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Introduction: The likelihood ratio (LR) can be an efficient means of distinguishing
various relationships in forensic fields. However, traditional list-based methods
for derivation and presentation of LRs in distant or complex relationships hinder
code editing and software programming. This paper proposes an approach for a
unified formula for LRs, in which differences in participants’ genotype
combinations can be ignored for specific identification. This formula could
reduce the difficulty of by-hand coding, as well as running time of large-
sample-size simulation.

Methods: The approach is first applied to a problem of kinship identification in
which at least one of the participants is alleged to be inbred. This can be divided
into two parts: i) the probability of different identical by descent (IBD) states
according to the alleged kinship; and ii) the ratio of the probability that specific
genotype combination can be detected assuming the alleged kinship exists
between the two participants to the similar probability assuming that they are
unrelated, for each state. For the probability, there are usually recognized results
for common identification purposes. For the ratio, subscript letters representing
IBD alleles of individual A’s alleles are used to eliminate differences in genotype
combinations between the two individuals and to obtain a unified formula for the
ratio in each state. The unification is further simplified for identification cases in
which it is alleged that both of the participants are outbred. Verification is
performed to show that the results obtained with the unified and list-form
formulae are equivalent.

Results: A series of unified formulae are derived for different identification
purposes, based on which an R package named KINSIMU has been developed
and evaluated for use in large-size simulations for kinship analysis. Comparison
between the package with two existing tools indicated that the unified approach
presented here is more convenient and time-saving with respect to the coding
process for computer applications compared with the list-based approach,
despite appearing more complicated. Moreover, the method of derivation
could be extended to other identification problems, such as those with
different hypothesis sets or those involving multiple individuals.

Conclusion: The unified approach of LR calculation can be beneficial in kinship
identification field.
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1 Introduction

In kinship identification or forensic genealogy, at least two
alleged relationships between participants need to be confirmed
or excluded using the genetic information available. However,
confirmation or exclusion can be difficult, as the alleged
relationships can be much more complicated than those in well-
researched parentage cases. With the development of forensic
databases and sequencing technologies, increasingly complex
kinship relationships need to be studied in forensic genetics and
especially forensic genealogy. Several approaches can be used for
identification of these complicated relationships, including the
likelihood ratio (LR) method or simple application of an identity
by state (IBS) score. For distant kinship identification in forensic
genealogy, it has been claimed that “the traditional LR approach as a
single source of classification is as good as, and in some cases even
better than, the alternative approaches” (Kling and Tillmar, 2019).

In order to conduct complex kinship identification, it is essential
to evaluate the practicality of specific panels or marker types (Mo
et al., 2018; Li et al., 2019; Liu et al., 2020; Wu et al., 2021; Zhao et al.,
2021; Du et al., 2023). Such assessments often necessitate pedigree
investigations based on real cases or computer simulations. As
kinship complexity increases, so too does the difficulty of
investigating real cases: either the target cases are rare in the
population (such as inbreeding cases); or the confirmation of the
participants is challenging (for example, to confirm the relationship
between a pair of first cousins, their common grandparents, and
their parents who are full-siblings to each other should also be
detected), making simulation a more realistic method. There are
several application scenarios for simulation methods in this field,
including i) assessing the sensitivity and specificity of specific
markers in identification (Phillips et al., 2012; Mo et al., 2018;
Liu et al., 2020; Du et al., 2023); ii) comparing different
parameters in the same identification based on the same panel,
e.g., LR calculated based on length information vs LR calculated
based on length + sequence information (Staadig and Tillmar, 2019;
Liu et al., 2020); iii) estimating the required number of markers in
specific identification using curve fitting, through a quantity of
simulation based on different subsets of current loci
combinations, when the current combination cannot meet the
identification requirements (Mo et al., 2016; Du et al., 2023).

Certain obstacles may be encountered when using the LR
method in large-sample-size simulation, owing to the
presentation of calculation results and the coding logic based on
such results in various studies. In such studies, LR are presented as
the listings of all possible genotype combinations of participants,
followed by the application of different formulae in different cases.
This necessitates dividing the calculation of LR into multiple types
and using multi-layer logical comparison functions, such as “if (if
(. . .))”, during the coding process. Although current tools can
eliminate the need for users to carry out the complex coding
processes mentioned earlier, in research situations where such
tools are not available (such as rare complex kinship cases), users
still need to compute and simulate for themselves. Thus, it would be
beneficial to establish a unified formula for distant or complex
kinship identification that disregards the participants’ genotype
combinations and avoids logical comparison functions as much
as possible in the coding process, mitigating the difficulty of manual

coding and the time required. Egeland et al. devised a unified
formula for pairwise non-inbred kinship testing in Egeland et al.
(2017), which was used in Familias 3.0 (Egeland et al., 2016).

This paper presents an alternative approach that delivers
equivalent results to Egeland’s formula, but can be easily
extended to inbreeding relationships, owing to its concise
derivation methodology. A package named KINSIMU containing
a series of newly defined functions for the R platform is provided,
based on the unified formula, and can be used for large-sample-size
simulation/calculation in specific kinship analysis based on
independent genetic markers.

2 Methods and results

2.1 General setting

In pairwise kinship identification, there is no detectable genetic
information other than the genotype combination of the two
participants, who are labeled as individual A and B, respectively,
in this paper. Suppose that the detected genotypes of them are ab
and cd, respectively, where the four alleles can be identical to each
other or not. An individual is called “inbred” if his/her parents are
biological relatives, or “outbred” otherwise. Mutation is only
considered when constructing the paternity index calculation
function in the construction of KINSIMU package and not in the
inference process in this section, which will be discussed in section 3.

In the derivation, some symbols with specific meanings will
appear, including:

I) In this article, the identity symbol “≡” is utilized to denote the
identity between particular alleles or genotypes, and this will
occur in two situations:
i) It is preceded by a capital letter and followed by two

lowercase letters, indicating the event that “the two
alleles of the individual represented by the capital letter
are those represented by these two lowercase letters”;

ii) Letters on both side of it are lowercase, meaning that the
alleles or genotypes on both sides are identical to
each other;

It should be noted that the “identity” status represented by the
symbol can arise from genetic inheritance or by random occurrence.

II) The symbol p with subscript lowercase letter such as “pc”
denotes the frequency of allele represented by the
subscript letter;

III) The symbol 1 with two subscript lowercase letters equals to
1 if the two alleles represented by the two letters are identical
and to 0 otherwise. For instance, 1ac equals to 1 only if a ≡ c.

IV) Lowercase letters with subscript “I” such as “aI” means the
allele identical by descent (IBD) to the corresponding allele. If
there is no other information, the probability of an IBD allele
being identical to a detected allele equals to the
corresponding 1 parameter, e.g., Pr(aI ≡ c) � 1ac;

V) The symbol “xI” and “yI” represent the alleles not IBD to
none of the detected alleles of participants other than
individual B, where “xI” is unrelated to “yI”. Without
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other information, the probability of these alleles being a
specific allele in individual B’s genotype equals to the
corresponding p parameter, e.g., Pr(xI ≡ c) � pc.

VI) The symbol d with a subscript, which is formed by a capital
letter stand for a specific individual followed by a lowercase
letter denotes specific allele, such as dAc, denotes the dosage of
the corresponding allele in the genotype of the corresponding
individual, e.g., dAc � 1ac + 1bc if the genotype of individual
A is ab.

2.2 Overall deduction of unified LR formulae
in pairwise identification

As discussed in multiple articles (Gjertson et al., 2007;
Egeland and Sheehan, 2008; Skare et al., 2009; Egeland et al.,
2017; Slooten, 2020), in pairwise kinship analysis, the
probabilities of different relationships existing between
participants can be evaluated conditional on the genetic
evidence, i.e., Pr(H |E), with terms H and E denoting the
alleged hypothesis and the observed genetic evidence,
respectively. It is difficult to calculate such probabilities
directly; however, the ratio of different incompatible
hypotheses can be computed according to Bayes’ rule:

Pr Hp E|( )
Pr Hd E|( ) �

Pr Hp( )
Pr Hd( ) ×

Pr E Hp

∣∣∣∣( )
Pr E Hd|( ) (1)

In the above equation, terms Hp (Plaintiff’s Hypothesis) and Hd

(Defendant’s hypothesis) denote the two hypotheses being
compared. For all of the inference process in this paper, we
define Hd as the hypothesis that “the two individuals are both
outbred and unrelated to each other”. Meanwhile, the definition
of Hp varies depending on the scenario, such as “individual A is
outbred and the biological father of outbred individual B” in
paternity testing. In the kinship identification field, the LR is
defined as the ratio of conditional probabilities in the formula:

LR � Pr E Hp

∣∣∣∣( )
Pr E Hd|( ) (2)

The ratio Pr(Hp)/Pr(Hd), or π1/π0 in several articles (Gjertson
et al., 2007; Egeland and Sheehan, 2008), is called the prior odds,
representing how much more likely Hp is to be true thanHd without
the genetic data E. If the prior odds are considered to be 1, i.e., the
two hypotheses are of equal probabilities without the genetic
information, which is the most commonly used assumption in
forensic practice (Slooten, 2020), then LR can represent the ratio
of likelihood initially required in Eq. 1.

Further derivation can be made from Eq. 2 considering the fact
that Hp can be further divided into several multiple exclusive states
according to whether the four alleles of individual A and B are IBD
to each other, such as the nine Jacquard states in inbreeding
identification (Jacquard, 1972) (J1 → J9, see Figure 1 of (Brustad
et al., 2021b), which is reproduced with modification as Figure 1 in
this work) or the three IBD states commonly be used in non-inbred
ones (Egeland et al., 2017). However, there can be only one such
state, i.e., J9 or IBD = 0, under the Hd set, as in section 2.1. Thus, LR
can be calculated as Eq. 3.

LR �

∑9
i�1

Pr Ji Hp

∣∣∣∣( ) × Pr E Ji,Hp

∣∣∣∣( )[ ]
Pr E J9, Hd|( )

∑2
i�0

Pr IBD � i Hp

∣∣∣∣( ) × Pr E IBD � i, Hp

∣∣∣∣( )[ ]
Pr E IBD � 0, Hd|( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(3)

If a specific state is set, the probability that E happens is fixed,
irrespective of the hypothesis. Thus, LR can be calculated with Eq. 4,
where Δi denotes the ith Jacquard coefficient (Brustad et al., 2021b)
under Hp, equal to the probability that Ji happens between two
individuals with specific relationship in the absence of their genetic
information, i.e., Pr(Ji |Hp); and κi represents the IBD coefficient
(Egeland et al., 2017), equal to the similar probability under non-
inbred assumption, Pr(IBD � i |Hp).

FIGURE 1
Nine Jacquard states considering inbreeding. The figure is modified from Figure 1 of Brustad et al. (2021b). Each group of 2 × 2 dots represents a pair
of participants, each row of two dots represents the two alleles of an individual, and IBD alleles are connected by lines. The states J9, J8, and J7 do not
involve inbreeding and are sometimes denoted IBD = 0, 1, and 2, respectively. The third group of dots in J8 columnwasmistakenly drawn as the second in
J7 column in Brustad et al. (2021b); the mistake is corrected in this figure.
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LR �
∑9
i�1

Δi ×
Pr E Ji|( )
Pr E J9|( )[ ]

∑2
i�0

κi ×
Pr E IBD � i|( )
Pr E IBD � 0|( )[ ]

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(4)

Therefore, the unification of LR can be divided into two problems:
the calculation of the ratio of conditional probabilities under each state
according to the participants’ genotypes (as discussed in section 2.3); and
the Δ/κ distribution according to the alleged relationship (Pinto et al.,
2010), which remains unchanged if the identification purpose is set (e.g.,
κ � 1/4, 1/2, 1/4{ } for full-sibling identification) and can be obtained
from the pedigree tree using existing tools (Vigeland, 2022). Thus, it is
not necessary to infer the distribution of the two types of coefficients per
case if there is a recognized result for the target identification.

2.3 Unification of the ratio of conditional
probabilities under each state

2.3.1 When at least one of the two individuals
is inbred

LR calculation when at least one of the two individuals is inbred has
been well discussed in previous publications (Jacquard, 1972; Brustad
et al., 2021a; b), and a method has been developed considering the
Jacquard states. The probability Pr(E | Ji) can be listed in a 9 × 9 table,
as in Table 1 in (Brustad et al., 2021b). Herein, we improve the method
by eliminating the difference between the genotype combinations of the
two individuals, i.e., “E”; thus, the probability ratio Pr(E | Ji)/Pr(E | J9)
can be listed in a 1 × 9 table, and LR can be calculated with a unified
formula for specific identification. The ratio can be further deducted
based on the fact that the eventE can be understood as the event that the
following two events happened simultaneously: A ≡ ab and B ≡ cd:

Pr E Ji|( )
Pr E J9|( ) �

Pr A ≡ ab, B ≡ cd Ji|( )
Pr A ≡ ab, B ≡ cd J9|( )

� Pr A ≡ ab Ji|( )
Pr A ≡ ab J9|( ) ×

Pr B ≡ cd A ≡ ab, Ji|( )
Pr B ≡ cd A ≡ ab, J9|( ) (5)

The former ratio in Eq. 5 can be calculated differently depending on
whether the two alleles of individual A are IBD. If the two alleles of

individual A are not IBD to each other and no other information is
considered, the probability that the individual’s genotype is ab should
equal the frequency of the genotype, i.e., Pr(A ≡ ab | Ji)/
Pr(A ≡ ab | J9) � 1 when i ∈ [5, 9]. Otherwise, if the two alleles of
individual A are IBD to each other, and mutation is not considered, the
probability of individual A being a specific genotype equals pawhen a ≡
b and 0 otherwise, i.e., Pr(A ≡ ab | Ji) � 1abpa when i ∈ [1, 4]. Thus,
the former ratio of Eq. 5 can be calculated as Eq. 6 when i ∈ [1, 4].

Pr A ≡ ab J1→4|( )
Pr A ≡ ab J9|( ) �

1abpa

p2
a

, a ≡ b

0 , a ≠ b

⎧⎪⎨⎪⎩
⎫⎪⎬⎪⎭ � 1ab

pa
(6)

In summary, if consider all Jacquard states, the former ratio of
Eq. 5 can be calculated as Eq. 7.

Pr A ≡ ab Ji|( )
Pr A ≡ ab J9|( ) �

1ab

pa
, i ∈ 1, 4[ ]

1 , i ∈ 5, 9[ ]
⎧⎪⎨⎪⎩ (7)

The latter ratio in Eq. 5 can be derived with individual B’s
genotype from the perspective of individual A’s IBD alleles
(defined as “IBD genotype” in this work). Under each
Jacquard state, the IBD genotype of individual B should be
set, there is only one possible type when i = 1, 2, 4, 6, or 9,
e.g., it must be aIaI under J1; otherwise, there can be multiple
possible types under a same state, e.g., aIxI or xIaI under J3 (see
Figure 1). If we set “Gj” as individual B’s jth possible IBD
genotypes under a specific Jacquard state. It can be derived
according to the Law of Total Probability that,

Pr B ≡ cd A ≡ ab, Ji|( ) � ∑
j

⎡⎢⎢⎣Pr B ≡ Gj A ≡ ab, Ji|( )
× Pr B ≡ cd B ≡ Gj, A ≡ ab, Ji

∣∣∣∣( )⎤⎥⎥⎦ (8)

where Pr(B ≡ Gj |A ≡ ab, Ji) denotes the probability that individual
B’s IBD genotype is Gj under the corresponding state before detecting
his/her actual genotype. It can be seen that, if there are multiple possible
types of such IBD genotype, this probability should be equivalent for
each type owing to the absence of other genetic information, i.e., Eq. 8
can be further derived as Eq. 9.

TABLE 1 Example of verification of Pr(E|Ji)/Pr(E|J9) unification.

Results Results

Ji Unified ratio Unifieda Listedb Ji Unified ratio Unifieda Listedb

J1 1ab1ac1cd
p3
a

1 × 1 × 1
p3
a

� 1
p3
i

pi

p4
i

J2 1ab1cd
papc

1 × 1
pi × pi

� 1
p2
i

p2
i

p4
i

J3 1ab(1ac+1ad)
2p2

a

1 × (1+1)
2 × p2

i
� 1

p2
i

p2
i

p4
i

J4 1ab
pa

1
pi

p3
i

p4
i

J5 1cd(1ac+1bc)
2p2

c

1 × (1+1)
2 × p2

i
� 1

p2
i

p2
i

p4
i

J6 1cd
pc

1
pi

p3
i

p4
i

J7 1ac1bd+1ad1bc
2pcpd

1 × 1+1 × 1
2 × pi × pi

� 1
p2
i

p2
i

p4
i

J8 dcpd+ddpc

4pcpd

2 × pi+2 × pi

4 × pi × pi
� 1

pi

p3
i

p4
i

J9 1 1 p4
i

p4
i

aNotes:* 1ab � 1ac � 1ad � 1bc � 1bd � 1cd � 1, dc = dd = 2 and pa = pc = pd = pi when both individual A and B are homozygotes ii.
bResults calculated according to the first row of Table 1 in Brustad et al. (2021b), in which the alleles of the two individuals were “a” and have been adjusted to “i” to avoid confusion with the

parameters in the unified formulae.
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Pr B ≡ Gj A ≡ ab, Ji|( ) �
1 , i ∈ 1, 2, 4, 6, 9{ }
1
2

, i ∈ 3, 5, 7{ }
1
4

, i � 8

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(9)

And the probability Pr(B ≡ cd |B ≡ Gj, A ≡ ab, Ji) stands for
the probability that individual B’s actual genotype is detected as cd
given that his/her IBD genotype is Gj. If the IBD genotype is set, this
probability should be fixed regardless of other conditions, i.e.,

Pr B ≡ cd B ≡ Gj, A ≡ ab, Ji
∣∣∣∣( ) � Pr Gj ≡ cd( ) (10)

If definedAj1 andAj2 as the first and the second allele ofGj, there
are two exclusive approach for IBD genotype Gj to be detected as cd
when c ≠ d and not considering mutation: i)Aj1 ≡ c, Aj2 ≡ d, and ii)
Aj1 ≡ d, Aj2 ≡ c. Thus, according to the Rule of total probability,

Pr Gj ≡ cd( ) � Pr Aj1 ≡ c( ) × Pr Aj2 ≡ d Aj1 ≡ c
∣∣∣∣( )

+ Pr Aj1 ≡ d( ) × Pr Aj2 ≡ c Aj1 ≡ d
∣∣∣∣( ) (11)

As discussed in section 2.1, the probabilities Pr(Aj1 ≡ c) and
Pr(Aj1 ≡ d) equal the corresponding 1 parameter if Aj1 is IBD to
one of individual A’s alleles, or the corresponding p parameter when
Aj1 ≡ xI. The probabilities Pr(Aj2 ≡ d |Aj1 ≡ c) and
Pr(Aj2 ≡ c |Aj1 ≡ d) equal 1cd if the two alleles Aj1 and Aj1 are
IBD to each other (under J1,2,5,6), otherwise, the probability can be
calculated similarly to the former two probabilities, i.e.,

Pr Aj2 ≡ d Aj1 ≡ c
∣∣∣∣( ) � 1cd , J1, J2, J5, J6

Pr Aj2 ≡ d( ) , other{ (12)

When c ≡ d, the calculation result obtained with the above
equation would be double of the actual probability, and the latter
ratio in Eq. 5 would remain unchanged.

Taking the situation J3 as an example, under this state, one of
individual B’s allele is IBD to both of individual A’s while the other
one is not IBD to none of A’s alleles. As mentioned above, there can
be two possible Gj, i.e., aIxI (the first row of the third column in
Figure 1) or xIaI (the second row). The two possible approaches of
the second type of IBD genotype to be detected as cd are listed with
blue and orange colors in Figure 1 that,

Pr Gj ≡ cd( ) � Pr xIaI ≡ cd( ) � pc1ad + 1acpd (13)

Using a similar derivation, the same result can be achieved for
the first type of IBD genotype, i.e., Pr(E | J3) � pc1ad + 1acpd. And
for J9, Pr(Gj ≡ cd) � 2pcpd. Thus,

Pr E J3|( )
Pr E J9|( ) �

1ab

pa
×

1ad

2pd
+ 1ac

2pc
( ) � 1ab

pa
×

1ad

2pa
+ 1ac

2pa
( )

� 1ab 1ac + 1ad( )
2p2

a

(14)

The detailed inference process for all states is shown in Section 1
of File S1 in SupplementaryMaterials, and the LR calculation in such
cases can be unified as Eq. 15:

LR �
+ Δ51cd 1ac + 1bc( )

2p2
c

+ Δ61cd

pc
+ Δ7 1ac1bd + 1ad1bc( )

2pcpd

+ Δ8 1ac + 1bc( )pd + 1ad + 1bd( )pc[ ]
4pcpd

+ Δ9

(15)

Therefore, 9 elements (pa, pc, pd, 1ab, 1cd, 1ac, 1ad, 1bc, and 1bd)
need to be calculated in the determination of LR, which can be
calculated uniformly based on the genotype data of the two
individuals and brought into a unified formula.

2.3.2 When both individual A and B are outbred
If an individual is outbred, his or her two alleles should not be

IBD alleles, i.e., there is no possibility of one of Jacquard states J1 to J6
occurring when the two participants are both outbred. As discussed
above, if the genotype Gj is set, the probability that it is cd is
independent of the hypothesis; thus, the calculation of the
conditional probabilities’ ratios under J7–J9, i.e., the ratios when
IBD = 2, 1, or 0, is the same, and the LR calculation can be simplified
as follows:

LR � κ2 1ac1bd + 1ad1bc( )
2pcpd

+ κ1 1ac + 1bc( )pd + 1ad + 1bd( )pc[ ]
4pcpd

+ κ0

(16)
Here, the number of elements needed in the unified calculation

would be reduced to 6 (the calculation of pa, 1ab and 1cd are not
needed). Furthermore, for identification where κ2 = 0, if we define
dAc and dAd as section 2.1, Eq. 16 can be further simplified as follows
and the number of elements needed would be reduced to 4 (dAc, dAd,
pc and pd):

LR � κ1
4

dAc

pc
+ dAd

pd
( ) + κ0 (17)

2.3.3 LR when Hd set as section 2.1 is ruled out
in advance

Unified formulae can be applied even if Hd, i.e., “both
individual A and B are outbred and unrelated to each other”
is ruled out in advance and the identification takes place between
two hypotheses Hp and Hd′ , under each of which the two
individuals are relatives. For that case, LR can be calculated as
the ratio of the two LRs with Pr(E |Hp) and Pr(E |Hd′) being the
numerators, i.e.,

LRHp,Hd′ E( ) � LRHp,Hd
E( )

LRHd′ ,Hd
E( ) (18)

For example, in father–daughter incest cases, if the
mother–offspring relationship is confirmed and the genetic
information of the alleged father is unavailable, an LR called the
incest index (II) (Wenk et al., 1994; Wenk, 2007) can be calculated
according to the genetic information of the mother–offspring pair to
measure the probability of the incest event. For this index, Hp and
Hd′ are the hypotheses that “individual B is the offspring of an
outbred female (individual A) with her outbred father
(i.e., Δ � 0, 0, 0, 0, 0.25, 0, 0.25, 0.5, 0{ } between the
mother–offspring pair)” and “individual B is the offspring of an
outbred female (individual A) with a random outbred male
(i.e., κ � 0, 1, 0{ } between the mother–offspring pair)”. Thus, it
can be unified as follows (see details in Section 2.1 of File S1 in
Supplementary Materials):

II � dAcdAd

2dAcpd + 2dAdpc
+ 1
2

(19)
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Furthermore, Eq. 19 can be generalized to a more
comprehensive scenario, in which Hp represents the hypothesis
“individual B is the offspring of two outbred relatives with
κ � κ0, κ1, κ2{ }, only one of which participated as individual A”. If
we define φ � κ2/2 + κ1/4 as the kinship coefficient (Brustad et al.,
2021b) between the two alleged parents, it can be inferred that Δ �
0, 0, 0, 0,φ, 0,φ, 1 − 2φ, 0{ } between individual A and B under this
circumstance (see Section 2.2 of File S1 Supplementary Materials).
Therefore, a more comprehensive form of II (IIφ) can be computed
as follows

IIφ � 2φdAcdAd

dAcpd + dAdpc
+ 1 − 2φ( ) (20)

2.4 The extension of the aforementioned
calculation method to kinship identification
involving multiple participants

2.4.1 The basic method
The method of LR derivation in this work can be extended to

identification involving multiple individuals. In such cases, LR can
be calculated by considering the probability of a specific individual
being a specific genotype from the perspective of IBD alleles of other
individuals, and the probability of the genotype being the actual
genotype detected. If this individual is labeled as individual B (with
actual genotype of cd) and the others individuals R, then

LR � Pr R Hp

∣∣∣∣( ) × Pr B R,Hp

∣∣∣∣( )
Pr R Hd|( ) × Pr B R,Hd|( ) (21)

The latter probabilities in both Numerator and Denominator
can be calculated as follows:

Pr B R,H|( ) � ∑
j

Pr B � Gj R,H|( ) × Pr B ≡ cd|B ≡ Gj, R,H( )[ ]
� ∑

j

Pr B ≡ Gj R,H|( ) × Pr Gj ≡ cd( )[ ]
(22)

The second step in this equation is derived based on the same
logic in section 2.3.1 when deriving Eq. 10, and probability
Pr(Gj ≡ cd) can be calculated with Eq. 11. Moreover, similar to
pairwise cases, the calculation results remain unchanged regardless
whether c and d are identical, due to the constant factor canceling
from the numerator and denominator.

2.4.2 An example: “Standard” non-inbred trio cases
Consider the following non-inbred situation: 3 individuals

participated the identification: a child (labeled as C, with detected
genotype cd), one of his/her biological parents whose parentage has
been confirmed (labeled as TP, with detected genotype ab), and an
individual (labeled as AR, with detected genotype ef) who is
unrelated to TP and alleged to be related to C under Hp. LR can
be calculated by taking the null hypothesis asHd, i.e., AR is unrelated
to both TP and C. For such identification, C can be regarded as
individual B mentioned in Eq. 21, and the other two participants as
R, i.e.,

LR � Pr TP ≡ ab, AR ≡ ef Hp

∣∣∣∣( )
Pr TP ≡ ab, AR ≡ ef Hd|( ) ×

Pr C ≡ cd TP ≡ ab, AR ≡ ef,Hp

∣∣∣∣( )
Pr C ≡ cd TP ≡ ab, AR ≡ ef,Hd

∣∣∣∣( )
(23)

The relationship between TP and AR, which is unrelated in
both hypotheses, remains constant. Therefore, LR equals the latter
ratio in the above equation. The two probabilities in that ratio can
still be calculated from the perspective of IBD alleles. If AR is
unrelated to TP, the allele C inherited from TP must not be IBD to
any of AR’s alleles, i.e., κ2 = 0 between C and AR. Thus their
relationship under Hp can be described with κ1 between them, for
example, κ1 = 1 if AR is alleged to be the other parent of C. If there
is no other information, there can be 3 types of IBD allele C
inherited from the other parent, eI, fI, and xI, with probabilities of
κ1/2, κ1/2, and 1 − κ1, respectively. Considering that TP must pass
aI or bI to C with equal probabilities, there can be 6 IBD genotypes
of C under Hp: aIeI, aIfI, bIeI, bIfI, each with a probability of κ1/4, as
well as aIxI and bIxI, each with a probability of 1/2 − κ1/2;
Meanwhile, there can be 2 type of C’s IBD genotype under Hd:
aIxI and bIxI, each with a probability of 1/2. Thus, according to Eq.
22, LR can be calculated as follows:

LR �
κ1
4 Pr aIeI ≡ cd( ) + Pr aIfI ≡ cd( ) + Pr bIeI ≡ cd( ) + Pr bIfI ≡ cd( )[ ]

1
2 Pr aIxI ≡ cd( ) + Pr bIxI ≡ cd( )[ ]

+ 1 − κ1( )
(24)

Each probability in the equation can be calculated according to
Eq. 11 considering the fact that no IBD relationship should exist
among the four alleles of TP and AR, if the non-inbred assumption is
accepted. In summary, LR in non-inbred trio cases can be calculated
as follows:

LR � κ1dTPcdARd + κ1dTPddARc

2dTPcpd + 2dTPdpc
+ 1 − κ1( ) (25)

Two more examples of LR calculation in identifications
involving multiple participants are given in Sections 4.3.7 and
4.3.8 of File S1 in Supplementary Materials.

2.5 Verification of the unification results

2.5.1 For inbred identification
The 1 × 9 results of Pr(E | Ji)/Pr(E | J9) unification can be

verified by comparison with Table 1 of Brustad et al. (2021b)
(which is in 9 × 9 form) under the nine possible genotype
combination types of the participants. The simplest situation, in
which both individual A and B are homozygous, ii, is given as
example in Table 1; as shown in the table, the results obtained with
the two methods were identical under every Jacquard state. This
identity persisted for the other eight genotype combinations, as
shown in Section 3 of File S1 in Supplementary Materials.

2.5.2 For non-inbred identification
We reproduce the unified formula derived by (formula (2.19) in

Egeland et al. (2017)) as Eq. 26 in this paper. If mutation is not
considered, m(n)

ij � 1ij, where m(n)
ij represents the probability that
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allele i becomes j after n cycles of meiosis. Thus, Eq. 16 is equivalent
to Eq. 26 when we do not consider mutation.

LR � κ0 + κ1
m n( )

ac +m n( )
bc( )pd + m n( )

ad +m n( )
bd( )pc

4pcpd

+ κ2
m n( )

ac m
n( )

bd +m n( )
ad m

n( )
bc

2pcpd
(26)

2.5.3 For alleged father-daughter incest cases
II was calculated and listed according to different genotype

combination of the two individuals in Table 1 of Wenk (2007). The
comparison of results calculated by Eq. 19 with these listed results is
provided in Table 2, showing that the twomethods are equivalent to each
other under every possible combination type of themother-offspring pair.

2.5.4 For trio paternity testing
“Standard” trio paternity testing is a routine procedure in

forensic genetic practice, involving the evaluation of the paternity
of a male (AF) to a child (C) with the genetic information of C’s
mother (M). This testing can be considered as a specific scenario of
standard non-inbred trio cases discussed in section 2.4.2, where AR
is AF, TP is M, and κ1 = 1. Consequently, the paternity index in these
cases, denoted as PItrio, can be calculated as follows:

PItrio � dMcdAFd + dMddAFc

2dMcpd + 2dMdpc
(27)

The comparison of results calculated by Eq. 27with those calculated
by the recognized list formed methods (Fung and Hu, 2007) is listed in
Table 3, showing that the two methods are equivalent to each other
under every possible combination type of the three participants.

TABLE 2 Comparison between the unified formula with listed ones in the calculation of incest index.

Genotype Unified calculation as Eq. 19

Mother Child Listed result derived by Wenk dc dd pc pd Result

A/A A/A (0.5a + 0.5)/a 2 2 a a 1/2 + 1/2a

A/B 0.5 2 0 a b 1/2

A/B A/A (0.5a + 0.25)/a 1 1 a a 1/2 + 1/4a

A/C 0.5 1 0 a c 1/2

A/B (0.5a + 0.5b + 0.5)/(a + b) 1 1 a b 1/2 + 1/(2a + 2b)
Note: Symbols here are adjusted in the form used by Table 1 of Wenk (2007): alleles in the genotypes of the two participants are represented with uppercase letters “A”, “B” and “C”, which are

different to each other; The corresponding lowercase letters “a”, “b” and “c” denote the frequency of these alleles in the population.

TABLE 3 Comparison between the unified LR formula with listed ones in standard trio paternity testing.

Genotype Listed result derived by Fung et al Unified calculation as Eq. 27

C M AF dMc dMd dAFc dAFd pc pd Result

AiAi AiAi AiAi 1/pi 2 2 2 2 pi pi 8/(4pi + 4pi) � 1/pi

AiAj 1/(2pi) 2 2 1 1 pi pi 4/(4pi + 4pi) � 1/(2pi)

AiAj AiAi 1/pi 1 1 2 2 pi pi 4/(2pi + 2pi) � 1/pi

AiAj 1/(2pi) 1 1 1 1 pi pi 2/(2pi + 2pi) � 1/(2pi)

AiAk 1/(2pi) 1 1 1 1 pi pi 2/(2pi + 2pi) � 1/(2pi)

AiAj AiAi AiAj 1/(2pj) 2 0 1 1 pi pj 2/(0pi + 4pj) � 1/(2pj)

AjAj 1/pj 2 0 0 2 pi pj 4/(0pi + 4pj) � 1/pj

AjAk 1/(2pj) 2 0 0 1 pi pj 2/(0pi + 4pj) � 1/(2pj)

AiAj AiAi 1/(pi + pj) 1 1 2 0 pi pj 2/(2pi + 2pj) � 1/(pi + pj)

AiAj 1/(pi + pj) 1 1 1 1 pi pj 2/(2pi + 2pj) � 1/(pi + pj)

AiAk 1/[2(pi + pj)] 1 1 1 0 pi pj 1/(2pi + 2pj) � 1/[2(pi + pj)]

AiAk AiAj 1/(2pj) 1 0 1 1 pi pj 1/(0pi + 2pj) � 1/(2pj)

AjAj 1/pj 1 0 0 2 pi pj 2/(0pi + 2pj) � 1/pj

AjAk 1/(2pj) 1 0 0 1 pi pj 1/(0pi + 2pj) � 1/(2pj)

AjAl 1/(2pj) 1 0 0 1 pi pj 1/(0pi + 2pj) � 1/(2pj)
Note: Symbols here are adjusted in the form used by Table 4.1 of Fung and Hu (2007): alleles in the genotypes of the three participants are represented with “A . . . ” and the corresponding

frequencies in the population are denoted with “p . . . “, where different subscripts means different alleles.
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2.6 KINSIMU: A new series of simulation
tools to promote research in kinship analysis

In order to evaluate the efficacy of specific panels in kinship
identification, simulation can be a useful tool. Based on the unified
formulae of LR calculation in pairwise kinship analysis, a series of
newly defined functions is constructed for kinship simulation and
calculation on the R (4.2.1) platform, an archive file is provided in
File S2 in Supplementary Materials. Simulation can be divided into
two steps: i) generation of genotype data for a specific number of
participants (i.e., the sample size, labeled as “ss”) with specific
relationships; and ii) calculation of specific parameters for each
case, e.g., identity by state score (IBS), or different type of LR. If
independence among all the markers is assumed, the simulations at
each locus should not affect each other, and the calculation results at
each locus can be directly accumulated or multiplied. Thus, the
whole code can be written in a one-layer loop, as shown in
Algorithm 1. In each loop, the genotype data are replaced and
the IBS/log10LR results are accumulated with the previous
calculation. The above process can be completed using function
“testsimulation ()”. Detailed instructions for use of the functions is
given in Section 4 of File S1 in Supplementary Materials.

Input: The allele frequency data

Output: A data frame containing calculation results

1 Input the allele frequency by hand or import the

frequency data with function “EvaluatPanel()”;

2 Extract the number of loci (“nl”)

3 Set the sample size (“ss”), the true relationship

between/among the individuals (“tdelta”), and the

alleged relationship in LR calculation (“adelta”);

4 Create data frame containing the results with initial

values of 0;

5 for i = 1:nl do

6 Simulate genotype combination of ss pairs/

groups of individual cosidering tdelta with

function “pairsimu()” or “pedisimu()”,

based on the frequency data of ith marker;

7 Calculate LR or identity by state (IBS) score

for each pair/group with function “LRparas

()”, “IICAL()”, “TrioPI()”, etc., based on

unified equations. Note that the base

10 logarithms of LRs calculated will

be output;

8 Accumulate output results to the result

data frame;

9 end

Algorithm 1. Typical process of simulation with KINSIMU package.

2.6.1 Evaluation of the package
Multiple types of evaluation were performed on the function

“testsimulation()” based on allele frequency data for 42 autosomal
short tandem repeat (STR) markers (Liu et al., 2020) in a Chinese
Han population, given as data “FortytwoSTR” in the package. Similar
simulations were carried out using two existing tools, Familias 3.3
(Egeland et al., 2016) and R package relSim (Curran, 2023), for
comparison. All simulations were performed on the same personal

device with Intel® Core™ i7-9700F CPU and 16 GB RAM, and the
code used in the evaluation is given in File S3 in
Supplementary Materials.

In essence, the main purpose of simulation (as well as the
integration of LR formulae) is not only to compute precise
results for individual real-life cases, but also to reveal the overall
pattern of specific parameters within a particular type of
identification. Therefore, in addition to the accuracy of the
calculation results for a single case, the stability of result
distribution in a large sample size is also crucial for the
simulation package. Given that we have previously proven
exhaustively in section 2.5 that the unified formula produces
consistent results with the list format for specific single cases, our
attention in this comparative analysis is primarily directed towards
the following aspects: i) Identify any disparities in the distribution of
calculated results between KINSIMU with the two existing tools,
after a significant number of simulations. In other words, analyze
whether there is a bias towards simulating specific genotype
combinations with KINSIMU; ii) Assess the speed of simulation
execution. As shown in Section 5 of File S1 in Supplementary
Materials, the package KINSIMU can stably simulate and
calculate multiple kinship cases with a speed of about
6,000,000 loci per second (as shown in Figure S4 of File S1 in
Supplementary Materials). When simulating individual pairs with
the same relationships and calculating the same parameters, the
running speed of the KINSIMU package is approximately 10 times
that of relSim (see Figure S3D of File S1 in Supplementary Materials)
and at least 80 times that of Familias 3.3 (see Section 5.2 of File S1 in
Supplementary Materials).

2.6.2 Application of the package
The above tools have been used in the construction of next-

generation sequencing kits containing multiple single-nucleotide
polymorphism (Zhao et al., 2021) or microhaplotype (Du et al.,
2023) markers. In the relevant studies, family surveys were carried
out at the same time, and the results of the two types of research were
found to be similar; see Fig. 4 of (Zhao et al., 2021) and Fig. 4 of (Du
et al. 2023), which illustrate the effectiveness of the simulation tools
in real-life cases.

3 Discussion

In this work, a new approach in the unification of LR formulae has
been introduced, the core of which is based on the perspective of IBD
alleles and IBD genotypes. Based on the formulae, a package named
KINSIMU is constructed for large-sample-size simulation research.
Although some prototype software is already available for pedigree
simulations (such as the two methods we compared with KINSIMU),
any such tool (including KINSIMU) has limitations and may not take
every possibility into account. Therefore, it may be more convenient
for researchers to write their own simulation and calculation code for
specific complex situations. In such cases, the coding logic and
concepts of existing tools can be used for reference. The aim of
this paper was to develop unified formulae for LR calculation and to
simplify the coding process. Based on these formulae, we are making
our tools for kinship simulation open-source and suggest that other
researchers do the same to help the development of the discipline.
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In simulation studies involving LRmethods, the commonly used
list-form presentation tends to obstruct the self-coding process. By
using the most simplified formulae provided by the list-form
method, the LR calculation process would involve two multiple-
to-one choosing tasks: i) determining the type of the participants’
genotype combination at a specific locus from multiple possible
ones; and ii) judging the position of each allele in the specific
combination. These tasks would vary at different loci, requiring
locus by locus or type by type calculations for LR, necessitating
logical comparison functions like “if()”, leading to increased coding
complexity. Additionally, all possible participant combinations must
be considered in the coding process, or errors may occur in certain
cases. In contrast, no logical comparison function would be required
when using unified formulae; based on the genotype data, nine or six
parameters (depending on whether inbreeding factors are
considered) could be uniformly calculated and then brought into
a unified formula for identification.

In most studies that utilize Familias (Gonçalves et al., 2017; Li
et al., 2019; Wu et al., 2021; Pilli et al., 2022), the sample size for
simulations is often less than 10,000 due to the substantial increase
in memory requirements when simulating larger samples. This
limitation may be attributed to the tool’s operation method,
wherein genotype data is retained until the end of the
simulation, leading to unnecessary memory occupation.
Contrarily, R packages like KINSIMU or relSim replace the data
per loop (or per “Block”) after it is used for calculation. It is
somewhat “unfair” to compare the running time of our R tools with
the stand-alone software Familias instead of its R version (which is
no longer directly accessible from CRAN, and the available
installation package is not compatible with our R version).
However, some insights can be gained from this comparison.
For instance, with Familias, the more complex the relationship
between participants, the longer the running time, even with the
same sample size. This phenomenon is not observed with
KINSIMU, possibly because we directly generate the
participants’ genotypes rather than determining them through
parent-child inheritance, resulting in a significant reduction in
the needed random numbers during simulation. However, the
parent-child inheritance approach may be necessary in cases with
complicated pedigrees or when more individuals need to be
considered for calculating LR. Therefore, we provide an
approach for such cases in the form of the function
“pedisimu()”. Meanwhile, it is important to note that the tools
Familias and relSim offer numerous functions besides simulation.

The direct-generation approach is used in the package relSim,
and the simulation process is divided into 100 sub-fractions (so-
called “Blocks”), each of which is replaced by the next. As a result,
it can simulate at least 10,000,000 pairs in a single process on our
device. When the sample size is no longer an obstacle, the
running time becomes the main bottleneck in large-sample
simulation research. In the reference manual of relSim
package, the authors state that it would take at least 30 h on a
personal device to perform a simulation of
300,000,000 individual pairs on 13 CODIS loci (Balding et al.,
2013). Even allowing for decreased running time with ongoing
updates to devices, the latest version of relSim would still take

twice as long as KINSIMU to carry out the same simulation.
Examination of the functions of relSim shows that genotype data
are cached per case but generated per locus. Therefore, an extra
“for” loop layer is required to allocate the data. Another extra
loop layer exists for the calculation of CIBS or CLR with relSim,
which would take place per case per locus when applying list-
form formulae. Furthermore, at least two layers of “if (. . .)”
functions are needed in these calculations to classify the
genotype combinations in different situations and to calculate
the parameters with different equations. It is difficult to apply
such methods to multiple cases per locus, as can be done with the
unified functions in KINSIMU; this may be the main cause of the
difference in running time between the two packages. A side-by-
side comparison of the codes used in PI calculation is given in
Section 6 of File S1 in Supplementary Materials.

The method introduced in this paper for LR unification in
kinship testing can be regarded as a divide-and-conquer method.
More specifically, the problem is essentially about the genotype
inference of individual B from the perspective of IBD under
different hypotheses. This problem can be solved with the
following approach: i) division of the original problem into
several independent easy-to-solve sub-problems, i.e., the
division of different IBD states; ii) conquering each sub-
problem, i.e., calculating Δ/κ and the ratio of conditional
probabilities under each state; and iii) combining the solutions
to the sub-problems into the solution for the original problem.
The use of sub-scripted letters (e.g., aI) for individual B’s
genotype from the perspective of IBD alleles eliminates the
differences in the detected genotype combinations of the two
individuals. Therefore, the derivation in step ii of each sub-
problem can be done in a unified way; this is simpler in some
ways than the method Egeland et al. Introduced in Appendix A of
(Egeland et al., 2017), in which the combinations had to be listed
exhaustively. Thus, the derivation can be easily extended to
identifications considering inbreeding factors or involving
multiple individuals.

Mutation is not considered in the inference process in the
present work, resulting in underestimation of the LR value in
some cases. However, we argue that the impact of mutation on
the LR value is relatively small in identifications where LR cannot
be 0. For example, in pairwise identification using STR markers,
as discussed in (Egeland et al., 2017), the probability of mutation
occurring is relatively low in parentage identification and
increases with the number of cycles of meiosis. In other
words, the probability is larger when the relationship between
the two individuals is more distant. In that case, κ0 would be
larger, and the other two κ parameters (i.e., the coefficients of
parts in the LR formula related to the mutation) would be smaller,
which limits the impact of mutation on the LR value to a
relatively low level. Furthermore, the mutation factor can be
introduced into the calculation if 1 parameters are replaced by
corresponding m ones.

This is a preliminary study on the concept of unification of LR
calculation in kinship identification; further work based on our
findings could include the inference of LR in cases involving
multiple individuals or where linked markers are available.
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