in feature selection (Kang et al., 2013).

Taking into account the significant SGCCA findings, we
conducted a thorough functional enrichment analysis using
ClusterProfile, focusing on the non-zero loadings within the
sparse matrix. This approach allowed us to gain deeper insights
into the underlying biological mechanisms and potential pathways
involved in our study. Comparing interest features with KEGG

TABLE 2 Comparison of LUSC networks. Notably, PFN2 shorter paths (1.500) and higher closeness centrality (0.695) imply a potential central role in
facilitating rapid and efficient information exchange, positioning it as a key player in its network. EEF2 stands out with the highest betweenness centrality
(0.333), suggesting it acts as a critical mediator in connecting different parts of its network. In contrast, LRP1 and PFN2 exhibit comparable betweenness
centrality values (0.167), emphasizing their potential influence on information transfer within their respective networks. These findings have implications
for understanding the regulatory dynamics of these transcripts, with higher betweenness centrality indicating a greater influence on network connectivity.
The neighborhood connectivity and topological coefficient values provide insights into the local and global organization of the networks. For instance,
RPS18’s high neighborhood connectivity (5.039) suggests extensive interactions with its neighboring nodes, possibly indicative of its involvement in tightly
coordinated cellular processes. PFN2’s elevated topological coefficient (0.400) suggests the formation of local clusters, indicating potential functional
modules within its network.

EIF4G1 net LRP1 net PFN2 net RPS18 net RPS6 net EEF2 net

ASPL 2.436 1.667 1.500 2.331 2.056 2.667

BC 0.160 0.167 0.167 0.089 0.151 0.333

CC 0.431 0.630 0.695 0.444 0.508 0.392

NC 4.753 4.333 3.100 5.039 4.444 1.857

TC 0.221 0.000 0.400 0.398 0.056 0.357

TABLE 3 Comparing both networks. LUAD exhibits a more compact
network with a shorter average path length compared to LUSC, suggesting
a more efficient information flow. The lower betweenness centrality in
LUAD implies a decentralized information mediation system, contrasting
with LUSC higher centrality. Higher closeness centrality in LUAD indicates
nodes are closer on average, potentially influencing network cohesion.The
analysis extends to neighborhood connectivity, where LUAD nodes display
more interconnections than LUSC, suggesting a heightened network
complexity in LUAD. Furthermore, the topological coefficient is higher in
LUAD, reflecting increased local clustering, potentially signifying distinct
regulatory modules.

LUAD LUSC

ASPL 1.759 2.109

BC 0.141 0.178

CC 0.598 0.517

NC 5.825 3.921

TC 0.274 0.239
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database pathways and Gene Ontology (GO) biological processes,
we performed over-representation tests on features enriched
exclusively in single datasets. To enhance understanding, we
further clustered these uniquely enriched features based on their
GO and KEGG classes, adding valuable insights to our research.
Additionally, we performed a gene set enrichment analysis (GSEA)
using transcript data to explore functions affected by differential
expression. Leveraging the clusterProfiler package without a p-value
cutoff, we obtained GSEA enrichment scores for functions
overrepresented in the SGCCA results, thus enriching our
understanding of the multiomic landscape.

Subsequently, the selected functions were visualized as networks
for each cancer subtype (Supplementary Figure S3), facilitating the
construction of potential regulatory models. This network-based
approach enabled us to identify all features that co-varied with those
responsible for functional enrichment, makingmore understandable
the intricate relationships within this complex biological system. To
estimate mutual information between node pairs, we considered
CpG interactions and gene expression influenced by position
overlap using microarray annotation data. For transcript analysis,
we utilized the TFtargets package, while the multiMiR package was
employed for miRNA investigation, thereby enhancing the depth
and scope of our analysis.

To determine the threshold for regulatory interactions, we chose
the median of MI (Mutual Information) values, mitigating the
influence of dominant outliers and ensuring the robustness of our
results. As MI values varied between different pair types, distinct
thresholds were obtained for CpG-transcript, CpG-miRNA, TF-
transcript-transcript, and miRNA-transcript edges, refining our
assessment of the regulatory network. In cases where distributions
showed no significant differences, we selected the lowest medianMI as
a single threshold, thereby accommodating more MI interactions in
the final network. To enhance the robustness of our analysis, we
employed the Kolmogorov-Smirnov test for a thorough comparison
of MI value distributions among different edge types.

Our comprehensive analysis of gene networks across studies
sheds light on intricate relationships within non-small cell lung
cancer (NSCLC). The miRNA networks encompassing miR-125b-1,
miR-125b-2, andmiR-199a-2 hold potential implications for LUAD,
urging further exploration into FLT3 and ZNF334 associations. The
connections among CAPN2, GAL3ST2, and GPR27 genes open
doors to intriguing NSCLC regulation prospects, in this study we
observed the relation between the in LUAD type, necessitating
deeper investigations into GPR27’s role. PFN2 and
TBL1XR1 exhibit potential correlations with poor prognosis, and
PLEC emerges as a promising connector, warranting in-depth
examination. The intricate interplay of TBXAS1 and
LRP1 influences cancer gene expression, while TBXAS1’s elevated
levels in poor-prognosis breast cancer samples suggests a parallel
lung cancer implications for LUSC. Simultaneously, the RPS6-
SRCIN1 correlation propose interconnected tumorigenesis. The
unique RPS18-RPS9 dynamic in LUSC progression points
towards an inhibitory relationship favoring RPS18 overexpression.
Finally, EIF4G1 displays diverse interactions in LUSC, linking with
LUAD-related ZFHX4, COL6A6, and unusual PLPPR3 connections
to lung cancer genes. The contrary functions of EEF2 and LRP1 in
lung cancer, alongwithDST shared expressionwith EEF2, are evident.
TRIO’s sole LUSC association highlights its relevance with EEF2,

DST, and LRP1 interactions. Further research is vital for
comprehending ACTB’s role and SFMBT1’s uncertain link. Within
these genetic networks, previously unexplored relationships emerge,
inviting dedicated investigation. These findings collectively emphasize
the complexmolecular web. Thus, exhaustive research is imperative to
unveil the roles and interactions of these genes within the broader
context of NSCLC development.

In conclusion, our study showcases the potential of integrating
multi-omics data, including RNA-seq, miRNA-seq, and human
methylation data, to unravel the intricate mechanisms of gene
regulation. By illuminating the interplay between transcriptional
and epigenetic processes, our work significantly contributes to a
deeper comprehension of lung cancer. These valuable insights may
pave the way for the development of innovative therapeutic
strategies and diagnostic approaches in the context of Lung
Adenocarcinoma and Lung Squamous Cell Carcinoma.
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