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Esophageal squamous cell carcinoma (ESCC) is the predominant subtype of
esophageal cancer in Central Asia, often diagnosed at advanced stages.
Understanding population-specific patterns of ESCC is crucial for tailored
treatments. This study aimed to unravel ESCC’s genetic basis in Kazakhstani
patients and identify potential biomarkers for early diagnosis and targeted
therapies. ESCC patients from Kazakhstan were studied. We analyzed
histological subtypes and conducted in-depth transcriptome sequencing.
Differential gene expression analysis was performed, and significantly
dysregulated pathways were identified using KEGG pathway analysis (p-value
< 0.05). Protein-protein interaction networks were constructed to elucidate key
modules and their functions. Among Kazakhstani patients, ESCC with moderate
dysplasia was the most prevalent subtype. We identified 42 significantly
upregulated and two significantly downregulated KEGG pathways, highlighting
molecular mechanisms driving ESCC pathogenesis. Immune-related pathways,
such as viral protein interaction with cytokines, rheumatoid arthritis, and oxidative
phosphorylation, were elevated, suggesting immune system involvement.
Conversely, downregulated pathways were associated with extracellular matrix
degradation, crucial in cancer invasion and metastasis. Protein-protein
interaction network analysis revealed four distinct modules with specific
functions, implicating pathways in esophageal cancer development. High-
throughput transcriptome sequencing elucidated critical molecular pathways
underlying esophageal carcinogenesis in Kazakhstani patients. Insights into
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dysregulated pathways offer potential for early diagnosis and precision treatment
strategies for ESCC. Understanding population-specific patterns is essential for
personalized approaches to ESCC management.

KEYWORDS

esophageal squamous cell carcinoma, RNA-seq, next-generation sequencing,
transcriptomics, analysis of differentially expressed genes, bioinformatics, Kazakhstan

1 Introduction

Esophageal cancer (EC) globally ranks as the sixth leading cause
of cancer mortality, and it significantly contributes to disease burden
with its high mortality rate due to invasive manifestation and poor
survival prognosis (Lu et al., 2012; Tungekar et al., 2018; Liu
WJ. et al., 2023). Despite significant burden on cancer
epidemiology, EC remains one of the least studied cancer types.
Esophageal cancer consists of two histologic types: esophageal
squamous cell carcinoma (ESCC), which lines the surface of the
esophagus, and esophageal adenocarcinoma (EAC), which mainly
occurs in the cells of mucus-secreting glands in the esophagus
(Zhang et al., 2015; Doghish et al., 2023). Its prevalence is
notably pronounced in developing areas, accounting for nearly
80% of all instances (Fan et al., 2020; Liu C-Q. et al., 2023, Jemal
et al., 2010). Specifically, in the defined “esophageal cancer belt”
which stretches from the Middle East to Northeast China, almost
90% of all EC cases are classified as ESCC (Zhang, 2013). In
Kazakhstan, esophageal cancer ranks sixth in prevalence among
all cancer types, and ESCC is the predominant subtype (Igissinov
et al., 2012). In this study, we restrict our discussion to ESCC. The
majority of ESCC patients are diagnosed in the advanced metastatic
stage at their first screening because there is a limited number of
screening tests for early diagnosis (Jemal et al., 2010). Once
diagnosed, the five-year survival rate ranges from 10% to 25%
(Fan et al., 2020; Fernandes et al., 2006; Liu C-Q. et al., 2023;
Zhang et al., 2015). The occurrence and fatality rates of esophageal
cancer remain significant, with 5.90 new diagnoses and 5.48 deaths
per 100,000 individuals across the globe in 2017 (Fan et al., 2020).
The causes of esophageal cancer vary depending upon geographical
locations, and some regions are witnessing a continual escalation in
both its incidence and mortality. Despite notable advancements in
diagnostic and therapeutic strategies, the survival rates for patients
with advanced ESCC have not shown significant improvement (Liu
C-Q. et al., 2023).

Over the last decade, the advent of high-throughput genomic
and proteomic analyses led to the discovery of a few potential driver
mutations in ESCC (Tungekar et al., 2018) have uncovered a small
number of potential driver mutations in ESCC (Lin et al., 2014;
Song et al., 2014; Zhang et al., 2015; Cui et al., 2017). Yet, the genetic
and molecular alterations contributing to ESCC development are
still not well-characterized, underscoring the need for a
comprehensive pathological exploration to develop more
effective diagnostic and therapeutic strategies. Therefore, a
comprehensive investigation of the pathological mechanisms
would give new insights into more effective diagnosis and
treatment options (Zhang et al., 2015). With recent
advancement of next-generation sequencing technologies, the
RNA-seq approach has become a powerful tool for

comprehensive characterization of the entire transcriptome of
tissues. In this study, we conducted whole RNA sequencing of
tumor tissues and differentially expressed gene screening with
functional enrichment analysis of transcriptomic profiles in
Kazakhstani patients to investigate the distinct gene expression
patterns of ESCC. The findings will contribute significantly to the
development of early diagnostic biomarkers and personalized
therapeutic approaches in ESCC management.

2 Materials and methods

2.1 Samples and clinical data

All ESCC patients recruited to the study were from the
Multidisciplinary Medical Center in Astana, Kazakhstan. Samples
were gathered from the Department of Oncological Surgery. Study
protocols were approved by the institutional ethics review board of
the National Laboratory Astana (protocol #13, 12 March 2014 and
protocol #20, 22 September 2017). Informed consent was obtained
from all study participants. Tumor tissues were collected from each
patient who underwent Ivor-Lewis esophagectomy between
2013 and 2017. None of these patients were treated with
chemotherapy or radiotherapy before surgery. After the surgical
procedure, tissue samples were immediately frozen in liquid
nitrogen and stored at −80°S. Hematoxylin/eosin staining of
tissue samples was performed to validate the diagnosis and to
determine the pathological grade, metastasis, and cellular content
of tumor samples. All tumor samples were more than 80% free of
necrosis. Tumor samples were classified based on the tumor-node-
metastasis (TNM) classification of the International Union against
Cancer, 7th edition (Sobin et al., 2010). Evaluation of tumor
differentiation was performed according to histological criteria of
the guidelines of the World Health Organization (WHO)
Pathological Classification of Tumors (Bosman et al., 2010).
Diagnoses of all ESCC cases were histologically confirmed. The
following three criteria were used to select patients for this study:
confirmed ESCC status, informed consent for research, and Ivor-
Lewis esophagectomy. Tumor sample tissues obtained from
22 ESCC patients were subjected to total RNA extraction and
sequencing.

2.2 RNA preparation and sequencing

Total RNAwas extracted from approximately 60 mg of tissue for
each of the 22 tumor samples using the RNAiso Plus (Takara) and
purified using DNase I kit (QIAGEN) based on manufacturer
instructions. Quantification of the RNA yields was performed by
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NanoDrop ND1000 (Thermo Fisher Scientific, Waltham, MA). The
quality of the RNA was evaluated by the Agilent 2,100 Bioanalyzer
(Agilent, Santa Clara, CA). A cDNA library was prepared according
to the protocol of TruSeq RNA Sample Preparation based on
manufacturer instructions. The cDNA library of each sample was
assessed and validated onQubit (Qubit ds DNAHS assay kit) and on
an Agilent Bioanalyzer 2,100 (HS DNA kit). Further, the cDNA
library was normalized and after pooling was then hybridized on a
flow-cell v3 (TruSeq E Cluster Kit version 3). Finally, RNA paired-
end sequencing was performed on an Illumina HiSeq2000 platform
according to the standard protocol using TruSeq SBS Kit (TruSeq
SBS Kit version 3—HS). A PhIX control library was used as an in-
spike for each line (Huang et al., 2011). Transcriptome sequencing
data are available publicly at the NCBI Sequence Read Archive
(http://www.ncbi.nlm.nih.gov/sra/) under accession number
PRJNA608223.

2.3 Acquisition of transcriptomic data for
normal esophageal tissue

Total RNA-seq data from healthy esophageal squamous
epithelial tissue were downloaded from the GEO database
(https://www.ncbi.nlm.nih.gov/geo/). Gene expression profiles of
11 healthy esophageal squamous epithelial tissues were extracted
from the atlas of RNA sequencing profiles for normal human tissues
(Suntsova et al., 2019). The sequencing and total RNA extraction
protocol for the selected sample can be found at the GEO database
under accession number GSE120795 (https://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=GSE120795). Paired-ended reads were
downloaded from SRA Run Selector at NCBI under accession
number PRJNA494560 on 30 March 2020. Raw RNA-seq data in
FASTQ format were aligned to a reference genome (Homo_sapiens.
GRCh38.94.gtf) using STAR tools (version 2.1.3) (Dobin et al., 2013).

2.4 Immune deconvolution of ESCC and
normal EC samples

We estimated the relative abundance of specific cell types from
bulk tissue transcriptomic profiles using CIBERSORTx algorithm,
which is a machine learning computational framework for the
assessment of cellular abundance and cell type-specific gene
expression from bulk tissue gene expression profiles (Chen et al.,
2018; Newman et al., 2019).

As input, CIBERSORTx requires a “signature matrix” comprised
of barcode genes are enriched cell type of interest. In this study, we
used LM22 signature matrix consisting of 547 genes that estimates
the fraction of 22 immune cell types, including mainly T cells, B cells,
neutrophils, macrophages, natural killer cells and myeloid subsets
(Chen et al., 2018). The gene expression profiles of tumor ESCC and
normal EC samples were uploaded to the CIBERSORTx website
(https://cibersortx.stanford.edu/) and data analysis (Job type:
“Impute cell fractions”) was run in default settings, in absolute
mode using the LM22 signature over 1,000 permutations with
quantitative normalization disabled (Braun et al., 2020; Zhao
et al., 2020). To evaluate the deconvolution confidence,
CIBERSORTx calculated several quality control metrics, including

deconvolution p-value and Pearson correlation coefficient (Chen
et al., 2018).

2.5 The identification of differentially
expressed genes

A modified Tuxedo Suite protocol was used to identify
differentially expressed transcripts between tumor and normal
conditions (Pertea et al., 2016). All alignments and mapping were
performed using the STAR tool (Dobin et al., 2013). Sequenced
reads were aligned to human reference genome from the ENSEMBL
database (Homo_sapiens.GRCh38.94.gtf) for gene expression
analysis. The quantification and transcript assembly of RNA-seq
alignments were accomplished using StringTie (Pertea et al., 2016).
Raw RNA-seq data were normalized using the DeSeq2 package in R
(version 1.24.0, https://bioconductor.org/packages/release/bioc/
html/DESeq2.html) for differential expression analysis (Love
et al., 2014). The DEGs between ESCC samples and normal
esophageal tissue were identified using DeSeq2 package. The raw
p-values of genes were adjusted with the Benjamin and Hochberg
(BH) method. The genes with absolute value of log-fold changes of
gene counts (|log2FC|≥1) and adjusted p-value <0.05 were selected
as significant DEGs, and these thresholds were accepted as the cut-
off values for statistical significance. Moreover, the cross-section of
the DEGs according to tumor stage was calculated and the results
were visualized as a Venn diagram using an online tool (http://
bioinformatics.psb.ugent.be/webtools/Venn/).

2.6 Reverse transcription for cDNA
preparation and RT-PCR

Real-time RT-PCR was used to validate gene expression level of
selected DEGs genes, which has significant downregulation and
upregulation. Total RNA was extracted from approximately 60 mg
of tissue using the RNAiso Plus (Takara) and purified using DNase I kit
(QIAGEN) based on the instructions of manufacturer. The
quantification of the RNA yields was performed by NanoDrop
ND1000 (Thermo Fisher Scientific, Waltham, MA). The quality of
the RNAwas evaluated by the Agilent 2,100 Bioanalyzer (Agilent, Santa
Clara, CA). To obtain complementary DNA (cDNA) on an RNA
template, a reverse transcription reaction was performed using the
TaqMan™ Reverse Transcription Reagents kit (Applied Biosystems,
United States) with random hexanucleotide primers in accordance with
the manufacturer’s instructions. RT-PCR was performed under the
following thermal cycling conditions: 10 min at 25°C, 60 min at 37°C,
5 min at 95°C. The concentration of the obtained cDNA samples was
determined by the spectrophotometric method using the NanoDrop
device. RT-PCR was performed in a volume of 20 µL containing 10 µL
Master Mix, 4 µL Primer Mix, 1 µL Taq polymerase, 1 µL cDNA, and
4 µL MilliQ water. Each target gene’s expression level was standardized
relative to the expression of glyceraldehyde-3-phosphate dehydrogenase
(GAPDH), which served as the internal reference gene. The two-step
amplification program included 1 cycle at 95°S, 3 min for preliminary
denaturation; 40 cycles of the first amplification step at 95°S, 10 s and
the second annealing-extension step for 40 s at a temperature of 60°S.
Real-time RT-PCR cycling was performed on Bio-Rad CFX-96 system
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(Bio-Rad Laboratories, Hercules, CA, United States). The fluorogenic
signal emitted was collected during the anneal extension step. Three
replicates of the assay were performed to assess reproducibility and the
coefficient of variation were statically calculated. The comparative
method of measuring threshold cycle ΔCt, which is calculated based
on the difference between the Ct values, was used to calculate the
relative level of gene expression in the samples compared to the control.
Two downregulated genes (TNXB and MUC5B) and one upregulated
gene (MAGEA4) have been selected for RT-PCR validation experiment.
The following Taqman gene expression assays (FAM-MGB labelled)
were obtained fromThermo Fisher Scientific: MAGEA4 (Hs00751150_
s1), TNXB (Hs00372889_g1), MUC5B (Hs00861595_m1). The
selection of genes for validation was determined by considering
multiple criteria. Our primary criterion was the gene expression
level, focusing on the genes with the highest upregulation and the
most significant downregulation, determined by their log-fold changes
in gene counts (log2FC), while ensuring their adjusted p-value was <0.
05. We refrained from choosing non-coding RNA for several reasons,
including their limited functional characterizations, intricate regulatory
mechanisms, and the technical limitations associated with their analysis.
The level of gene expression of following genes in 3 ESCC samples were
assessed using quantitative real-time reverse transcriptase PCR (RT-
qPCR) using TaqMan technology.

2.7 Functional annotation and pathway-
enrichment analysis

Functional analysis of DEGs was performed using the Database for
Annotation, Visualization and Integrated Discovery (DAVID) online
tool version 6.8 (Huang et al., 2009a; b) to assign significant DEGs to
their associated biological annotation with Gene Ontology (GO; www.
geneontology.org) (Ashburner et al., 2000; The Gene Ontology, 2017).
Pathway analysis was performed using the Kyoto Encyclopedia of
Genes and Genomes (Ogata et al., 1999; Kanehisa and Goto, 2000)
and the Reactome pathway database (Fabregat et al., 2018). Default
parameter settingswere used for theDAVID tool. Significantly enriched
pathways were defined by p-values <0.05 calculated based on
hypergeometric distribution with the BH correction. All significantly
enriched terms were visualized in bubble charts using the ggplot2
package version 3.1.0 in R (Villanueva and Chen, 2019). The
richness factor was computed as a ratio between the number of
enriched gene number and the number of background genes of the
same term. Heatmaps for DEGs were created for unsupervised
clustering using pheatmap package version 1.0.12 in R (Kolde,
2019). KEGG pathway analysis of DEGs was performed using
GAGE package in R (Luo et al., 2009; Luo and Brouwer, 2013), and
a whole set of DEGs was selected for functional enrichment analysis.

2.8 Prptein-prptein interactions (PPI)
network cpnstruction

The most significant 500 DEGs were screened for protein-
protein interactions (PPI) using the Search Tool for the Retrieval
of Interacting Genes/Proteins database version 11.5, and a combined
score >0.4 was used as the criterion to establish the PPI network
(Szklarczyk et al., 2015). The data of the PPI network were exported

from STRING and imported into Cytoscape version 3.9.1 software
for visualization (Shannon et al., 2003). Each protein in the network
served as a node, and the degree and betweenness centrality were
calculated using the CentiScape version 2.2 plug-in Cytoscape
(Scardoni et al., 2009; Scardoni et al., 2014; Wang et al., 2019;
Yang et al., 2019).

Highly interconnected regions or clusters (modules) were
determined using the MCODE plugin (version 2.0.2) (Bader and
Hogue, 2003) in the PPI network. The degree cut-off and k-score
were set to 2. Identified clusters with a score >10 was used to create a
sub-network. The Cytoscape plug-ins ClueGO (version 2.5.9) and
CluePedia (version 1.5.9), which enable GO and pathway
enrichment analysis in a network (Bindea et al., 2009; Bindea
et al., 2013), were applied to conduct functional enrichment
analysis and visualization. The results from the GO and KEGG
databases were combined, and in the process, the same color was
used to represent similar functional terms (Wang et al., 2019).

3 Results

3.1 Clinical characterization of samples
and tissues

From 2013 to 2017, a total of 184 patients with Esophegeal
cancer (EC) were hospitalized in the Multidisciplinary Medical
Center, Astana, Kazakhstan. Surgical resection was performed on
54 patients and 3 patients refused surgical treatment. Of the EC
patient cohort, 22 ESCC patients with full and high-quality RNA-seq
data were selected for further transcriptomic profiling of ESCC
tissue. Of these patients, 13 were men and the mean ± SD age was
65.73 ± 8.26 years. Most (82.0%) of these patients were Kazakhs.
Most (86.4%) were diagnosed with advanced stages (III-IV stage;
77% were in stage III) and 74.5% had dysphagia levels III to IV.
Cancer was localized predominantly to the middle and lower thirds
of the thoracic part of the esophagus. The clinical features of the
22 patients are shown in Table 1, and further details are presented in
Supplementary Table S1. A histopathological study of the ESCC
patients indicated that the following three histological types were
observed: moderate dysplasia with invasive growth, high-grade
dysplasia, and cancer pearls. According to the histological type of
ESCC, moderately differentiated squamous cell carcinoma with
infiltrative growth and with keratinization and high-grade
dysplasia were prevalent.

3.2 Evaluation of immune deconvolution of
tumor and normal EC samples

We determined the relative abundance of 22 immune cells for
each samples using CIBERSORTx (Chen et al., 2018; Newman et al.,
2019). The comparative summary of immune cell fractions is shown
in Supplementary Figure S1.We observed that immune cells, such as
T cells CD4 memory resting and macrophages M2 were enriched
across all samples. It was revealed that memory B cells, CD8 T cells,
regulatory T cells and activated dendritic cells were differentially
enriched in different samples. Our analysis demonstrated that there
is significant difference in correlation coefficient between normal EC
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samples (in average 0.05) and tumor ESCC samples (in average 0.27)
that was determined by Pearson correlation analysis. There is some
positive association between signature score and immune cell
infiltration in ESCC samples.

3.3 Assessment of immune cell composition
in normal and tumor EC samples

To evaluate the immune landscape of esophageal cancer (EC),
we analyzed the relative proportions of 22 immune cell types in each
sample using CIBERSORTx (Chen et al., 2018; Newman et al., 2019).
The resulting immune cell fraction for each sample is represented in
Supplementary Figure S1.

Throughout all samples, substantial enrichment of resting
memory CD4 T cells and M2 macrophages was observed.
However, the enrichment of memory B cells, CD8 T cells,
regulatory T cells, and activated dendritic cells varied noticeably
among different samples, highlighting heterogeneity in immune
responses. Our subsequent analysis revealed a significant
difference in the correlation coefficient for immune cell
infiltration between normal EC and tumor ESCC samples.
Normal EC samples exhibited an average correlation coefficient
of 0.05, while tumor ESCC samples had a greater mean coefficient of
0.27, as determined by Pearson correlation analysis. This suggests a
positive association between the signature score and degree of
immune cell infiltration, particularly in ESCC samples.

3.4 Identification of differentially
expressed genes

Based on RNA-seq of 22 ESCC tissue samples, a total of
6,689 significant DEGs with 4,633 upregulated genes and
2056 downregulated genes were identified. The list of significant
DEGs for tumor tissue versus normal esophageal tissue is shown in
Supplementary Table S2. When we compared ESCC tissues against

normal esophageal tissues by tumor stage, we observed a total of
3,243, 4,464, 6,756, and 1,904 DEGs for tumor stage I, II, III, and IV
stages versus the expression in normal esophageal tissues,
respectively (Table 2).

The number of overlapping and unique DEGs for each tumor
stage is shown in Supplementary Figure S2. We further examined
1,002 genes that were consistently aberrantly expressed
(Supplementary Figure S2A); these comprised 505 downregulated
and 491 upregulated genes (see Supplementary Figures S2B, C).

3.5 Quantitative real-time RT-PCR validation

We conducted quantitative real-time RT-PCR (RT-PCR) to
validate the results obtained from RNA-Seq analysis in three ESCC
samples by assessing the mRNA expression of these genes. Among the
significantly expressed DEGs listed in Supplementary Table S2, we
chose one upregulated gene (MAGEA4) and two downregulated genes
(TNXB and MUC5B) for validation. The relative gene expression of
these selected genes was assessed using the comparative Ct method and
normalized to GAPDH. Comparing the expression of these genes with
reference genes, we observed that TNXB and MUC5B were
downregulated, while MAGEA4 was upregulated across all three
samples (as shown in Supplementary Figure S3). Additionally, all
selected genes exhibited similar expression levels across the three
ESCC samples. The concordance between RT-PCR and RNA-seq
results confirmed that the differential expression of TNXB, MUC5B
and MAGEA4 and that the findings from RNA-seq analysis were
creditable.

3.6 Functional gene enrichment analysis of
DEGs in ESCC

To determine the relevant pathways altered in ESCC pathogenesis,
functional enrichment analysis was carried out using the DAVID tool
for identification of associated Gene Ontology terms and KEGG/

TABLE 1 Clinical features of the 22 Kazakhstani esophageal cancer patients.

Characteristic Statistics

Age, years, mean ± SD (range) 65.72 ± 8.26 (48–74)

Gender

Male 13 (59%)

Female 9 (41%)

Nationality/Ethnicity

Kazakh (Asian) 18 (82%)

Russian (Caucasian) 4 (18%)

TNM classificationa

I/II/III/IV 1/2/17/2

N0/N1/ND 6/4/12

M0/M1 22/0

aMore information on TNM classification and description of each parameter can be found in the work of Sobin and his colleagues (Sobin et al., 2010).
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Reactome pathways. Given the small number of samples evaluated in
the present study, statistical analyses at a single-gene level may lack
power, we thus performed pathway analysis to try to glean some
biological interpretation using clusters of the genes that are
differentially expressed. Enriched KEGG pathways of DEGs yielded
42 upregulated and two downregulated KEGG pathways for DEGs of
ESCC samples versus normal esophageal tissue. The list of these

pathways with involved genes for each pathway is shown in
Supplementary Table S3. The upregulated pathways included the
oxidative phosphorylation, rheumatoid arthritis, neurogenerative
diseases, viral protein interaction with cytokine and cytokine
receptor, coronavirus disease and others. The most significantly
downregulated pathways were tight junction and adherens junction;
these are associated with degradation of the extracellular matrix.

TABLE 2 The number of identified differentially expressed genes (DEGs) between ESCC samples and normal esophageal tissue based on tumor stages.

All ESCC samples I II III IV

Number of samples for each stage 1 2 17 2

Number of upregulated DEGs 4,633 1,332 2,594 4,636 1,114

Number of downregulated DEGs 2056 1911 1870 2,120 790

Total DEGs 6,689 3,243 4,464 6,756 1904

FIGURE 1
Visualization of pathway andGeneOntology enrichment analysis for DEGs from ESCC samples compared with normal esophageal tissue. KEGG and
Reactome pathways for (A) upregulated and (B) downregulated genes; GO-enriched terms for (C) upregulated and (D) downregulated genes. The y-axis
reflects the significantly enriched pathways/GO terms, and the x-axis reflects functional groups (KEGG/REACTOME/GO). The size of the bubble is
associated with the number of assigned genes to a pathway/GO term. A larger bubble size is linked to a larger number of genes of the specific term.
KEGG, Kyoto Encyclopedia of Genes and Genomes; GO, Gene Ontology; BP, biological process; CC, cellular component; MF, molecular function.
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The analysis of pathway functional enrichment revealed a total of
20 significantly enriched pathways (Figures 1A, B) and Gene Ontology
(GO) terms (Figures 1C, D) for the DEGs between ESCC and normal
esophageal samples.

In addition, functional enrichment analysis of Reactome
pathways was performed using ReactomePA package (Yu and
He, 2016). Figure 2 shows that the number of selected genes
associated with the specific Reactome pathway is larger than
expected, and the additional Reactome pathways analysis
identified DNA repair, histone function, WNT and NOTCH
signaling pathways, and apoptotic execution phase as enriched in
downregulated DEGs of ESCC samples (Figures 2A, B).

3.7 Protein-protein interaction (PPI)
network analysis

Among the 500 genes that were differentially expressed between
tumor samples and normal esophageal tissue, a total of 446 genes
(nodes) were mapped to the PPI network with 1907 edges. The central
nodes were chosen with a threshold criterion of degree >10 within the
top betweenness centrality nodes to help identify the shortest paths.We
have identified top 20 hub genes based on their high degree of
connectivity within the network using CytoHubba plugin with
Degree method (Supplementary Table S4). The highest-ranked genes
are usually considered as hub genes in the network, suggesting they
likely have key roles in the functions of the network. These genes, we
believe, could consequently offer valuable targets for early detection and
therapeutic interventions for ESCC. Four modules, closely connected
nodes, were identified using the MCODE plug-in in Cytoscape and
coloredwith different colors (Figure 3).Module 1 (light green) consisted
of 34 nodes and 526 edges; module 2 (purple) consisted of 31 nodes and
128 edges; module 3 (orange) consisted of 11 nodes and 17 edges; and
module 4 (red purple) consisted of 11 nodes and 17 edges.

Supplementary Table S4 provides an organized list of the genes
identified within key modules of the protein-protein interaction
network. The hub genes, highlighted via their intensive network
connections, are thought to play potentially significant roles in the
network functions. Functional enrichment analysis of these four
modules revealed that module 1 was significantly associated with
translational elongation and ribosomal functions (Figure 4A).
Module 2 was associated with histone function, activation of matrix
metalloproteinases and interferon signalling (Figure 4B). Module 3 was
principally associated with mRNA regulation (Figure 4C). Module
4 was mostly associated with chemokine activity (Figure 4D).

The two-dimensional hierarchical clustering analysis for the top
100 DEGs based on variance at different stages of ESCC shows that
these gene signatures cluster the samples according to tumor stages
(Figure 5; Supplementary Table S6). Clustering analysis across
tumor ESCC samples and healthy 11 samples demonstrate clear
clusterization of two groups (Figure 6; Supplementary Table S7).

Additional functional enrichment analysis based on ReactomePA
package revealed that, in addition to DNA repair identified from the
earlier analysis, eukaryotic translation elongation and peptide chain
elongation, viral mRNA translation were enriched in downregulated
DEGs of ESCC samples (Figures 7A, B). A subsequent functional
enrichment analysis for the top 100 DEGs revealed that these genes
play a central role in transcription regulation, DNA repair, DNA
replication, and chromosome stability. Moreover, pathways for
degradation of the extracellular matrix (ECM), collagen degradation,
and tight function were significantly enriched, indicating the
importance of ECM in cancer pathogenesis.

4 Discussion

Recent investigations employing whole-genome sequencing
and whole-exome sequencing have revealed mutations in

FIGURE 2
Reactome pathways for DEGs from ESCC samples compared with normal esophageal tissue using the ReactomePA package. (A) upregulated DEGs;
(B) downregulated DEGs. The bubble color represents the adjusted p-value for specific Reactome terms, and the size of the bubble is associated with the
number of assigned genes to specific Reactome terms.
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multiple genes, including TP53, CDKN2A, FAT1, NOTCH1,
PIK3CA, KMT2D, and NFE2L2, previously linked to
esophageal squamous cell carcinoma (ESCC) (Sasaki et al.,
2016). Despite this recognition of genes or proteins that are
linked with the development of ESCC, a comprehensive
understanding of the pathogenic processes involved remains
elusive. The existing gap in our knowledge of the molecular
and cellular underpinnings of ESCC and the lack of potential
target genes creates a pressing need for more rigorous
investigation into the molecular mechanisms that initiate and
propagate ESCC, which will undoubtedly improve diagnosis and
therapeutics of ESCC. Considering the notable variance in ESCC
occurrence across diverse geographical populations (Tungekar
et al., 2018), it becomes crucial to gain population-specific
insights into ESCC’s molecular mechanisms for unveiling
promising therapeutic targets. In response to this need, in our
study, we conducted transcriptome profiling and screening for
differentially expressed genes, paired with a functional
enrichment analysis applied to 22 esophageal cancer tissue
samples sourced from Kazakhstan patients to investigate the
distinct gene expression patterns of ESCC.

In our endeavor to elucidate the genetic basis of ESCC in
Kazakhstani patients and discover potential biomarkers for early
detection and targeted treatment strategies, we initially identified
differentially expressed genes (DEGs) in ESCC, this was
subsequently followed by an extensive functional enrichment
analysis on these significant DEGs. Insights gained from this
analysis demonstrated 42 upregulated and two downregulated

KEGG pathways within the ESCC samples (p-value <0.05;
Supplementary Table S3). The majority of these upregulated
pathways related to innate and adaptive immune responses,
including pathways of oxidative phosphorylation, rheumatoid
arthritis, neurogenerative diseases, viral protein interaction with
cytokine and cytokine receptor, and coronavirus disease. This
underscores the central role of immune pathways in ESCC
manifestation (Nicolau-Neto et al., 2018; Huang and Fu,
2019). In contrast, two downregulated pathways in the ESCC
tissues derived from Kazakhstani patients were found to be the
adherens and tight junctions, which are associated with the
degradation of the extracellular matrix (ECM). The ECM, a
network of diverse macromolecules, plays a significant role in
key cellular processes such as proliferation, migration,
differentiation, and apoptosis. The ECM is strongly regulated
during embryonic development, while it often exhibits
dysregulation in disease states, including cancer. Pathologies
in the ECM are known to contribute to cancer progression via
several mechanisms. For one, dysregulated ECM can stimulate
angiogenesis and inflammation, encouraging the formation of a
tumorous microenvironment (Lu et al., 2011). Furthermore,
abnormal ECM can modulate cancer pathogenesis by
influencing the behavior of stromal cells, such as immune
cells, endothelial cells, and fibroblasts (Lu et al., 2011; Lu
et al., 2012). Additionally, abnormal ECM can promote cell
transformation and metastasis. The transformative actions of
the ECM are largely mediated by metalloproteinases, a vital
enzyme needed for ECM remodeling (Lu et al., 2012).

FIGURE 3
Protein-protein interaction network and sub-network analysis for DEGs in ESCC. The pivotal DEGs weremapped onto a protein-protein interaction
network, revealing four distinct modules of closely connected nodes. Eachmodule had specific functions and are involved in esophageal carcinogenesis.
Using the STRING dataset, 446 DEG-encoded proteins were mapped to a PPI network. Topology analysis was conducted using the MCODE plug-in and
four significant sub-networks (modules) were determined. Light green color shows the DEG-encoded proteins of module 1, purple color shows the
DEG-encoded proteins of module 2, orange color shows DEG-encoded proteins of module 3 and red purple color shows DEG-encoded proteins of
module 4. PPI: protein-protein interaction; DEGs: differentially expressed genes.
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Interestingly, an increased activation of matrix
metalloproteinases was observed in the top 100 DEGs
(Supplementary Table S7) within the study, which suggests a
role in facilitating tissue invasion, growth factor production and
tumor angiogenesis (Walker et al., 2018).

We employed protein-protein interaction network (PPI)
analysis for aiding in understanding the complex landscape of
interactions among our identified significant differentially-
expressed genes (DEGs). Our analysis focuses the 500 most
significant DEGs, based on adjusted p-values. Leveraging the
STRING database and Cytoscape plug-ins, these genes were
subsequently classified into four distinct modules. Consequent
functional enrichment analysis of these four modules unveiled
connections to pathways related to esophageal cancer
progression, multiple research studies corroborate with these
findings. Specifically, Module 1 has shown significant
connections to translational elongation and ribosomal
functions (Figure 4A; Temaj et al., 2022), Module 2 is linked

to histone function, activation of matrix metalloproteinases, and
interferon signaling (Figure 4B; Jiao et al., 2014; Mittal et al.,
2016; Ozkan and Bakar-Ates, 2020), Module 3 is primarily
associated with mRNA regulation (Figure 4C; Teng et al.,
2022), and Module 4 is chiefly related to chemokine activity
(Figure 4D; Nicolau-Neto et al., 2018). Each of these modules
seems to have a unique role in the progression of
esophageal cancer.

Given the role of innate and adaptive immunity in ESCC
development having been adequately discussed, our focus here shifts
towards understanding the role of histone modifications in cancer
progression. The regulation of gene expression is tightly controlled by
histone acetylation and deacetylation, processes governed by histone
acetyltransferases and histone deacetylases (HDACs). It should be
noted that HDAC inhibitors have illustrated anticancer properties
(Bojang and Ramos, 2014), with high HDAC2 expression
correlating with increased aggression in esophageal cancer (Langer
et al., 2010). Moreover, histone isoforms are central to carcinogenic

FIGURE 4
Functional annotation of the four significant modules from the PPI network analysis. The functional enrichment analysis of the four sub-networks
was carried out using the ClueGo and CluePedia plug-ins. (A) Module 1 consists of 34 proteins that are principally linked to translational elongation and
ribosomal functions; (B) Module 2 consists of 31 proteins that are linked to histone function, activation of matrix metalloproteinases and interferon
signalling; (C)Module 3 consists of 11 proteins that are linked to mRNA regulation. (D)Module 4 consists of 11 proteins that are linked to chemokine
activity. Circles represent Gene Ontology terms, round rectangles represent enriched KEGG pathways, and triangles represent enriched REACTOME
pathways. PPI: protein-protein interaction.
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processes, with their levels being aberrantly altered in several
malignancies, including esophageal cancer (Singh et al., 2018). In
particular, Hist1H2AC has been found to be overexpressed in
several malignancies whilst being under-expressed in others,
including esophageal adenocarcinoma (Kavak et al., 2010). Hence,
these studies underscore the role of histone cluster levels in
influencing cellular proliferation and tumorigenesis.

In our continuous endeavor to delineate the genetic basis of ESCC
in Kazakhstani patients and discover potential early biomarkers for
diagnosis and targeted treatment, we conducted additional functional
enrichment analysis on the pivotal 100 differentially expressed genes
(DEGs). Interesting findings emerged which highlighted the
overrepresentation of WNT and NOTCH pathways, both of which
are known for their significant roles in cancer progression (Moghbeli
et al., 2016; Abbaszadegan et al., 2018). Notably, among the DEGs that
exhibited downregulation in our ESCC samples, there was an
association with pathways related to the execution phase of
apoptosis, suggesting a plausible mechanism for cancer cells to evade
apoptosis. Additionally, we observed a decrease in DNA repair
pathways and functions related to histone modification in ESCC
samples, these findings were supported by relevant research studies
(Liu et al., 2022).

Our two-dimensional hierarchical clustering of the top
100 DEGs reveals that several genes are differentially expressed
significantly by tumor stages (Figure 5). This suggests that these
genes may function as potential biomarkers for the early detection of
ESCC. In particular, genes such as MTND1P23, PLCH2, RNF223,
PERM1, TAS1R3, and specific TMEM genes exhibit varied levels of
expression across different tumour stages, thereby presenting a
potential to discern early-stage ESCC from its later stages.

In our research, we employed cutting-edge next-generation
sequencing technology to examine the transcriptomes of tumors
from 22 Kazakhstani patients with ESCC. While this research offers
crucial insights into ESCC, it is worth noting its limitation—the
relatively small sample size of patients. For a more comprehensive
understanding, future studies could consider further exploring the
prognostic implications of MTND1P23, PLCH2, RNF223, PERM1,
TAS1R3, and TMEM genes. We presented the exploration of genetic
variations and differentially expressed genes in the multi-stage
carcinogenesis of ESCC. Several signaling pathways were
enriched in our ESCC case series of different stages (I–IV). These
findings are useful for comprehensive understanding of the
carcinogenesis of esophageal cancer and for designing promising
biomarkers for early diagnosis of ESCC.

FIGURE 5
Expression heatmap of the top 100 DEGs in different tumor stages (I-IV) from ESCC tissues. Hierarchical clustering of the pivotal DEGs by variance in
ESCC stages groups the samples based on gene signatures according to tumor stages of samples. The top 100 DEGs were determined in ESCC samples
compared with healthy esophageal tissue and these genes were used to construct a heatmap using the pheatmap package in R based on rowVar
function. The dendrogram at the top represents the sample clustering. The rows indicate the genes, and the columns indicate the tumor stages. Red
and blue colors represent upregulated and downregulated genes, respectively. DEGs: differentially expressed genes.
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FIGURE 6
Expression heatmap of the 100 DEGs across 22 ESCC samples and 11 normal EC samples. These 100 genes provide clear clusterization between
tumor ESCC samples and healthy esophageal tissue samples. Heatmapwas constructed using the pheatmap package in R based on rowVar function. The
dendrogram at the top represents the sample clustering. The rows indicate the genes, and the columns indicate the samples. Red and blue colors
represent upregulated and downregulated genes, respectively. DEGs: differentially expressed genes.

FIGURE 7
Enriched Reactome pathways of the 100 top DEGs in different tumor stages of ESCC tissues using the ReactomePA package. (A) Barplot and (B)
Emapplot. The bubble color is associatedwith adjusted p-value for specific Reactome terms and the size of the bubble is linked to the number of assigned
genes to specific Reactome terms. A larger bubble size reflects a larger number of genes of the specific term.
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