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In recent years, the use of gene therapy for the treatment of disease has gained
substantial interest, both in academic research and in the biomedical industry.
Initial experimentation in gene therapy has generated positive results, as well as
questions regarding safety. However, lessons have been learned from these first
investigations, among them a realization that such treatments require a method
to fine-tune the expression of therapeutic genes in real-time. A logical solution to
this problem arose through the field of synthetic biology in the form of synthetic
gene circuits. Thus, the synthetic biology community today aims to create “smart
cells” for a variety of gene therapy applications, in an attempt to precisely target
malignant cells while avoiding harming healthy ones. To generate safer andmore
effective gene therapies, new approaches with emerging computational abilities
are necessary. In this review, we present several computational approaches
which allow demonstrating artificial intelligence in living cells. Specifically, we
will focus on implementing artificial neural networks using synthetic gene
regulatory networks for cancer therapy and discuss the state-of-the-art
computational developments.
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Introduction

Ever since the first U.S. Food and Drug Administration (FDA)-approved gene therapies
came out in 2017 in the form of a treatment for the inherited eye disease Leber congenital
amaurosis (FDA, 2017) and a chimeric antigen receptor (CAR) T cell therapy
(NOVARITIS, 2019), the field of gene therapy has generated increasing interest in
many medical fields. Although not the first gene therapies to be approved by a body of
regulation for widespread use (Pearson et al., 2004; Cheever and Higano, 2011; Ylä-
Herttuala, 2012; Milazzo et al., 2016), their approval launched forward subsequent gene
therapies both in the same fields (MacKay et al., 2020; Prado et al., 2020) as well as in others.
However, even with revolutionary results with certain malignancies, gene therapy
treatments have been battling adverse side effects and sub-optimal effectivity since the
outset (Bonifant et al., 2016; Schubert et al., 2021). The lack of control over the activity of
gene therapies post-administration is an important problem which alludes to lacking safety,
and so is a possible hindrance to their widespread adoption. For example, in the widely
acclaimed CAR T therapy, adverse side effects may include cytokine release syndrome
(CRS) and neurotoxicity which at times emerged in patients with fatal results (Brudno and
Kochenderfer, 2016; Titov et al., 2018; Majzner and Mackall, 2019; Rubin et al., 2019).

In pursuance of a platform to solve current and future hurdles in gene therapy, a natural
step forward was found in the field of synthetic biology. Synthetic biology is a
multidisciplinary field of research that applies engineering principles to redesigning
organisms for useful purposes. Thus, synthetic biology holds key aspects which allow it
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to demonstrate and develop the full potential of gene therapy.
Control over timing, location, and degree of activity of genes,
driven by certain forms of biological computation, have been well
established in synthetic biological circuits in the last three decades
(Becskei and Serrano, 2000; Elowitz and Leibler, 2000; Gardner et al.,
2000; McAdams and Arkin, 2000; Hasty et al., 2002; Weiss et al.,
2003; Basu et al., 2004; Friedland et al., 2009; Levskaya et al., 2009; Lu
et al., 2009; Daniel et al., 2013; Walseng et al., 2017). Therefore,
incorporation of synthetic biological circuits in current and future

gene therapies, to create a real-time and precise control of genetic
expression, is a likely answer to prevailing complications.

Since its onset, immunological (Muul et al., 2003) and
oncological (Blaese et al., 1995) applications have led forward
research in the field of gene therapy, adding novel tools to the
newly created field of immunotherapy and extending opportunities
in other medical fields with parallel applications. Therefore,
although computation plays an important role in synthetic
biology in medicine as a whole, in this review we focus on

FIGURE 1
Example logic gates implemented in biological systems in various methods. (A) A conceptual representation of an input-output function and the
corresponding digital “0” and “1” ranges, as well as the analog range in between. (B) An example of an OR gate using two separate promoters expressing
the same gene of interest (GOI) in response to the presence of two different inputs. (C) An example of a NOT gate using a single input-activated promoter.
This promoter expresses a repressor for a promoter that expresses the GOI, therefore increase in the input would result in a decrease in the output,
and vice versa. (D) An example of an AND gate using two separate promoters expressing complementary proteins, which when combined are able to
perform as an activator to a third promoter expressing the GOI.
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synthetic biological computation in biological cancer
treatments—cell therapy, bacteriotherapy, and virotherapy.

Biological computation

Biological systems execute biological computations in order to
detect internal or external stimuli, assess their implications, and
carry out appropriate changes in behavior in response. To date, by
far the most common form of computation implemented in
synthetic genetic circuits in living cells is digital computation.
This approach, which consists of computing with two discrete
binary states (0 and 1), has proven useful in generating a variety
of genetic tools (Figure 1A). Logic gates, including AND (Moon
et al., 2012), OR, XOR (Siuti et al., 2013), NOT (Wang et al., 2011),
NAND (Wang et al., 2011), NOR (Tamsir et al., 2011), and XNOR
(Siuti et al., 2013), are an intuitive form of digital computation that
have all been previously implemented in biological systems in
various methods.

An OR gate can be implemented by using two different
promoters each expressing a copy of the same output gene
(Figure 1B). A NOT gate can be constructed by expressing a
repressor in the presence of an input, which in turn represses the
expression of a gene of interest (GOI) (Figure 1C). An AND gate,
on the other hand, can be implemented by expressing two genes
under two different promoters—each one activated under a
different stimulation (Moon et al., 2012). These two proteins
would have complementary purposes in activating a third

promoter driving the expression of a GOI; one protein would
have the ability to recognize and attach to a DNA sequence
within the output promoter, and the second protein would be
able to attach to the first protein, as well as attract an appropriate
RNA polymerase to the transcription start site (Figure 1D).
Logic gates can be implemented using metabolic and
biochemical reactions as well (Barger et al., 2019). For
example, the luxCDABE cassette was split into two parts,
each part regulated by a different input. Thus, only when the
two inputs were present the two parts were expressed, emitting a
light. Other logic gates mentioned above can be constructed
using an arrangement of the AND, OR, and NOT gates, and so
their design would not be elaborated further.

Memory (Siuti et al., 2013), switches (Gardner et al., 2000), and
counters (Friedland et al., 2009) all operate with digital
information and have been implemented in biological systems
as well (Figure 2). The toggle switch is an interesting example of
both a biological switch and biological memory. As a control
element that holds two mutually exclusive states, the toggle
switch acts as a digital bit and provides information simply by
being in one state and not the other. By expressing two
(controllable) genes that repress the promoter of each
other—generating a symmetrical mutual repression system—a
toggle switch can be produced, resulting in either one of two
states which remain stable over time, thus forming a binary
biological state memory unit (Figure 2A). A counter, which
counts up to three induction events, has been implemented
through a ribo-regulated transcriptional cascade (Figure 2B).

FIGURE 2
Example of a switch/memory system and a counter implemented in biological systems. (A) A mutually repressive gene system, with two inducers
which can be used to change the state of the system, creating a new stable system. (B) A genetic systemwhich responds with an output according to the
number of times the system has been induced. In this genetic circuit, three sequential induces are required in order to generate a proper expression of the
output gene.
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As opposed to biological digital computation, biological
analog computation excels at handling continuous inputs and
outputs. Mathematical operations, which require continuous
input and output domains, have been executed using
biological analog computation in bacteria (Daniel et al., 2013);
(Figure 3A). Since mathematical operations need the flexibility of
continuous input and output ranges, biological analog
computation is an effective way of implementing them.
Driving stability, as well as instability, are another type of
process which can take advantage of analog computation. For
example, a robust adaptation system that drives population
stability can be realized by adding an analog control system
that acts as an integration feedback (Aoki et al., 2019). On the
other hand, by generating a genetic circuit with three repressors
which repress a different gene in the circuit, an oscillator can be
realized (Elowitz and Leibler, 2000); (Figure 3B).

Biological computation in current
cancer gene therapies

Since logic gates could be used for classification of cells as
malignant, current cancer gene therapies focus on the digital
form of biological computation. Both immune and nonimmune
cells have been utilized in research for the detection and elimination
of cancer. One of the most explored gene therapies in cancer is CAR
T cell therapy. This solution involves drawing blood from the
patient, isolating T cells, engineering them to express a synthetic
receptor, and reinfusing them into the patient. The chimeric antigen
receptor is a chimera of intracellular elements of a T cell receptor
and CD3ζ and the reshaped extracellular elements of a B cell
receptor. Co-stimulatory elements are usually added to the
chimeric antigen receptor, making 2nd generation (one co-
stimulatory element) and 3rd generation (two co-stimulatory

FIGURE 3
(A) Example of an analog addition operation implemented in biological systems. Positive feedback was used in these circuits to linearize the
transform function, increasing the linear range on the inputs (B) Example of an oscillator implemented in biological systems. This system utilizes three
repressors that repress the expression of each other in a symmetrical form.
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elements) CARs (Sadelain et al., 2013). By using an extracellular part
taken from the B cell receptor, the synthetic receptor avoids the
requirement for an antigen to be presented by a matching antigen-
presenting molecule to initiate activation.

In search of an alternative platform for cancer treatment using
synthetic biology in gene therapy, several researchers are turning to
bacteria. The use of bacteria to cure cancer is not a new idea, with
one of the first forms of cancer bacteriotherapy appearing at the end
of the 19th century (Wiemann and Starnes, 1994). With modern
medical technology granting safer circumstances for experimental
exploration, a new interest in microbes is emerging, with a focus on
synthetic biology’s designer microbes (Harimoto and Danino, 2019).
As the most prevalent type of cell for experimental proof-of-concept
synthetic biological circuits, the utilization of bacteria features a
favorable platform for avoiding limitations that prevail in
mammalian cell-implemented synthetic genetic circuits.
Furthermore, cancer bacteriotherapy can better deliver
therapeutics locally within the tumor microenvironment due to

their tendency to localize to solid tumors (Lemmon et al., 1997). As
such, it provides a platform with reduced toxicity associated with
systemic drug delivery and allows a more closely controlled dosage.

Finally, Oncolytic viruses (OVs) are both naturally occurring
and engineered viruses that infect and kill cancer cells, where the
lysis of the tumor occurs directly by the activity of the virus or
indirectly with assistance from immune cells. The interest in viruses
for cancer treatment started following clinical reports of cancer
regression coincidental with natural virus infections through the
first half of the twentieth century (Kelly and Russell, 2007). Viral
infection can naturally induce activation of the immune system and
creation of local inflammation, which when happens at the site of a
tumor at the hands of OVs can have positive anti-tumoral effects
(Achard et al., 2018). Furthermore, by releasing tumor-associated
antigens upon oncolysis to the immune-aroused microenvironment,
OV activity can result in effect in a tumoral vaccination,
unintentionally resulting in regression of related yet uninfected
tumors (Bommareddy et al., 2018; Russell and Barber, 2018).

FIGURE 4
Simple single-input biological classifiers in cancer gene therapy, and their corresponding two-input AND gate classifiers.
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FIGURE 5
Simple forms of digital computation in cancer therapy, demonstrating how a classification system receives a system of cells with certain marker
expression (blue–healthy cells, red–malignant cells) yields an outcome with certain of the cells eliminated (hollow circles). (A) A 2-input 1-bit AND gate.
(B)A 2-input 1-bit AND gatewith lower threshold for both inputs. (C) A schematic output of a 2-bit ADC, converting an analog input into a 2-bit output. (D)
A 2-input 2-bit classification system. By further dividing the classification space, a finer differentiation in inputs can be achieved, resulting in an
output with both higher specificity and higher sensitivity.
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AND gate in cancer gene therapies

CAR T cells, bacteriotherapy and OVs all rely on binary
classification of the input (be it ligand, microenvironment, or
proteome) to determine malignancy, and so essentially utilize
simple biological digital computation. More recently, these digital
computation solutions have been refined and improved, while
maintaining a digital approach. Perhaps the most promising of
those is the development of AND gate cancer classifiers (Figure 4).
In the field of cell therapy, for example, an AND gate requiring two
cancer-associated membranal markers has been constructed by
utilizing synthetic notch (synNotch) receptors (Williams et al.,
2020), a modified Notch-1 membranal receptor which allows the
user to express premediated genes upon ligand binding. By
designing a synNotch receptor to detect one marker and in turn
activate the expression of a CAR targeting a second marker, an
AND-gate means of cytotoxic activation can be attained. In cancer
bacteriotherapy, environmentally dependent promoters have been
implemented to generate a reaction not only upon colonization, but
also upon recognition of markers characteristic of the tumor
microenvironment like low oxygen concentration (Mengesha
et al., 2006). And in virotherapy, carefully chosen promoters have
been used to not only achieve activation upon presence of
appropriate transcription factor associated with cancerous cells,
but also logic gates that enable more precise classification. By
using viruses to insert two cancer-specific promoters (which are
cancer-selective by being active only in cancerous cells) that express
proteins that combine and become an activator to a third promoter
with a therapeutic output downstream, an AND gate has been
constructed (Nissim et al., 2017).

Despite the benefits of digital computation for cancer therapy,
there are certain downsides to the use of this method. While
proving a stable decision-making form of computation, a 1-bit
digital system may not suffice in the classification of cells to benign
and malignant. The tumor is a heterogenous environment with
cells with varying phenotypes, and so often cannot be boxed into a
simple AND classification without missing a substantial portion of
the malignant cells (Figure 5A). And by simply decreasing the
threshold between 0 and 1 in a 1-bit classification, there is also an
increase in likelihood of damage to healthy cells, especially in the
range close to the new lower threshold (Figure 5B). Therefore, a
finer division of the input space is required—an approach with a
higher resolution. An approach of this nature is possible by
dividing each input further, by switching to a 2-bit analog to
digital conversion (ADC). The 1-bit ADC is usually implemented
through an inducer-dependent promoter, acting as a switch
between 0 and 1 according to the inducer concentration. This
promoter would sometimes express a transcription factor, which
can then continue downstream to perform different interactions in
the genetic circuit. A 2-bit ADC, on the other hand, would require
the expression of two distinct transcription factors under the
control of the same inducer. This type of ADC is accomplished
by expressing two transcription factors, which together are able to
attain all four forms of outputs expected from a 2-bit system—

[0,0], [0,1], [1,0], [1,1] (Figure 5C). By switching from a 1-bit ADC
to a 2-bit ADC, the increase in resolution theoretically allows finer
decision making and thus an increase in specificity and sensitivity
(Figure 5D). However, with an increase in the number of “bits” in

the classifier there is an increase in the number of transcription
factors needed to differentiate between different “bits”. A 2-input
1-bit AND gate utilizes just two transcription factors—one for each
input. A 2-input 2-bit AND gate, on the other hand, utilizes four.
And a 2-input 3-bit AND gate utilizes 6, pushing the limits of
practical implementation. Hence, although biological digital
circuits are generally easier to design than biological analog
circuits, they often require a substantially larger number of
parts to generate complex functions when compared to analog
circuits. Ideally, future cancer gene therapies would build upon
genetic circuits that merge the benefits of digital and analog
biological computation.

Neuromorphic computation in
living cells

Fortunately, neuromorphic computation, a more recent form
of biological computation, incorporates many of the advantages of
both the digital and analog approaches. Neuromorphic
computation employs design principles of neuronal systems
and has been successfully utilized in a wide range of fields,
chiefly software algorithms (Haykin, 1998) and electronics
(Neftci et al., 2013; Wang et al., 2018; 2019). This form of
computation can more efficiently perform certain tasks (e.g.,
pattern recognition, optimization), while often requiring
significantly fewer parts, compared to the digital counterpart.
Artificial neural networks are made out of perceptrons which
consist of a linear combination of weighted analog input signals
(Figure 6A). Biological neuromorphic computation systems have
been implemented using different versions of the perceptron.
Specifically, inside bacterial cells, the log-based versions of
perceptrons have allowed efficient implementation of
neuromorphic computation circuits. These types of perceptrons
have a logarithmic input–output operation—making them
suitable for the logarithmic nature of biochemical
reactions—and implement a logarithmic classifier that
partitions all input values into two classes of output data
points—reliably generating either one of two states, similar to
digital biological computation. Thus, neuromorphic computation
combines analog information processing with digital decision-
making capabilities using non-linear activation functions (e.g.,
sigmoid, rectifiers, step function) (Rizik et al., 2022). In doing so,
we combine the stability and decision-making capabilities of
digital computation with the low number of parts and natural
functions of analog computation (Figure 6B). Furthermore,
neuromorphic computation is highly adaptive—the weights can be
easily changed to fit changes in circumstances and the activation
function can be chosen according to the classification method
required (Figure 6C). For example, a gene network with two inputs
has been built where its functionality can be programmed from anAND
to anOR logic gate through a change in a single parameter in the circuit
(Rizik et al., 2022); (Figure 6D). In this example, the weight was
determined by protein–protein interactions resulting in a new Hill-
coefficient value. Cooperativity of transcription factors plays a critical
role in determining the sensitivity of genetic regulatory circuits and
synthetic genetic circuits (Danielli et al., 2020), and plays major role in
neuromorphic computation.
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FIGURE 6
Neuromorphic computation and its advantages. (A) Representative schematic architecture of an artificial neural network with an input layer with
3 nodes, single hidden layer with 4 nodes, and output layer with 2 nodes (B) General form of neuromorphic computation demonstrating how a
neuromorphic classification system receives a system of cells with certain marker expression (blue–healthy cells, red–malignant cells) yields an outcome
with certain of the cells eliminated (hollow circles). (C) Through changes in the user-defined activation function and weights, different forms of
classification can be easily achieved in neuromorphic computation. (D) Schematic of a gene circuit demonstrating a simple 2-input 1-weight
neuromorphic classifier, allowing the user to define the function of the classification, choosing between an AND gate, and OR gate, or a midway point.
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Although the neuromorphic approach has only been
developed recently, a few different methods of
implementations have already been demonstrated. In one
example, the potential of metabolism to perform analog
computations and a sum classification has been investigated
using synthetic metabolic circuits (Pandi et al., 2019). This
investigation illustrated that, unlike a comparable digital
biological system which would have needed multi-layered logic
circuits, the tested metabolic adder was a simple one-layered
device with fast execution times. Another design utilized protein
heterodimers and engineered viral proteases to implement a
synthetic protein circuit that performs winner-take-all neural
network computation (Chen et al., 2022). This design

demonstrated that a neuromorphic classification system can be
even implemented using protein-level interaction—a useful type
of architecture when constructing a system to react quickly to
changes in the environment. Pattern recognition has been carried
out with neuromorphic computation as well, where receiver
bacteria collectively interacted with sender bacteria to generate
decision-making through quorum sensing (Li et al., 2021).
Chemical inducers were used to create 3 × 3 input patterns,
which through gradient descent and suitable adjustment of
weights (in this case the level of signal production by the
sender cells) enable recognition of the pattern. Though all
valuable applications, neuromorphic computation provides
another major tool for cancer therapy—majority classification.

FIGURE 7
Majority classifications in digital and neuromorphic forms. (A) The classification of a digital majority classifier in three-dimensional space (Blue—0,
Orange—1). (B) Schematic of a gene circuit demonstrating a digital majority classifier. (C) The classification of a neuromorphic majority classifier in three-
dimensional space (Blue—0, Orange—1). (D) Schematic of a gene circuit demonstrating a neuromorphic majority classifier. (E) Representative
demonstration of a gradient descent algorithm with the aim of reaching the minimum value of a cost function.
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Majority classification in gene therapy

As mentioned previously, tumor heterogeneity poses a major
hurdle for current cancer gene therapies. While increasing the
resolution of 2-input systems is one approach to a solution, a
different approach is the majority classification. Instead of
increasing the resolution of discrepancy within each input,
majority classification relies on inspecting 3 or more inputs–or in
the case of cancer therapy, cancer markers (Figure 7). In the case of a
3-inputs system, a digital majority classifier would require at least
2 out of the 3 inputs to be positive in order to generate a positive
output (Figure 7A). In cancer therapy, this would translate to an
exceptional balance between specificity and sensitivity—a majority
classification both requires at least two cancer-specific markers to be
present (necessitating better specificity than a single input
classification) and allows the absence of any one of the three
inputs at any single moment without hindering its recognition
abilities. Although a remarkable solution, to date few
demonstrations in this form have been presented (Nielsen et al.,
2016); (Figure 7B). One possible explanation for this lack of
examples could be practical limitation. Similar to an increase in
bits in an AND classification, an increase in the number of inputs
and an increase in the complexity of the circuit to allow flexibility in
its classification increase the number of orthogonal parts necessary
to differentiate signals from different sources.

Fortunately, neuromorphic computation presents a novel
solution to this limitation as well. By performing the summation
in the analog domain before performing the classification through a
sigmoid activation function, the neuromorphic system reduces the
number of necessary parts and allows for simpler adjustment for
different circumstances through the readjustment of the input
weights (Figures 7C, D). This approach has been carried out
successfully in bacteria in a non-medical application (Rizik et al.,
2022), though there are no theoretical limitation to its use in
mammalian cells, bacteria or viruses in a cancer therapy
application. In this implementation optimization was necessary
to achieve proper majority classification. Although 7 parts
(promoter-gene pairs) were used, only two parameters were
chosen to be optimized—the weight molecule concentration and
the activity of the Plux promoter with six different values for the
former and four for the latter. When taken into account with the
different states for each one of the three inputs 192 samples would
have been needed to conventionally find the optimal values. In order
to optimize circuits of this complexity and reach the desired
classification, artificial intelligence algorithms such as gradient
descent can be performed, based on collected experimental
biological data and repeated build-test-learn-correct cycles.
Gradient descent is an algorithm used to efficiently reach optimal
values defined as the minimum point of a certain cost function—a
function used to quantify the performance of the system. In this

algorithm, the “slope” of the function at a given point is used to
deduce the direction of the minimal value (Figure 7E). This
approach enables rapid circuit optimization, as was demonstrated
in this majority classification implementation, which through
gradient descent required only 48 experiments.

Conclusion

Computation in current cancer gene therapies almost
completely relies on digital design. Although this model has
proven useful, both in its basic form and its more refined ones, it
is clear that, moving forward, a different approach is required in
order to push treatment forward and improve the cancer
therapies—both in safety and in effectiveness. In this review, we
presented the state-of-the-art solutions given through a digital
approach, as well as their critical limitations. For that reason, we
also introduced a probable solution to these limitations—a switch to
a neuromorphic design. By taking advantage of the benefits of analog
computation and attaching them to the functionality of digital
computation, we believe that a superior form of therapeutic
computation can be achieved. While further investigations into
the use of neuromorphic computation in cancer therapy are
necessary, we are confident in the current results presented by
previous research in the field, and hope to witness a growth in
exploration in this uncharted passage forward.
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