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Purpose: Osteoarthritis (OA) is a disease of senescence and inflammation.
Hedgehog’s role in OA mechanisms is unclear. This study combines Bulk
RNA-seq and scRNA-seq to identify Hedgehog-associated genes in OA,
investigating their impact on the pathogenesis of OA.

Materials andmethods: Download and merge eight bulk-RNA seq datasets from
GEO, also obtain a scRNA-seq dataset for validation and analysis. Analyze
Hedgehog pathway activity in OA using bulk-RNA seq datasets. Use ten
machine learning algorithms to identify important Hedgehog-associated
genes, validate predictive models. Perform GSEA to investigate functional
implications of identified Hedgehog-associated genes. Assess immune
infiltration in OA using Cibersort and MCP-counter algorithms. Utilize
ConsensusClusterPlus package to identify Hedgehog-related subgroups.
Conduct WGCNA to identify key modules enriched based on Hedgehog-
related subgroups. Characterization of genes by methylation and GWAS
analysis. Evaluate Hedgehog pathway activity, expression of hub genes,
pseudotime, and cell communication, in OA chondrocytes using scRNA-seq
dataset. Validate Hedgehog-associated gene expression levels through Real-
time PCR analysis.

Results: The activity of the Hedgehog pathway is significantly enhanced in OA.
Additionally, nine important Hedgehog-associated genes have been identified, and
the predictive models built using these genes demonstrate strong predictive
capabilities. GSEA analysis indicates a significant positive correlation between all
seven important Hedgehog-associated genes and lysosomes. Consensus clustering
reveals the presence of two hedgehog-related subgroups. In Cluster 1, Hedgehog
pathway activity is significantly upregulated and associated with inflammatory
pathways. WGCNA identifies that genes in the blue module are most significantly
correlatedwithCluster 1 andCluster 2, aswell as being involved in extracellularmatrix
and collagen-related pathways. Single-cell analysis confirms the significant
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upregulation of the Hedgehog pathway in OA, along with expression changes
observed in 5 genes during putative temporal progression. Cell communication
analysis suggests an association between low-scoring chondrocytes and
macrophages.

Conclusion: The Hedgehog pathway is significantly activated in OA and is
associated with the extracellular matrix and collagen proteins. It plays a role in
regulating immune cells and immune responses.

KEYWORDS

hedgehog, osteoarthritis (OA), senescence, bulk RNA sequencing (bulk-RNA seq),
single-cell RNA sequencing (scRNA-seq), immune cell infiltration, molecular clusters

1 Introduction

Osteoarthritis (OA) is a common degenerative joint disorder
observed in the field of orthopedics. It is characterized by cartilage
degeneration, abnormal bone growth, formation of osteophytes, and
thickening beneath the cartilage (Coryell et al., 2021). Pathologically,
it involves the hypertrophic differentiation of chondrocytes and
changes in the composition of the extracellular matrix (ECM). Well-
established risk factors include aging, prior joint injuries, excessive
body weight, genetic predisposition, gender, as well as anatomical
factors related to joint shape and alignment (Shen et al., 2019).
Moreover, severe synovitis exacerbates cartilage erosion, serving as
both a risk factor for OA and a common pathological alteration
associated with this condition (Xie et al., 2020). OA can induce
various symptoms, including joint tenderness, stiffness, and pain,
significantly impacting activity levels, physical functioning, sleep
quality, and emotional wellbeing. In 2013, the economic burden
caused by this disease amounted to approximately $27 billion in the
United States, with an alarming loss of labor productivity (Coryell
et al., 2021). Presently, clinical diagnosis of OA heavily relies on
patients’ clinical manifestations and imaging techniques, leading to
the limitations in achieving precise early-stage diagnosis (Zhang
et al., 2018). Due to the inability to diagnose OA at an early stage,
most patients experience a progression of their condition, resulting
in a poorer prognosis and rendering many treatment approaches
ineffective. Therefore, further exploration of the pathogenic
mechanisms underlying OA is of paramount importance in
improving the prognosis for individuals affected by this condition.

In 1980, Nüsslein-Volhard and Wieschaus made the initial
discovery of the Hedgehog signaling pathway within the
organism Drosophila melanogaster (Ingham et al., 2011). It plays
a crucial role in mammalian embryonic development, as well as in
the growth and differentiation of cells following embryogenesis (Jia
et al., 2015). The Hedgehog protein family includes Indian
Hedgehog (Ihh)、Sonic Hedgehog (Shh) and Desert Hedgehog
(Dhh) (Zhou et al., 2014). GLI1, GLI2, and GLI3 are key
downstream effectors of the Hh signaling pathway, acting as
nuclear transcription factors that bind to promoters to regulate
target gene expression (Briscoe and Thérond, 2013). This pathway
plays a crucial role in embryonic development by controlling growth
through the regulation of chondrocyte development and promoting
endochondral ossification. During the process of endochondral
bone growth, prehypertrophic chondrocytes are primarily
responsible for producing and secreting a substance that plays a
crucial role in the proliferation and differentiation of these cells (Hsu

et al., 2011). The Hh signaling pathway can stimulate the maturation
and mineralization of chondrocytes (Bechtold et al., 2016). Ihh is
primarily produced and secreted by prehypertrophic chondrocytes
and regulates chondrocyte hypertrophy and endochondral
ossification during growth plate development. Transgenic mice
with induced Ihh expression exhibit chondrocyte hypertrophy
and cartilage damage similar to human osteoarthritis (Zhou
et al., 2014). A study has shown that the Hedgehog signaling
pathway regulates cholesterol homeostasis in chondrocytes. The
accumulation of cholesterol within these cells is associated with
increased disease severity. The researchers observed a positive
correlation between elevated levels of Gli-mediated transcription
in chondrocytes and intracellular cholesterol accumulation as well as
disease severity (Ali et al., 2016). In OA, activation of the Hh
pathway typically induces upregulation of hypertrophic markers,
including type X collagen, increased production of nitric oxide and
prostaglandin E2, as well as the secretion of various matrix-
degrading enzymes. These changes ultimately lead to cartilage
degeneration and contribute to the development of OA (Xiao
et al., 2020). The current research on the Hedgehog signaling
pathway in OA is limited. However, given its potential role as a
crucial component in the pathogenesis and progression of OA-
related changes in bone joints, targeting this pathway could offer a
promising approach for preventing or treating OA. Therefore, it is
imperative to investigate the molecular mechanisms underlying the
Hedgehog signaling pathway in the context of OA.

In this study, we employed single-sample Gene Set Enrichment
Analysis (ssGSEA), Gene Set Variation Analysis (GSVA), and GSEA
to assess the activity of the Hedgehog signaling pathway. Weighted
Gene Co-expression Network Analysis (WGCNA) was utilized to
identify modules associated with OA and Hedgehog score for
subsequent enrichment analysis. Additionally, ten machine
learning methods, including lasso regression, ridge regression,
elastic net regression, SVM-RFE, random forest, bagging, GBM,
XGBoost-xgbTree, XGBoost-xgbLinear, and decision tree were
applied to identify hub genes related to Hedgehog and construct
prediction models to evaluate their reliability. Mechanistic insights
into hub Hedgehog-related genes were further explored through
GSEA analysis. After analyzing the expression profiles of Hedgehog-
related genes, we categorized 135 patients with OA into two
subgroups based on their Hedgehog-related characteristics. We
subsequently investigated the Hedgehog activity, immune profile,
drugs, functions, and pathways between these two clusters. Their
genomes were analyzed using methylation and GWAS. Single-cell
analysis was conducted to examine the expression patterns,
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pseudotemporal changes, cell communication, and transcription
factors related to hub Hedgehog genes. Finally, we conducted
Real-time PCR analysis to confirm the expression levels of key
Hedgehog-related genes. The process of this study is shown
in Figure 1.

2 Materials and methods

2.1 Data acquisition and preprocessing

The OA-related microarray datasets, including GSE117999,
GSE12021, GSE51588, GSE55235, GSE55457, GSE57218,
GSE82107, and GSE98918, should be downloaded from the GEO
database (https://www.ncbi.nlm.nih.gov/geo/). Additionally,
retrieve the OA-related single-cell sequencing dataset,
GSE133449, from the GEO database. For processing the
microarray datasets, match the probe and gene names based on
the provided annotation information for each GPL platform. When
multiple probes correspond to the same gene, select the probe with
the highest expression level to maintain consistency. Normalize the
expression matrix using the normalizeBetweenArrays function and
perform log2 transformation on datasets requiring it. Retrieve the
common genes across all eight datasets after their integration. To
normalize the expression values across different batches or
platforms, utilize the ComBat method from the “sva” R package.
Assess the removal of batch effects through principal
component analysis.

2.2 Differential expression analysis

To initiate the analysis, the hedgehog gene set can be accessed
from the MSigDB database through the following link: https://www.

gsea-msigdb.org/gsea. Subsequently, the “limma” R package can be
utilized to assess the differentially expressed genes (DEGs) between
samples with osteoarthritis (OA) and normal samples. The filtering
criterion for identifying hedgehog-related DEGs is a corrected
p-value <0.05. In order to visually represent the expression levels
within each sample, a heatmap showcasing the hedgehog gene set
can be created. Additionally, a volcano plot can be generated to
visualize the differential expression of hedgehog-related DEGs.
Furthermore, the “wilcox.test” algorithm can be employed to
analyze the differential expression levels of the hedgehog gene set
in OA and normal samples. Moreover, it is important to investigate
the correlation of hedgehog-related DEGs using this analysis.

2.3 Enrichment analysis

The GSVA method is a valuable technique utilized for the
analysis of gene expression data (Hänzelmann et al., 2013). It
allows for the assessment of the overall activity level of gene sets
within each biological sample. By employing the “GSVA” R package,
it is possible to map the gene expression data of each sample to the
hedgehog gene set and calculate their respective activity levels. On
the other hand, ssGSEA takes into account not only the expression
status of genes within a gene set but also considers the expression
levels of individual genes. Utilizing the ssGSEA algorithm, the gene
expression data of each sample can be mapped to the hedgehog gene
set, enabling the computation of enrichment scores that reflect the
overall activity level of the gene set within that specific sample. To
establish a comprehensive gene co-expression network, the
Weighted Gene Co-expression Network Analysis (WGCNA)
approach will be employed (Langfelder and Horvath, 2008),
utilizing the top 5,000 highly variable genes, grouping
information, and GSVA scores of the hedgehog gene set as input
variables. This network analysis will help identify modules within

FIGURE 1
Flow chart.
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the network and uncover key genes that are associated with the
provided input variables. Further analysis will involve conducting
Gene Ontology (GO) (Gene Ontology Consortium, 2006) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) (Kanehisa and Goto,
2000) analyses on the key module genes using the “clusterProfiler” R
package. These analyses will provide insights into the functional
annotations and pathways associated with the identified key
module genes.

2.4 Immuno-infiltration analysis

To assess the relative abundance of different immune cell types,
a combination of the CIBERSORT and MCP-counter algorithms
can be employed (Newman et al., 2015; Becht et al., 2016). These
algorithms will enable the calculation of the relative abundances of
immune cell types. The resulting immune cell abundances can be
visualized using a cumulative histogram. To analyze the differential
expression levels of immune cells between OA and control samples,
the wilcox. test algorithm can be utilized. It is important to exclude
the gene expression data and immune cell abundance from control
samples during this analysis.

To investigate the correlation between differentially expressed
genes (DEGs) related to the hedgehog pathway and immune cells,
the Spearman algorithm can be used. This analysis will provide
insights into the association between hedgehog-related DEGs and
specific immune cell populations.

2.5 Consensus clustering

To classify OA cases into subgroups, consensus clustering was
performed. In this procedure, the K-means algorithm with the
Euclidean distance metric was utilized. The maximum number of
clusters was set as 10. The final determination of the cluster number
was based on the consensus matrix and the cluster consensus score,
which required a score higher than 0.8 to ensure robustness and
reliability in the clustering results.

2.6 Characterization of subpopulations

Using the hallmark gene set as the background gene set, we
applied the GSVAmethod to investigate pathway differences among
the subgroups. This analysis allowed us to identify and compare the
activity levels of different pathways across the subgroups.
Furthermore, we employed ssGSEA to specifically explore
pathway differences related to hedgehog signaling between the
subgroups. By focusing on the hedgehog pathway, we aimed to
understand any variations in its activity among the subgroups.
Moreover, we conducted an analysis of the immune
characteristics within the subgroups. This involved examining the
relative abundance and activity of immune cell types, as well as any
potential associations with the subgroup classification. Lastly, we
evaluated the expression patterns of hedgehog pathway genes within
each subgroup. This analysis provided insights into the differential
regulation and potential involvement of the hedgehog pathway in
driving the observed subgroup distinctions.

2.7 Drug analysis

To identify potential drugs suitable for the subtypes, we
utilized the differential expression analysis results of the
subtypes as the disease signature and accessed the drug
information available in the CMap database (https://clue.io) as
the drug signature. We employed the eXtreme Sum (XSum)
method as the feature matching algorithm to screen for drugs
that show similarity or inverse correlation with the disease
signature of the subtypes. This approach helped us identify
candidate drugs that may have therapeutic potential for the
specific subtypes under investigation.

2.8 Subtype of FGSEA analysis

To perform differential expression analysis on subtype 1 and
subtype 2, we can utilize the “limma” R package. This package
provides a robust framework for identifying genes that are
differentially expressed between these two subtypes. After
conducting the analysis, we can sort the genes based on their
log-fold change (logFC) values. To assess whether specific gene
sets are enriched in the samples, we can employ the “fgsea” R
package for enrichment analysis. This analysis will help us
determine if any predefined gene sets show significant
enrichment in either subtype. We can set criteria such as an
absolute normalized enrichment score (NES) greater than 1 and
a p-value below 0.01 to filter for pathways that are considered
statistically significant. By applying these methods, we can gain
insights into the differentially expressed genes and enriched
pathways associated with subtype 1 and subtype 2, providing a
better understanding of the molecular characteristics and potential
functional differences between the two subtypes.

2.9 Subtype of WGCNA

To explore the biological functions of each osteoarthritis (OA)
subgroup, we employed the Weighted Gene Co-expression Network
Analysis (WGCNA) based on their respective characteristics.
Initially, we identified the top 5,000 highly variable genes within
the subgroups. Next, we determined the soft-thresholding power for
the scale-free network by selecting the power value that yielded the
maximum R̂2 value. In this case, the power value was determined to
be 4. To ensure robustness and reliability, each module was required
to contain a minimum of 30 genes. We evaluated the distance
between gene pairs using the topological overlap matrix similarity.
Hierarchical clustering analysis was performed using both the
average method and dynamic method, allowing us to construct a
clustering tree and assign genes into specific modules. To gain
insight into the functional annotations and pathways associated
with the key modules, we conducted Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. This
analysis was performed using the “clusterProfiler” R package, which
enabled us to determine the enriched biological processes and
pathways associated with the identified key modules. By
employing WGCNA and conducting GO and KEGG analyses on
the key modules, we can better understand the biological functions
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and pathways specific to each OA subgroup, providing valuable
insights into the molecular underpinnings of these subgroups.

2.10 Machine learning screening for hub
hedgehog-related genes

To identify important hedgehog-related differentially
expressed genes (DEGs), we employed a combination of
various algorithms such as lasso, ridge, and elastic net.
Additionally, SVM-RFE, random forest, Bagging, GBM,
Xgboost-xgbLinear, Xgboost-xgbtree, and Decision Tree
methods were utilized to rank the importance of hedgehog-
related genes. All machine learning algorithms are set to
default parameters. Machine learning code on the public
website: https://github.com/gxykdx/OA_hedgehog. Based on
the results from these algorithms, we selected the top
20 ranked hedgehog-related genes based on their importance
scores. These scores were determined by each algorithm’s
respective feature selection or ranking mechanism. To
determine hub hedgehog-related genes, we considered the
common genes that were selected by at least a certain number
of these algorithms. By applying this criterion, we could identify
the most consistently important genes across multiple
algorithms, providing robust evidence for their significance in
the context of the hedgehog pathway. This comprehensive
approach allowed us to identify a set of hub hedgehog-related
genes that are deemed influential and critical in the regulation
and functioning of the hedgehog pathway.

2.11 Building predictive models

To construct a predictive model for OA, we performed multiple
logistic regression analysis using the hub hedgehog-related genes as
predictors. This analysis aimed to identify the relationship between
the expression levels of these genes and the presence or absence of
OA. To assess the reliability of the constructed model, we utilized the
bootstrap method with 1,000 iterations of internal validation. This
technique involves resampling the dataset to estimate the model’s
performance and evaluate its stability. Furthermore, for external
validation of the model, we used the GSE48556 dataset, which
provides an independent set of samples to validate the predictive
performance of the model on unseen data. To visualize the results,
column line plots can be created using the “regplot” R package.
These plots enable the visualization of the relationship between the
predicted probabilities of OA and the corresponding gene
expression levels. Additionally, calibration curves can be
generated to evaluate the stability of the model after resampling.
These curves provide insights into how well the predicted
probabilities align with the observed probabilities, indicating the
calibration or accuracy of the model. Lastly, decision curve analysis
(DCA) can be employed to assess the clinical utility of the predictive
model. DCA helps determine whether the model’s predictions are
beneficial in guiding clinical decisions by evaluating the net benefits
at different threshold probabilities. By performing these analyses
and evaluations, we aim to develop a reliable and clinically relevant
predictive model for OA based on the hub hedgehog-related genes.

2.12 GSEA of hub hedgehog-related genes

To perform the correlation analysis between the hub hedgehog-
related genes, it is necessary to exclude control samples from the
analysis. Using the Spearman method, calculate the correlation
coefficients between the expression levels of these genes. The
Spearman correlation coefficient assesses the monotonic
relationship between variables and is suitable for analyzing non-
linear associations. Next, obtain the KEGG pathway files from the
MSigDB Database database (https://www.gsea-msigdb.org/gsea/
msigdb). These pathway files contain comprehensive annotations
of biological processes and signaling pathways. Rank the genes based
on their correlation coefficients, with higher coefficients indicating
stronger associations. This ranking will help prioritize the genes that
exhibit the most significant correlations with the hub hedgehog-
related genes. Subsequently, perform a gene set enrichment analysis
(GSEA) using the “clusterProfiler” R package. The GSEA analysis
will evaluate whether the ranked genes are significantly enriched in
any specific KEGG pathway. By conducting a significance test, it can
be determined if these genes have a statistically significant
association with particular biological processes or signaling
pathways. This comprehensive analysis combining correlation
analysis, gene ranking, and GSEA will provide insights into the
potential functional relevance and involvement of the hub
hedgehog-related genes in specific molecular pathways and
biological processes.

2.13 Methylation analysis and genome-wide
association study (GWAS analysis)

Download the OA-related DNAmethylation dataset, GSE73626,
from the GEO database. Then, utilize the “RnBeads” R package to
perform genome-wide DNA methylation analysis on the hub
hedgehog-related genes. The Gene Atlas database (http://
geneatlas.roslin.ed.ac.uk/) is an extensive resource that provides
comprehensive documentation on associations between millions
of variants and hundreds of traits utilizing the UK Biobank
cohort. This database encompasses data from 452,264 individuals
in the UK Biobank database, covering a vast array of 778 phenotypes
and 30 million loci. We selected “M91-M94 chondropathies” as the
traits, followed by the default parameters for all options, and then
input genes separately to generate the image.

2.14 Single cell analysis

We utilized the Seurat R package to process the single-cell RNA
sequencing (scRNA-seq) data. Cells expressing a minimum of
200 genes and a maximum of 2,500 genes were identified. To
identify highly variable genes, we employed the
“FindVariableGenes” function and conducted principal
component analysis (PCA). For single-cell visualization, we
employed the uniform manifold approximation and projection
(UMAP) method for dimensionality reduction. The resulting
single-cell plot was visualized using the “DimPlot” function,
while gene expression plots were generated using the
“FeaturePlot” function. To annotate cell types, utilize the
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‘HumanPrimaryCellAtlasData ()’ function from the ‘celldex’
package. Then, calculate the hedgehog scores for each cell type
and evaluate the differences in hedgehog scores between the normal
and OA groups within the same cell type. Further visualize these
differences using the “FeaturePlot” function. The “scMetabolism” R
package is used to assess hedgehog activation scores in single cells.

2.15 Pseudotime analysis

To perform pseudotime analysis on a subset of chondrocytes,
follow these steps:1. Extract a subset of chondrocytes for analysis,
selecting 1,357 chondrocytes. 2. Utilize the Monocle R package to
perform dimensionality reduction and clustering on the
chondrocytes. This package offers specialized functions for
single-cell RNA-seq analysis. 3. Prepare the cells for
subsequent pseudotime analysis by applying specific criteria.
Select cells with mean expressions greater than 0.1 and
dispersion empirical values exceeding 1 multiplied by the
dispersion fit. These criteria help ensure that the selected cells
are suitable for the subsequent analysis. 4. Employ the ‘DDRTree’
method in the reduceDimension function of the Monocle
package for dimensionality reduction and ordering. This
method helps capture the structure and progression of the cell
differentiation trajectory. 5. Visualize the distribution trajectory
of the cells using the plot_cell_trajectory function from the
Monocle package. This visualization provides insights into the
developmental trajectory of the chondrocytes and their
differentiation patterns over pseudotime. 6. Analyze the
expression changes of the hub hedgehog-related genes among
different clusters along the cell differentiation trajectory. This
analysis can be performed using Monocle’s built-in tools to assess
how the expression of these genes varies as the cells progress
through different stages of differentiation. By following these
steps, you can gain a deeper understanding of the pseudotime
dynamics and expression changes of the hub hedgehog-related
genes within the chondrocyte population, providing insights into
their role in chondrocyte differentiation and development.

2.16 Cellular communication

Extract a subset of chondrocytes and based on the hedgehog
scores, define chondrocytes with scores above the 75th percentile as
high hedgehog score chondrocytes, and those below the 25th
percentile as low hedgehog score chondrocytes. To perform cell
communication analysis, utilize the “CellChat”R package. This
package allows you to explore and analyze cell-cell
communication networks within your dataset.

2.17 Real-time PCR analysis

Mouse articular chondrocytes were obtained from Wuhan
Procell Life Science and Technology Co., Ltd. The cells were
cultured in DMEM/F12 medium supplemented with 10% fetal
bovine serum. For the inflammation model, the cells were
stimulated with IL-1β at a concentration of 10 ng/mL for 24 h.

Total RNA was extracted using the RNAeasy™ Animal RNA
Extraction Kit (Beyotime Biotechnology, China), and the quality
was assessed through spectrophotometry using the NanoDrop One
instrument. Subsequently, reverse transcription was performed to
generate cDNA. The extracted RNA was reverse transcribed into
cDNA using the PrimeScript™ RT Master Mix (TAKARA, Japan).
The cDNA was amplified using the PowerUp™ SYBR® Green
Master Mix (Applied Biosystems, USA) on the ABI 7500 Real-
Time PCR System. RT-qPCR was conducted to analyze the
expression of different genes, with Gapdh serving as an internal
reference. The relative mRNA expression levels were calculated
using the 2̂(-ΔΔCt) method, and statistical significance was
determined by a p-value less than 0.05. Please refer to Table 1
for the primer sequences.

3 Results

3.1 Hedgehog pathway activity rises in OA

We performed a merged analysis on GSE117999, GSE12021,
GSE51588, GSE55235, GSE55457, GSE57218, GSE82107, and
GSE98918, resulting in 75 control samples and 135 OA
samples, with data available for 10,827 genes. As shown in
Figure 2A, the samples from the eight independent datasets
exhibited batch effects, but after removing the batch effect,

TABLE 1 Primers used in this study.

Primer Sequence

Gli3-F GAAGAAACGCAATCACTATGCAG

Gli3-R GTCCCACGGTAAGGGAGAGA

Csnk1g2-F AGGAGTACATCGACCCTGAGA

Csnk1g2-R CTCTGCTCTTTGCCCAAGTG

Wnt5a-F CAACTGGCAGGACTTTCTCAA

Wnt5a-R CCTTCTCCAATGTACTGCATGTG

Wnt5b-F GGAGTACGGCTACCGCTTTG

Wnt5b-R TCCTCCGATCCCTTGGCAA

Prkx-F GGGGCACTCGTTACAAGATTG

Prkx-R CTCCTTCACCAGGTTTACACG

Rab23-F CCACAGACAGGGAATCTTTTGAA

Rab23-R GGTAGAACCTCAGCTTTAGCCT

Fbxw11-F TACCAGAGCAAGGCTTAGATCA

Fbxw11-R TTCTTTCTGAGAGTCCCTTCCA

Prkaca-F GGTGACAGACTTCGGTTTTGC

Prkaca-R CACAGCCTTGTTGTAGCCTTT

Bmp8b-F CCGGGACTCCTATGGCTACT

Bmp8b-R CATCCGTCATGGCACGGTA

Gapdh-F AATGGATTTGGACGCATTGGT

Gapdh-R TTTGCACTGGTACGTGTTGAT
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FIGURE 2
Enrichment Analysis. Principal component analysis of 8 data sets batches before (A) and after (B) correction. (C)Volcano plot showing the results of differential
expression analysis of Hedgehog-related genes. (D) Heat map of Hedgehog-related genes. (E) Gene set variance analysis (GSVA) showing that the Hedgehog
pathway is highly enriched in OA. (F) SsGSEA shows that the Hedgehog score is significantly upregulated in OA. (G) GSEA demonstrates significant activation of
Hedgehog in OA (NES: enriched score after standardization). (H) Differential analysis of Hedgehog-related genes in OA and control groups. *p < 0.05, **p <
0.01, ***p<0.001, ****p <0.0001. (I)Correlation analysis of significantly differentially expressed hedgehog-related genes. (J) Scale-free fit index analysis of different
soft threshold capabilities (left) and mean connectivity analysis of various soft threshold capabilities (right). (K) Dendrogram of clustering tree of co-expression
modules. Different colors correspond to other co-expression modules. (L)Heat map showing the correlation of modules with control, OA, and hedgehog scores
(each module contains correlation coefficients and corresponding p-values). (M) Results of GO and KEGG enrichment analysis of turquoise module genes. GO,
Gene Ontology; BP, Biological Process; CC, Cellular Component; MF, Molecular Function; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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they clustered together (Figure 2B). This indicates that cross-
platform normalization successfully eliminated the batch
processing effects, enabling further analysis. The results of
differential expression analysis showed significant upregulation
of WNT5A, WNT5B, GLI3, RAB23, PRKX, CSNK1G3, BMP8A,
CSNK1G1B, and G1BMP8B, while CSNK1G2 and BMP2 were
significantly downregulated (Figure 2C). The heatmap in
Figure 2D illustrates the expression changes of hedgehog-
related genes in each sample. Subsequently, we analyzed the
activity of the hedgehog pathway in OA. GSVA (Figure 2E),
ssGSEA (Figure 2F), and GSEA (Figure 2G) all confirm a
significant upregulation of the hedgehog pathway in OA. The
results of the rank-sum test (Figure 2H) indicate that BMP8A,
BMP8B, CSNK1G1, CSNK1G3, GAS1, GLI3, PRKACB, PRKX,
PTCH1, RAB23, WNT11, WNT10B, WNT5A, WNT5B, and
WNT7A are significantly overexpressed in OA, while
CSNK1G2, FBXW11, and PRKACA show significant
downregulation in OA. The correlation heatmap (Figure 2I)
demonstrates a positive correlation among most of the
hedgehog-related DEGs in OA. Overall, these findings provide
valuable insights into the expression changes and activity of the
hedgehog pathway in osteoarthritis, highlighting specific genes
that are upregulated or downregulated in this disease.

3.2 Co-expression network construction

We set the optimal soft threshold as 4 to construct a scale-
free network (Figure 2J). Using gene expression data, we
computed the correlation between genes within the samples
and clustered highly correlated genes into the same module. By
conducting correlation analysis between modules and traits, we
observed a strong correlation between the turquoise module
and the hedgehog score (Figure 2L). Subsequently, we utilized
the “clusterProfiler” R package to perform enrichment analysis
on the genes within the turquoise module. In terms of Biological
Processes (BP), the turquoise module genes exhibited
significant enrichment in ossification, extracellular matrix
organization, and extracellular structure organization
(Figure 2M). Regarding Cellular Components (CC), these
genes were significantly associated with collagen-containing
extracellular matrix, endoplasmic reticulum lumen, and focal
adhesion (Figure 2M). Molecular Function (MF) analysis
revealed that the turquoise module genes were markedly
enriched in extracellular matrix structural constituents,
signaling receptor activator activity, and glycosaminoglycan
binding (Figure 2M). Furthermore, KEGG pathway analysis
demonstrated significant enrichment of the turquoise module
genes in the PI3K-Akt signaling pathway, Human
papillomavirus infection, and Focal adhesion (Figure 2M).
These findings suggest that the genes within the turquoise
module play important roles in various biological processes,
cellular components, molecular functions, and signaling
pathways related to OA pathogenesis. The enrichment
analysis provides insights into the potential mechanisms
underlying the involvement of the turquoise module genes in
aspects such as ossification, extracellular matrix organization,
and PI3K-Akt signaling pathway.

3.3 Immuno-infiltration analysis

The Cibersort results indicate a significant proportion of
M2 macrophages (Figure 3A). The immune infiltration results
calculated by MCP-counter are shown in Figure 3B. Correlation
analysis reveals significant associations: RAB23 is significantly
correlated with 6 types of immune cells, CSNK1G2 is
significantly linked to 3 types of immune cells, GLI3 are
significantly associated with 5 types of immune cells, and
WNT5A and WNT5B are significantly correlated with 3 types of
immune cells (Figure 3C). The immune infiltration results from
MCP-counter and gene correlations are illustrated in Figure 3D.
Differential expression analysis shows significant expression of
13 immune cell types identified by Cibersort (Figure 3E), as well
as significant expression of 6 immune cell types identified by MCP-
counter (Figure 3F). These findings highlight the presence of specific
immune cell types, such as M2 macrophages, and their association
with the hub hedgehog-related genes. The results from both
Cibersort and MCP-counter provide insights into the immune
cell composition and their potential involvement in osteoarthritis.
The correlation analysis further emphasizes the significance of
immune cell-related genes in the context of OA.

3.4 Subtype construction

To further demonstrate the role of the hedgehog pathway in OA
and elucidate the expression patterns related to the immune
microenvironment in OA, we applied consensus clustering
algorithm to group OA samples based on hedgehog-related
genes. Based on the similarity matrix obtained from the
consensus matrix, we determined the final subtypes. After
considering various factors such as the consensus clustering
results, CDF plot, relative changes in CDF curve area, tracking
plot, and consistent clustering scores, we identified the optimal value
of k = 2. Consequently, we classified the total of 135 patients into two
distinct subtypes: subtype 1 with 67 cases and subtype 2 with
68 cases (Figures 4A–E). Considering the heterogeneity of OA
patients, significant differences in hedgehog activity between
different subgroups can demonstrate variations in the hedgehog
pathway among OA patients. GSVA (Figure 4F) and ssGSEA
(Figure 4G) algorithms revealed that subtype 2 exhibited low
hedgehog activity characteristics. Immune infiltration analysis
indicated significant upregulation of T cells, cytotoxic
lymphocytes, B lineage, NK cells, and neutrophils in subtype 2
(Figure 4H). The heatmap displays the expression of hedgehog-
related genes in subtype 1 and subtype 2 (Figure 4I). Differential
analysis (Figure 4J) revealed that GAS1, GLI3, BMP2, WNT5A,
BMP6, WNT10B, WNT2B, WNT1, CSNK1A1, FBXW11, WNT7A,
BMP7, BMP4, BTRC, WNT7B, SMO, BMP8A, CSNK1G3, RAB23,
WNT5B, WNT16, PTCH2, and BMP8B were significantly higher
expressed in subtype 1, while BMP5, WNT11, and CSNK1G1 were
significantly downregulated in subtype 1. This further validates the
higher hedgehog activity in subtype 1. In summary, through
consensus clustering analysis, we identified two distinct subtypes
of OA based on hedgehog-related gene expression patterns. Subtype
1 demonstrated higher hedgehog pathway activity, while subtype
2 exhibited low hedgehog activity and distinct immune infiltration

Frontiers in Genetics frontiersin.org08

Wang et al. 10.3389/fgene.2024.1255455

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1255455


characteristics. The differential analysis results provided further
insights into the specific genes associated with each subtype,
highlighting their potential roles in the pathogenesis of OA and
supporting the heterogeneity of the disease.

3.5 Small molecule drugs

The volcano plot indicates that subtype 1 has higher activity
compared to subtype 2, with the majority of genes showing
significant upregulation (Figure 5A). The cMap drug analysis
reveals top drugs for treating patients with high hedgehog
activity, including X4.5. dianilinophthalimide, fasudil, TTNPB,
MK.886, MG.262, AH.6809, exisulind, Gly. His.Lys, and
STOCK1N.35874 (Figure 5B). These findings suggest potential
therapeutic options for patients with specific molecular subtypes
characterized by their hedgehog pathway activity. Further
investigations and validations could be conducted to determine

the effectiveness and suitability of these drugs for treating
patients within this particular subtype.

3.6 FGSEA results

In terms of Biological Processes (BP), chondrocyte
differentiation is significantly activated in subtype 1, while
lipid oxidation is significantly activated in subtype 2
(Figure 5C). In Cellular Components (CC), subtype 1 is
primarily associated with collagen-related processes
(Figure 5D). In Molecular Function (MF), collagen binding is
significantly activated in subtype 1 and significantly inhibited in
subtype 2 (Figure 5E). Regarding the KEGG pathway analysis,
subtype 1 is closely related to collagen (Figure 5F). These findings
highlight the differences in biological processes, cellular
components, molecular functions, and pathways between
subtype 1 and subtype 2 of osteoarthritis. Subtype 1 appears

FIGURE 3
Immune infiltration cibersort (A) and the percentage of immune cells calculated by MCP-counter (B); heat map showing the correlation between
immune cells and gene expression calculated by cibersort (C) andMCP-counter (D); cibersort (E) and MCP-counter (F) calculated by immune cells in OA
group and control for differential expression analysis.
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to be characterized by chondrocyte differentiation and collagen-
related processes, while subtype 2 shows activation of lipid
oxidation and distinct molecular functions. The KEGG
pathway analysis further supports the association of subtype
1 with collagen-related pathways. These results provide
valuable insights into the underlying molecular characteristics
and potential mechanisms driving the heterogeneity observed in
osteoarthritis subtypes, particularly related to chondrocyte
differentiation, collagen metabolism, and lipid oxidation.

3.7 Subtype of WGCNA

To identify the key modules most correlated with hedgehog, we
performedWGCNA on subtype 1 and subtype 2. Using a correlation
coefficient threshold of 0.85, we selected 4 as the soft thresholding
power (Figure 6A). Subsequently, a total of 19 modules were
generated (Figure 6B). Correlation analysis between modules and
traits revealed that the blue module exhibited the most significant
correlation with the hedgehog subtype (Figure 6C). We performed

FIGURE 4
Identification of molecular clusters based on hedgehog-related genes in OA. A Consensus clustering matrix when k = 2 (A). Cumulative distribution
function (CDF) curves of clustering (B), CDF delta area curves (C), tracking plot (D) and consensus clustering score of each cluster (E), and non-negative
matrix heatmap. GSVA (F) and ssGSEA (G) indicate that cluster1 has higher hedgehog pathway activity than cluster2. (H) Immunological infiltration analysis
of cluster1 and cluster2. (I) Heat map showing hedgehog-related gene expression in each cluster1 and cluster2 sample. (J) Differential expression
analysis of hedgehog-related genes in cluster1 and cluster2 groups.
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enrichment analysis on the genes within the blue module to gain
further insights. In terms of BP, the genes in the blue module
exhibited enrichment in extracellular matrix organization,
extracellular structure organization, and collagen fibril

organization (Figure 6D). Regarding CC, these genes were
implicated in collagen-containing extracellular matrix, collagen
trimer, and complexes of collagen trimers (Figure 6D). MF
analysis revealed significant enrichment of the blue module genes

FIGURE 5
Drug analysis and FGSEA analysis. (A) Volcano plot showing the results of differential expression analysis of cluster1 vs cluster2. (B) cMap analysis of
drugs used to treat subtype1 patients. Lower scores indicate this drug is more likely to inhibit the hedgehog pathway. FGSEA analysis, including BP (C), CC
(D), MF (E), and KEGG (F).
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in extracellular matrix structural constituents, extracellular matrix
structural constituents conferring tensile strength, and collagen
binding (Figure 6D). Additionally, KEGG pathway analysis
demonstrated associations between the blue module genes and
ECM-receptor interaction, PI3K-Akt signaling pathway, and
protein digestion and absorption (Figure 6D). The findings from
the enrichment analysis of the blue module genes support the
involvement of the hedgehog pathway in extracellular matrix and
collagen, further substantiating its role in the development and
progression of OA. The findings from the enrichment analysis of the
blue module genes provide additional evidence for the role of the
hedgehog pathway in the development and progression of
osteoarthritis, particularly in relation to extracellular matrix
organization, collagen metabolism, and relevant signaling

pathways such as PI3K-Akt signaling. Overall, these results
contribute to our understanding of the biological functions and
pathways associated with the key modules most correlated with
hedgehog in osteoarthritis subtypes, shedding light on the intricate
molecular mechanisms underlying the disease.

3.8 Machine learning identification of
important hedgehog-related genes and
predictive model building

The lasso (Figure 7A), ridge (Figure 7B), and elastic net
(Figure 7C) models successfully identified important hedgehog-
related genes. The SVM-RFE results display the accuracy of the

FIGURE 6
WGCNA analysis of cluster1 and cluster2. (A) Scale-free fit index analysis for different soft threshold capabilities (left) and average connectivity
analysis for various soft threshold capabilities (right). (B) Dendrogram of co-expression module clustering tree. Different colors correspond to other co-
expression modules. (C) Heatmap shows the correlation of modules with cluster1 and cluster2 (each module contains correlation coefficients and
corresponding p-values). (D) Results of GO and KEGG enrichment analyses of blue module genes. GO, Gene Ontology; BP, Biological Process; CC,
Cellular Component; MF, Molecular Function; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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model with different numbers of included genes (Figure 7D). By
examining the relationship between the number of features and
model error, we identified the tree that displayed the lowest error as
the final model parameter (Figure 7E). The importance ranking of
hedgehog-related genes identified by random forest is shown in
Figure 7F. Additionally, using Bagging (Figure 7G), GBM
(Figure 7H), Xgboost-xgbLinear (Figure 7I), Xgboost-xgbtree
(Figure 7J), and Decision Tree (Figure 7K), we screened out the
top 20 hedgehog-related genes based on their importance ranking.
These analyses and rankings help prioritize the most influential
genes related to the hedgehog pathway, providing valuable

information for further investigations and potential
therapeutic targeting.

3.9 Predictive model construction

By analyzing the intersection of 10 algorithms (Figure 8A), we
obtained 9 hub hedgehog-related genes (CSNK1G2, GLI3, WNT5A,
WNT5B, PRKX, RAB23, FBXW11, PRKACA, and BMP8B). The
forest plot displays the results of multivariable logistic regression for
these 9 hub hedgehog-related genes (Figure 8B). Next, we assessed

FIGURE 7
Ten machine learning to identify essential genes. Lasso Regression (A), Ridge Regression (B), and Elastic Net Regression (C) identify 26, 43, and
31 variables, respectively, as potential markers for OA. (D) Support vector machine-recursive feature elimination (SVM-RFE) process for selecting
biomarkers. (E) The effect of the decision tree number on the error rate. (F) Random forest identification of top 20 essential feature genes. (G) Bootstrap
aggregating (Bagging), (H) Gradient Boosting Machine (GBM), (I) eXtreme Gradient Boosting-xgbTree (XGBoost-xgbTree), (J) eXtreme Gradient
Boosting-xgbLinear (XGBoost-xgbLinear), and (K) Decision Tree for top 20 essential feature genes identified respectively.
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the predictive ability of the model constructed using these
7 important hedgehog-related genes. The results showed an AUC
value of 0.853 (Figure 8C). Internal validation using the bootstrap
method demonstrated the reliability of the model (Figure 8D).
External validation using GSE48556 yielded an AUC of 0.838
(Figure 8E), confirming the model’s good stability. The
nomogram assigns a score to each value of the feature variable,
and the total score is calculated by summing up the scores from all
feature variables. This cumulative score reflects the risk of
developing osteoarthritis (OA) (Figure 8F). The calibration curve
serves to validate the accuracy of the nomogram in diagnosing OA
(Figure 8G). Furthermore, the decision curve analysis (DCA)
demonstrates that the clinical application of this nomogram
offers specific clinical benefits for patients with OA (Figure 8H).

Collectively, these findings indicate a close association between these
hub hedgehog-related genes and OA. Overall, these findings indicate
a close association between the identified hub hedgehog-related
genes and osteoarthritis. The constructed model shows good
predictive ability, reliability, stability, and potential clinical
benefits, further supporting the importance of the hedgehog
pathway in the pathogenesis of OA.

3.10 Single gene GSEA results

Further exploration of the potential mechanisms of the 9 hub
hedgehog-related genes in OA revealed interesting findings. KEGG
pathway analysis indicates that 8 out of the 9 hub hedgehog-related

FIGURE 8
Construction of nomogrammodel. (A) Tenmachine learning identified nine hub hedgehog-related genes. (B) Forest plot showing the odds ratio and
95% confidence intervals for predicting OA of each gene. (C) ROC curves for predicting OA at merge dataset. (D) Internal validation of model reliability at
merge dataset using Bootstrap. (E) GSE48556 externally validates the reliability of the model. (F) Nomogram for joint diagnosis of OA based on BMP8B,
PRKACA, FBXW11, RAB23, PRKX, WNT5A, WNT5B, CSNK1G2 and GLI3. (G) Calibration curve for nomogram validation. (H) Decision curve analysis
based on the nomogram model.
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genes are associated with lysosomes, including BMP8B (Figure 9A),
CSNK1G2 (Figure 9B), FBXW11 (Figure 9C), GLI3 (Figure 9D),
PRKACA (Figure 9E), PRKX (Figure 9F), RAB23 (Figure 9G),
WNT5A (Figure 9H), and WNT5B (Figure 9I). Only BMP8B is
not associated with lysosomes. The association of these hub
hedgehog-related genes with lysosomes highlights the potential
involvement of lysosomal pathways in OA pathogenesis. These
findings suggest that the identified hub hedgehog-related genes
may contribute to the development and progression of OA
through their involvement in lysosomal processes. Further
investigations into the specific roles of these genes in lysosomal

pathways could provide valuable insights into the underlying
mechanisms of OA and potentially offer new therapeutic targets
for the disease.

3.11 Methylation and GWAS analysis

By performing methylation analysis using the
GSE73626 dataset, we discovered the methylation patterns of
8 hub hedgehog-related genes, including BMP8A (Figure 10A),
CSNK1G2 (Figure 10B), FBXW11 (Figure 10C), GLI3 (Figure 10D),

FIGURE 9
Gene set enrichment analysis (GSEA) of 9 hub hedgehog-related genes. GSEA analysis of BMP8B (A), CSNK1G2 (B), FBXW11 (C), GLI3 (D), PRKACA (E),
PRKX (F), RAB23 (G), WNT5A (H), and WNT5B (I) in KEGG.
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PRKACA (Figure 10E), RAB23 (Figure 10F), WNT5A
(Figure 10G), and WNT5B (Figure 10H). By analyzing their
chromosomal loci information, we further revealed their genetic
information (Supplementary Figure S1A). Moreover, by analyzing
GWAS data, we identified the single nucleotide polymorphism
(SNP) disease regions associated with the 8 hub hedgehog-

related genes (Supplementary Figure S1B-I). These findings
contribute to our understanding of the epigenetic regulation and
genetic information of the hub hedgehog-related genes in the
context of osteoarthritis. The methylation patterns shed light on
potential regulatory mechanisms, while the analysis of
chromosomal loci and SNP disease regions provide valuable

FIGURE 10
Results of methylation analysis of 9 genes in normal and OA samples (A-I).
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genetic information associated with these genes. Overall, these
analyses enhance our knowledge of the molecular characteristics
and potential genetic contributions of the hub hedgehog-related
genes in osteoarthritis, facilitating further investigations into
their functional roles and potential implications in disease
pathogenesis.

3.12 Single-cell quality control and
dimension reduction clustering

Quality control procedures were performed on the single-cell
dataset. The expression profiles for each sample are shown in
Figure 11A. Correlation analysis shows high reliability of data

FIGURE 11
Single-cell clustering for quality control and dimensionality reduction. (A)Number of genes, number of molecules, and proportion of mitochondrial
genes in each sample. n_Feature indicates the number of genes in each cell. n_Count indicates the number of molecules in each cell. (B) Correlation
coefficients between the number of genes and the number of molecules. (C) The 3,000 highly variable genes are indicated in red, and the ten most
essential genes are highlighted. (D) Elbow graph of PCA. (E) Degradation and clustering analysis. (F) The UMAP plots of 9 hub genes in each cluster.
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(Figure 11B). Subsequently, we identified 2000 highly variable genes
and highlighted the top 10 most important genes (Figure 11C). All
highly variable genes are highlighted in red in Figure 11C. After

dimensionality reduction, 9 principal components (PCs)
(Figure 11D) were imported into UMAP for visualization
(Figure 11E). The UMAP plot displays the expression of

FIGURE 12
(A) Cell annotation revealed chondrocytes, macrophages, and tissue stem cells. (B) Hedgehog scores were found to be significantly upregulated in
chondrocytes in the OA and normal groups. (C) UMAP plot of Hedgehog scores. (D) Single-cell pathway analysis (SCPA) found that the Hedgehog
pathway was elevated in the OA group. (D) Re-dimensionalization analysis after extraction of chondrocytes. (E) Nine PCs were imported into UMAP (F)
The significant genes across the 12 clusters.
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9 important hedgehog-related genes in various clusters (Figure 11F).
Overall, these quality control procedures and visualizations provide
a comprehensive understanding of the single-cell dataset, ensuring

the reliability of the data and offering valuable insights into the
expression patterns and heterogeneity of hedgehog-related genes in
different cell populations or clusters.

FIGURE 13
Pseudotime Analysis. (A)UMAP of chondrocytes after re-dimensionalization and clustering. (B)Hedgehog fraction of each chondrocyte subpopulation. (C)
Highly variable genes were selected for analysis. (D) Seven states of chondrocyte differentiation. (E)Differences in the time series of cell differentiation. Dark blue
indicates earlier differentiation. Light blue shows later differentiation. (F)Differences in chondrocyte differentiation in OA and normal groups. (G) All chondrocytes
were differentiated into 8 clusters. (H–J) Different visualizations show the changes of 9 genes in the pseudotime process.
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3.13 Cell type annotation

Using SingleR for annotation, we identified 3 cell subtypes,
including chondrocytes, macrophages, and tissue stem cells
(Figure 12A). The expression percentage of hedgehog scores in
each cluster is displayed in violin plots (Figure 12B) and UMAP
plots (Figure 12C), showing significantly elevated expression of
hedgehog scores in OA chondrocytes. hedgehog activation
fraction was significantly upregulated in OA (Figure 12D).
Therefore, we extracted chondrocytes for further dimensionality
reduction. Nine PCs were imported into UMAP for visualization
(Figure 12E). Figure 12F displays the significant genes across the
12 clusters.

3.14 Pseudotime analysis

By extracting the chondrocyte subset for further dimensionality
reduction, we discovered 9 chondrocyte subtypes (Figure 13A).
Figure 13B displays the Hedgehog scores for each chondrocyte
subtype. Using the “FindMarkers” method, we identified
significantly differentially expressed genes between OA and
normal cells (Figure 13C). Furthermore, we simulated the
differentiation trajectory of all chondrocytes and visualized it in
Figure 13D, where chondrocytes were labeled with different colors
representing seven distinct differentiation states. Our observations
revealed a correlation between the intensity of the blue color and the
timing of cell differentiation. Specifically, chondrocytes exhibited a
left-to-right differentiation pattern over time, with the lightest shade
of blue indicating the most recently differentiated cells (Figure 13E).
Furthermore, our examination of the differentiation process in both
OA and normal chondrocytes unveiled a delay in the differentiation
of OA chondrocytes compared to their normal counterparts
(Figure 13F). All analyzed cells were confirmed to be
chondrocytes (Figure 13G). During the process of cell
differentiation, the expression of CSNK1G2, FBXW11, GLI3,
PRKACA, and WNT5A changed, while BMP8B, RAB23,
WNT5B, and PRKX showed no significant changes in expression
(Figures 13H–J). These findings provide insights into the
heterogeneity of chondrocytes, the differential gene expression
between OA and normal chondrocytes, and the dynamics of
chondrocyte differentiation. They highlight potential disruptions
in the differentiation process in OA chondrocytes and contribute to
our understanding of the molecular mechanisms underlying
osteoarthritis at the single-cell level.

3.15 CellChat

By cell communication analysis, we found that low hedegehog
score chondrocytes and other cell types are associated (Figure 14A).
We also analyzed the receptor ligands and signaling pathways that
mediate the association of low hedegehog score chondrocytes and
macrophages (Figure 14B). Finally, we identified the 11 signals that
contribute most to the output and input signals of the cellular taxa
(Figure 14C). Overall, these analyses shed light on the
communication and interaction networks between different cell
types, particularly focusing on low hedgehog score chondrocytes

and their associations with other cell populations. The exploration of
receptor-ligand pairs, signaling pathways, and key signals
contributes to our understanding of the cellular communication
landscape and its implications in the context of osteoarthritis.

3.16 The result of real-time PCR

Except for the experimental results of Wnt5a (Figure 15D),
Wnt5b (Figure 15E), and Prkx (Figure 15H) which were not
statistically significant, the inflammation model groups of Bmp8b
(Figure 15A), Rab23 (Figure 15B), Prkaca (Figure 15C), Gli3
(Figure 15F), Fbxw11 (Figure 15G), Prkx (Figure 15H), and
Csnk1g2 (Figure 15I) gene expression levels were higher than the
group without IL-1β treatment.

4 Discussion

OA is a multifactorial disease that can lead to chronic joint
failure (Latourte et al., 2020). One of its hallmarks is the progressive
degradation of the extracellular matrix in chondrocytes.
Additionally, calcification and hypertrophic differentiation of
chondrocytes within articular cartilage are also characteristic
features of OA (1). Currently, the clinical management of OA
primarily involves palliative measures such as pain relief and
anti-inflammatory medications. However, there is still no
approved drug by regulatory authorities that significantly
improves OA (Grandi and Bhutani, 2020). Hedgehog signaling is
essential for development, crucial for normal anatomical
arrangement and activated during tissue damage repair.
Dysregulation of hedgehog signaling is associated with OA
(Smith et al., 2023). The Hedgehog ligand binds to Patched
homolog 1 (PTC), a conserved receptor that activates the GLI
transcription factor family. PTC is involved in development,
diseases, and bone repair processes. During embryonic
development, Hedgehog signaling contributes to limb patterning
and plays a crucial role in regulating chondrocyte differentiation and
osteogenesis during longitudinal growth of long bones. In skeletal
repair and regeneration processes, this signaling pathway also
regulates mesenchymal cell differentiation. In the pathogenesis
and degenerative process of OA, the Hedgehog signaling pathway
is dysregulated (Alman, 2015). Studies have reported increased
activation of the Hh pathway in human and murine knee joint
cartilage, and the level of this activated pathway is associated with
the phenotype of articular cartilage (Bao et al., 2017). This study,
based on Bulk RNA-seq and scRNA-seq, systematically explores the
mechanisms of the hedgehog pathway in OA. It successfully
develops a predictive model and molecular subtypes based on
hedgehog-related genes for OA.

In our current study, we found that the hedgehog pathway is
significantly activated in OA through ssGSEA, GSVA, and GSEA
algorithms. To gain a comprehensive understanding of hedgehog-
related gene expression in normal and OA samples, we conducted a
systematic analysis. Our analysis revealed differential expression of
18 hedgehog-related genes in normal samples, suggesting the
potential involvement of the hedgehog pathway in OA
pathogenesis. To delve deeper into the mechanisms underlying
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the impact of the hedgehog pathway on OA development, we
employed WGCNA. Through this approach, we identified the
turquoise module, which displayed a significant positive
correlation with both the hedgehog score and OA. Enrichment
analysis of the turquoise module further highlighted a strong
association between the hedgehog pathway and the ECM. The
ECM is composed of various macromolecules, traditionally
classified as collagen, elastin, fibrillin, proteoglycans (including
hyaluronic acid), and non-collagenous glycoproteins (Järveläinen
et al., 2009). The abundant ECM forms the avascular and aversive
tissue of articular cartilage (Jeon et al., 2018). Under physiological
conditions, chondrocytes display minimal mitotic activity and
maintain low turnover of collagen. This function is achieved
through the ECM’s ability to protect chondrocytes from
interacting with components in the pericellular matrix (Glyn-
Jones et al., 2015). Hypertrophic chondrocytes can disrupt the
ECM, exacerbating the condition of patients with OA (Shi et al.,
2019). In OA, Typically, hedgehog activation results in the

upregulation of hypertrophic markers, such as type X collagen,
along with increased production of nitric oxide and
prostaglandin E2. Furthermore, it contributes to the synthesis of
various matrix-degrading enzymes, including matrix
metalloproteinases and disintegrin with thrombospondin motifs
containing proteins. These molecular changes ultimately lead to
cartilage degeneration and promote the development of OA (12).
Primary cilia are essential for mechanobiological signaling in
chondrocytes, and their interaction with the extracellular matrix
is crucial for maintaining cartilage homeostasis. Dicam, as a
regulator of primary cilia-mediated Indian hedgehog (Ihh)
signaling in chondrocytes, can promote proliferation and
maturation of growth plate chondrocytes both in vivo and
in vitro (Han et al., 2018). The regulation of Hedgehog signaling
in mechanically sensitive bone marrow mesenchymal stromal cells
offers a new approach to modeling skeletal diseases and provides
new opportunities for targeted therapies against the extracellular
matrix (Ghuloum et al., 2022). Given the close relationship between

FIGURE 14
CellChat analysis. (A) Statistical analysis of the number and intensity of cellular interactions. (B) Ligand-receptor-mediated cellular interactions. (C)
Cellular signal flow patterns. The horizontal axis is the cell type, and the vertical axis is the pathway. The left panel shows the lightness of the signals sent by
each path in each cell type, and the right panel shows the strength of the signals received by each pathway in each cell type.
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the ECM and OA, it is possible that the hedgehog signaling pathway
affects OA development by influencing ECM involvement.

Furthermore, to further validate the association between
hedgehog-related genes and OA, we identified 9 hub hedgehog-
related genes using 10 machine learning algorithms. The predictive
model constructed based on these 9 hub hedgehog-related genes
exhibited good performance in predicting OA. Several of these genes
have previously been associated with OA. Wnt5a and Wnt5b play a
role in coordinating chondrocyte proliferation and differentiation by
influencing the expression of cyclin D1, p130, and the chondrocyte-
specific Col2a1 to varying degrees. This indicates that Wnt5a and
Wnt5b regulate the transition between different regions of
chondrocytes, controlling their progression (Yang et al., 2003).
During the onset of chondrocyte hypertrophy, Wnt5a serves as a
transcriptional target of Gli3 and Trps1 (Wuelling et al., 2020).
Notably, the expression of Wnt5a in articular cartilage has been
found to be positively correlated with the progressive injury
observed in knee joint OA (Li et al., 2016). Increased expression
of genes involved in endochondral ossification, such as BMP8B, is
characteristic of osteophyte chondrocytes (Gelse et al., 2012).
Through GSEA analysis, we found that all 9 genes are associated
with lysosomes. Lysosomes are essential cellular organelles involved
in the degradation, turnover, and programmed cell death of
macromolecules and organelles. Studies have shown that
lysosomal dysfunction leads to chondrocyte apoptosis through
BAX-mediated mitochondrial damage and cytochrome release
(Ansari et al., 2021). The mechanisms of action for other genes
in OA are yet to be discovered, indicating the novelty of our findings
and suggesting that further experimental exploration of their
mechanisms is warranted in the future.

In recent years, increasing evidence has highlighted the crucial
involvement of the immune system in both the development and
progression of OA. Abnormal loading within joint tissues or
systemic factors originating from adipose tissue can trigger the
innate immune system, resulting in two forms of low-grade

inflammation termed mechanical inflammation and interstitial
inflammation. This chronic inflammatory state weakens the joint
tissues and raises their vulnerability to damage induced by loading,
thereby initiating OA (Berenbaum et al., 2018). To assess the
infiltration of immune cells in samples from both OA and
normal conditions, we employed CIBERSORT and MCP-counter
methodologies. We found that multiple immune cells are closely
associated with important biological processes in OA. For example,
macrophages were significantly increased in OA, consistent with
previous research. As macrophage infiltration increases, the degree
of synovial angiogenesis in OA also increases (Haywood et al., 2003).
After joint injury, synovial macrophages promote osteophyte
formation and other OA-related pathologies such as fibrosis by
producing growth factors including bone morphogenetic protein
and transforming growth factor-β. These findings highlight the close
relationship between immune cells and OA and provide insights
into the crucial biological processes involved. Understanding the
immune mechanisms underlying OA can potentially lead to the
development of targeted therapeutic strategies for this debilitating
condition (Jeon et al., 2018).

The advancement of precision medicine has fostered the
emergence of personalized disciplines. It is important to
recognize that diverse populations often manifest unique
pathogenic mechanisms and distinct clinical prognostic
characteristics (Wu et al., 2022). Likewise, subgroups within
individual samples are characterized by different functional gene
sets, including immune-related and metabolism-related genes
(Karim et al., 2021). Unsupervised consensus clustering using
hedgehog-related genes revealed the presence of two subtypes.
GSVA and ssGSEA indicated higher hedgehog activity in subtype
1, with immune differences observed between the two subtypes.
Most hedgehog-related genes were significantly upregulated in
subtype 1. FGSEA and GSVA showed enrichment of hypoxia,
apoptosis, TNF signaling via NF-kB, angiogenesis, inflammatory
response, and extracellular matrix processes in subtype 1. This

FIGURE 15
Relative mRNA expression. (A) Relative mRNA expression of Bmp8b; (B) Relative mRNA expression of Rab23; (C) Relative mRNA expression of
Prkaca; (D) Relative mRNA expression of Wnt5a; (E) Relative mRNA expression of Wnt5b; (F) Relative mRNA expression of Gli3; (G) Relative mRNA
expression of Fbxw11; (H) Relative mRNA expression of Prkx; (I) Relative mRNA expression of Csnk1g2.

Frontiers in Genetics frontiersin.org22

Wang et al. 10.3389/fgene.2024.1255455

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1255455


further supports the notion that hedgehog exacerbates the
development of OA. Additionally, based on the key modules
identified by WGCNA, we also found associations between the
hedgehog subtype, extracellular matrix, and inflammation-related
pathways. Our study suggests that hedgehog-related genes play an
important role in regulating the extracellular matrix and
inflammatory responses, contributing to the pathogenesis of OA.
Furthermore, using the Cmap database, we analyzed drugs that
could reverse high hedgehog activity and identified some potentially
applicable drugs, thus expanding the therapeutic options for treating
OA. There are already some drugs that have shown potential as
treatment options for osteoarthritis (OA). Palmatine (Pal) has been
found to have no impact on chondrocyte viability, reduce the
expression of matrix metalloproteinases (MMPs), and enhance
the inhibitory effect of the Hedgehog signaling pathway inhibitor
(cyclopamine) (Zhou et al., 2016). Low dose of indomethacin and
Hedgehog signaling inhibitor administration synergistically
attenuates cartilage damage in osteoarthritis by controlling
chondrocytes pyroptosis (Liu et al., 2019). The kappa opioid
receptor acts as a potential therapeutic target for OA by
inhibiting the Hedgehog signaling pathway (Weber et al., 2020).
Personalized treatment utilizes molecular diagnostics and genetic
testing to accurately determine the type, subtype, and risk factors of
diseases. This aids in early disease detection, early intervention, and
the development of more appropriate treatment plans for patients.
By detecting specific changes in the hedgehog pathway, we may be
able to identify OA patients who are most likely to benefit from
hedgehog-targeted therapy. Our study only provides a potential
direction for personalized treatment in OA patients. Due to
significant individual variations, the specific mechanisms and
value of Hedgehog subtypes in OA patients remain unclear, and
therefore, further experimental and clinical research is needed.
Additionally, large-scale experiments and clinical studies based
on disease progression or other assessment systems, such as pain
severity, degree of joint function impairment, and cartilage
degeneration, are still required to validate the differences between
the two subtypes.

To further validate and explore our findings, we analyzed
scRNA-seq data to describe the cellular heterogeneity of the
hedgehog signaling pathway at the single-cell level. We found
significant differences in hedgehog scores in chondrocyte clusters
between the OA and normal groups, with higher hedgehog pathway
activity observed in chondrocyte clusters from the OA group. We
extracted chondrocyte clusters from the OA group for further
analysis and conducted pseudotime analysis, which revealed
expression changes in CSNK1G2, GAS1, GLI3, and WNT5A
along the cellular differentiation trajectory. This indicates their
involvement in the developmental processes of OA. Furthermore,
through cell communication analysis, we discovered an association
between chondrocytes with low hedgehog scores and macrophages,
suggesting that the hedgehog pathway may act on macrophages to
influence OA development. Studies have shown that agents such as
cyclopamine (a Smoothened receptor inhibitor), GANT-58 (a
GLI1 inhibitor), or GANT-61 (a GLI1/2 inhibitor) significantly
inhibit RANKL-induced differentiation of bone marrow
macrophages (Kohara et al., 2020). Macrophages in the tumor
microenvironment (TME) play a critical role in tumor growth by
influencing HH signaling pathways (Zhang et al., 2021). Hedgehog

activity regulates the metabolism and bioenergetic programs of
tumor-associated macrophages, promoting their
immunosuppressive polarization (Hinshaw et al., 2021).
Additionally, we explored potential ligand-receptor interactions,
including ANGPTL2-PIRB, ANGPTL4-SDC2, CSF1-CSF1R, and
IL6-(IL6R + IL6ST). Hedgehog activation can greatly enhance
paracrine interactions between macrophages, progenitor cells, and
endothelial cells through the Csf1 signaling pathway (Zhao et al.,
2020). IL-6, mIL-8, Mcp-1, and M-csf (Csf1) are direct target genes
of GLI1 and are involved in the recruitment of activated fibroblasts
and immune cells in the pancreas (Mathew et al., 2014). Overall, our
study provides in-depth insights into the complex connection
between the hedgehog pathway and macrophages as important
factors in the progression of OA. These findings suggest that
hedgehog may participate in OA development through its effects
on macrophages.

Indeed, our study has certain limitations that should be
acknowledged. Firstly, despite our efforts to include multiple
datasets related to OA, it would be beneficial to incorporate a
larger number of OA samples to validate the stability of the
identified subtypes. Secondly, rigorous clinical validation is
required to establish the specificity and effectiveness of hedgehog
subtypes. Additionally, further investigation is warranted to explore
the potential correlations between hedgehog genes, ECM, and
macrophages. Lastly, elucidating the role of hedgehog in OA
through clinical sample and gene knockout experiments is a
topic we plan to investigate in future studies.

In summary, our study combining Bulk RNA-seq and single-cell
RNA-seq techniques discovered a significant increase in hedgehog
pathway activity in OA and identified potential associations between
hedgehog, ECM, and macrophages in the context of OA. The
hedgehog correlation prediction model constructed using
10 machine learning algorithms exhibited promising diagnostic
value. Our research provides valuable insights into the underlying
mechanisms of OA involving hedgehog signaling and offers
guidance for drug screening, personalized treatment approaches,
and immunotherapy strategies for individuals with OA.
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