
iPoLNG—An unsupervised model
for the integrative analysis of
single-cell multiomics data

Wenyu Zhang and Zhixiang Lin*

Department of Statistics, The Chinese University of Hong Kong, Hong Kong, China

Single-cell multiomics technologies, where the transcriptomic and epigenomic
profiles are simultaneously measured in the same set of single cells, pose
significant challenges for effective integrative analysis. Here, we propose an
unsupervised generative model, iPoLNG, for the effective and scalable integration
of single-cell multiomics data. iPoLNG reconstructs low-dimensional
representations of the cells and features using computationally efficient
stochastic variational inference by modelling the discrete counts in single-cell
multiomics data with latent factors. The low-dimensional representation of cells
enables the identification of distinct cell types, and the feature by factor loading
matrices help characterize cell-type specific markers and provide rich biological
insights on the functional pathway enrichment analysis. iPoLNG is also able to handle
the setting of partial informationwhere certainmodality of the cells is missing. Taking
advantage of GPU and probabilistic programming, iPoLNG is scalable to large
datasets and it takes less than 15 min to implement on datasets with 20,000 cells.
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1 Introduction

With the rapid development of single-cell technologies, the abundant biological
information in the single cell is collected at unprecedented resolution. More recently,
sequencing methods enable the simultaneous measurement of epigenome and
transcriptome from a common set of single cells. For example, sci-CAR (Cao et al., 2018)
jointly profiles chromatin accessibility and mRNA (CAR) in each of thousands of single cells;
SNARE-seq (Chen et al., 2019b), SHARE-seq (Ma et al., 2020), Paired-seq (Zhu et al., 2019) can
measure chromatin accessibility and gene expression in the same single cell; Paired-Tag (Zhu
et al., 2021) is an ultra-high-throughput method for joint profiling of histone modifications and
transcriptome in single cells to produce cell-type-resolved maps of chromatin state and
transcriptome in complex tissues.

The single-cell multiomics datasets generated by these technologies pose challenges for
effective integrative analysis due to the characteristics of the datasets. First, the single-cell data is
high-dimensional yet very sparse, and high technical variation is present in single-cell datasets.
Second, the level of noise in chromatin accessibility data or histone modification data is usually
higher than gene expression data in single-cell multiomics datasets, which suggests that
different data modalities cannot be simply treated the same.

Computational tools for the integrative analysis of single-cell assays are essential to
provide more comprehensive biological insights at the cellular level. Integration problems in
single-cell biology can be divided into those associated with the integration of unmatched
data (that is, different modalities profiled from different cells) or matched (that is, different
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modalities profiled from the same cell) data (Miao et al., 2021). A few
methods have been developed for the integrative analysis of
unmatched data (Duren et al., 2018; Zeng et al., 2019; Cao et al.,
2020; Lin et al., 2020; Wangwu et al., 2021; Zeng et al., 2021; Zeng
and Lin, 2021; Cao et al., 2022; Demetci et al., 2022), which are not
applicable to matched data. Some matched data integration methods
(Kim et al., 2020; Wang et al., 2020; Gayoso et al., 2021) are designed
for technologies that jointly profile transcriptomic and surface
protein data such as CITE-seq (Stoeckius et al., 2017) and REAP-
seq (Peterson et al., 2017). In this study, we mainly focus on single-
cell multiomics technologies simultaneously measuring
transcriptomic and epigenomic profiles in the same individual
cells. Unsupervised methods have been developed for this type of
data, including Multi-Omics Factor Analysis (MOFA+) (Argelaguet
et al., 2018; Argelaguet et al. 2020), single-cell Aggregation and
Integration (scAI) (Jin et al., 2020) and jointly semi-orthogonal non-
negative matrix factorization (JSNMF) (Ma et al., 2022). Both
MOFA+ and scAI infers a low-dimensional representation of the
data using a small number of latent factors that are expected to
capture the heterogeneous cellular variability. The key difference
between MOFA+ and scAI is that MOFA+ is based on the Bayesian
Group Factor Analysis framework, while scAI is based on non-
negative matrix factorization. JSNMF assumes different latent
variables for the two molecular modalities, and integrates the
information of transcriptomic and epigenomic data with
consensus graph fusion.

In this paper, we propose an unsupervised generative model,
iPoLNG, for the effective and scalable integration of single-cell
multiomics data, where transcriptomic and epigenomic (chromatin
accessibility or histone modifications) data were obtained from the
same cell. iPoLNG reconstructs low-dimensional representations of
the cells and features using computationally efficient stochastic
variational inference by modelling the discrete counts in single-cell
multiomics data with latent factors. The hyperparameters introduced
to tackle the difference in the levels of noise across different data
modalities can be estimated automatically through a heuristic
procedure. By applying iPoLNG to real datasets, we demonstrate
that the low-dimensional representation of cells leads to improved
clustering performance, and the feature by factor loading matrices
help characterize cell-type specific markers and provide rich and
consistent biological insights on the functional pathway enrichment
analysis. iPoLNG is also able to handle the setting of partial
information where certain modality of the cells is missing. We also
illustrate the effectiveness of our model in the simulation study.
Taking advantage of GPU and probabilistic programming, iPoLNG
is scalable to large datasets and it takes less than 15 min to implement
on datasets with 20,000 cells.

2 Materials and methods

2.1 PoLNG for one data modality

We first introduce some notations. LetW ∈ NI×J denote the cell by
feature count data for one single-cell data modality, I the number of
cells, J the number of features, R* the notation for non-negative real
numbers and K the number of latent factors, which is much smaller
than I or J.

2.1.1 Model formulation
The basic idea of the PoLNG model is to model the data matrixW

as random variables sampled from Poisson distributions, the
parameters of which are determined by two low-rank non-negative
matrices L ∈ RI×K* sampled from Gamma distributions and
Θ ∈ RK×J* . L can be viewed as the low-dimensional representation
of the cells, while Θ can be viewed as the loading matrix for the
features. More specifically, the formulation of the model is proposed as
follows:

li,k ~ Gamma αi,k, βi,k( ),
θk,· � σ ~θk,·( ), ~θk,· ~ Logit −Normal μk,Σk( ),

wi,j ~ Poisson si ∑K
k�1

li,kθk,j⎛⎝ ⎞⎠,

(1)

where σ(·) is the softmax function, the lth element of which is given by

σ l ~θk,·( ) � e
~θk,l

∑J
j�1e

~θk,j
, (2)

μk is a vector of length J serving as the mean of the Logit-Normal
distribution, Σk is a J by J diagonal matrix serving as the covariance
matrix of the Logit-Normal distribution, and si is the scaling factor to
take into account the sequencing depth for the ith cell.

The PoLNG model is designed to facilitate the downstream
analysis of single-cell data. In general, each column of L represents
a latent factor that can disentangle the heterogeneous cellular
information, while each row of Θ represents a latent factor for
features. Since Θ is constrained to have row sum equal to 1, we
also impose a soft normalization on L by introducing the scaling
factor si.

We further illustrate the choice of si. Utilizing the simplex
constraint for each row of Θ, we have

E ∑J
j�1

wi,j|li,·⎛⎝ ⎞⎠ � ∑J
j�1

E wi,j|li,·( ) � ∑J
j�1

si ∑K
k�1

li,kθk,j � si ∑K
k�1

li,k ∑J
j�1

θk,j

� si ∑K
k�1

li,k,

(3)
which suggests that the choice of si will softly constrain the row sum of
L. To alleviate the effect of the difference in sequencing depth for the
cells, we constrain the summation ∑K

k�1li,k to be around 1, and set si as

si � ∑J
j�1

wi,j. (4)

To obtain the parameter estimation, we implement the stochastic
variational inference (SVI) algorithm (Hoffman et al., 2013) with the
deep universal probabilistic program Pyro (Bingham et al., 2019).
Conditional on the dataW, we assume the independency across all li,k,
across all ~θk,·, and between L and Θ. The variational distributions are
set as

li,k|W ~ Gamma ai,k, bi,k( ),
θk,· � σ ~θk,·( ), ~θk,·|W ~ Logit −Normal �μk, �Σk( ). (5)

By default, the hyperparameters in the prior in model (1) are set as

αi,k � 0.1, βi,k � Kαi,k, μk � 0,Σk � I for all i, k. (6)
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The default initial values for the parameters in the variational
distributions are set as

ai,k � bi,k � 0.5, �μk � 0, �Σk � 0.1I for all i, k. (7)
The estimated parameters L̂ and Θ̂ are computed as the mode of the
corresponding variational distributions:

l̂i,k � âi,k − 1

b̂i,k
I âi,k > 1( ), θ̂k,· � σ �̂μk( ). (8)

Note that the covariance matrix Σk in the Logit-Normal distribution can
capture the correlation structure in the features if we do not constrain it
to be diagonal. However, if we do not impose the diagonal constraint on
the covariance matrix, the number of free parameters in one covariance
matrix will increase from J to J(J + 1)/2, which brings high
computational cost. Therefore, we assume that the covariance matrix
Σk is diagonal for efficient and lightweight implementation of themodel.

2.1.2 Relationship to existing models
The PoLNG model can be considered as a special case in Poisson

Factor Analysis (Zhou et al., 2012) under novel priors. One model that
is closely related to our PoLNG model is called the Gamma-Poisson
(GaP) model (Canny, 2004), and Buntine and Jakulin (2006) extended
the GaP model with Dirichlet priors on θk,·:

li,k ~ Gamma αi,k, βi,k( ), θk,· ~ Dirichlet γk( ), wi,j ~ Poisson ∑K
k�1

li,kθk,j⎛⎝ ⎞⎠,

(9)
where γk is the concentration parameter in the Dirichlet distribution.

The difference between the GaP model and the PoLNG model is
that the Dirichlet prior in the GaP model is replaced by the Logit-
Normal distribution in the softmax basis in the PoLNG model, as
suggested by Atchison and Shen (1980). This change keeps the simplex
constraint for each row of Θ, but it allows for carrying out
unconstrained optimization of the cost function without the
simplex constraints (Srivastava and Sutton, 2017). Moreover, it
improves computational stability in the stochastic variational
inference method. When coded in the Pyro program, our model
(1) with logit-normal distribution is less likely to raise numerical
errors than model (9) with the Dirichlet prior.

For the parameter estimation in the GaP model, Buntine and
Jakulin (2006) proposed a mean-field variational inference algorithm
and a Gibbs sampling algorithm by introducing a latent variable with
dimension I × J × K. However, because I and J are typically large in
single-cell data, the computational and memory cost of introducing
such a 3-dimensional latent variable would be unaffordable for a
moderate K. In contrast, our SVI algorithm does not introduce
memory consuming latent variables and enables GPU acceleration
when coded in the deep universal probabilistic program Pyro.

The PoLNG model is also related to non-negative matrix
factorization (NMF) (Lee and Seung, 1999). It can be viewed as a
probabilistic non-negative matrix factorization model, as it models the
expectation of the count data as the multiplication of two non-negative
matrices, i.e., E(W) � L*Θ, where L* = SL and S is an I by I diagonal
matrix with diagonal elements {s1, s2, . . . , sI}. To alleviate the model
identification problem, the prior on Θ ensures each row of Θ is
normalized to have sum 1, thus avoiding the case where (~L, ~Θ) �
(aL, 1aΘ) is also a possible solution for any a > 0, a ≠ 1. However, this
kind of topic models also typically suffer from the label switching

problem. For example, if we impose identical priors to all the
components in L and Θ, switch the k1-th and k2-th columns in L
and switch the k1-th and k2-th rows in Θ at the same time, then we
obtain another solution that leads to the same data likelihood or
evidence lower bound (ELBO) in variational inference. But we need
not worry about this label switching problem as the switching of factor
indices has little influence on the downstream analysis.

2.2 iPoLNG for multiomics data

For the single-cell multiomics data, suppose we have two data
modalities, W(m) ∈ NI×Jm for m = 1, 2. Both data modalities measure
the information for the same set of I cells, but they represent different
types of genomic features. For example, W(1) can be gene expression
data, the features being genes, andW(2) can be chromatin accessibility
data, the features being peaks.

To model single-cell multiomics data, we extend the PoLNG
model to the iPoLNG model. The model overview is presented in
Figure 1. In the iPoLNG model, we model the expectation of the mth
data modality as the multiplication of two non-negative matrices,
i.e., E(W(m)) � L*(m)Θ(m), where L*(m) = S(m)L(m) and S(m) is an I by I
diagonal matrix that takes into account the sequencing depth for the
cells in themth data modality. Then we link all L(m) to a common non-
negative matrix L, each element of which follows an inverse gamma
distribution.

More specifically, the iPoLNG model is proposed as follows:

li,k ~ InverseGamma αi,k, βi,k( ),
l m( )
i,k |li,k ~ Gamma α m( )

0 , α m( )
0 l−1i,k( ) form � 1, 2,

θ m( )
k,· � σ ~θ

m( )
k,·( ), ~θ m( )

k,· ~ Logit −Normal μ m( )
k ,Σ m( )

k( ) form � 1, 2,

w m( )
i,j ~ Poisson s m( )

i ∑K
k�1

l m( )
i,k θ m( )

k,j
⎛⎝ ⎞⎠ form � 1, 2,

(10)
where li,k is the element in the ith row and the kth column in L, αi,k, βi,k
is the shape and scale parameter in the inverse Gamma distribution,
l(m)
i,k is the element in the ith row and the kth column in L(m), α(m)

0 is the
hyperparameter that tackles the level of noise in the mth data
modality, θ(m)

k,· is the kth row vector in Θ(m), μ(m)
k is a vector of

length Jm serving as the mean of the Logit-Normal distribution, Σ(m)
k is

a Jm by Jm diagonal matrix serving as the covariance matrix of the
Logit-Normal distribution, w(m)

i,j is the element in the ith row and the
jth column inW(m), and s(m)

i is the scaling factor that accounts for the
sequencing depth for each cell in the mth data modality.

In the iPoLNG model, we use an inverse gamma distribution to
model the elements in L, such that l−1i,k follows a gamma distribution,
based on the fact that gamma distribution is the conjugate prior to the
gamma distribution with a known shape parameter. To tackle different
levels of noise across the data modalities, we assume that the
expectations of l(m)

i,k given li,k are identical for all m, but the
variances vary according to the hyperparameter α(m)

0 :

E l m( )
i,k |li,k( ) � li,k, var l m( )

i,k |li,k( ) � l2i,k
α m( )
0

. (11)

note that the variance of l(m)
i,k given li,k will decrease when α(m)

0

increases. When α(m)
0 is large, l(m)

i,k will tend to be close to li,k,
which indicates that the level of noise in the mth data modality is low.
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s(m)
i is set the same way as that in the PoLNG model:

s m( )
i � ∑Jm

j�1
w m( )

i,j . (12)

To obtain the parameter estimation in Pyro, conditional on the
data W(1), W(2), we assume the independency across all li,k, l

(1)
i,k , l

(2)
i,k ,

across all ~θ
(1)
k,· , ~θ

(2)
k,· , and among L, L(1), L(2), Θ(1), Θ(2). The variational

distributions are set as

li,k|W 1( ),W 2( ) ~ InverseGamma ai,k, bi,k( ),
l m( )
i,k |W 1( ),W 2( ) ~ Gamma a m( )

i,k , b m( )
i,k( ) form � 1, 2,

θ m( )
k,· � σ ~θ

m( )
k,·( ), ~θ m( )

k,· |W 1( ),W 2( ) ~ Logit − Normal �μ m( )
k , �Σ

m( )
k( ) form � 1, 2.

(13)
by default, the hyperparameters in the prior in model (10) are
set as

αi,k � 1, βi,k � αi,k + 1( )/K, μ m( )
k � 0,Σ m( )

k � I for all i, k, m. (14)
if no initial values are provided, the default initial values for the
parameters in the variational distributions are set as

ai,k � bi,k � a m( )
i,k � b m( )

i,k � 0.5, �μ m( )
k � 0, �Σ m( )

k � 0.1I for all i, k, m.

(15)
the estimated parameters L̂, L̂

(m)
and Θ̂

(m)
are computed as the mode

of the corresponding variational distributions:

l̂i,k � b̂i,k
âi,k + 1

, l̂
m( )
i,k � â m( )

i,k − 1

b̂
m( )
i,k

I â m( )
i,k > 1( ), θ̂ m( )

k,· � σ �̂μ
m( )

k( ). (16)

We propose a heuristic procedure to select α(m)
0 . First, we apply the

PoLNG model to data W(m), m = 1, 2, separately. With the estimated
variational parameters in the Gamma distribution, we obtain the mean
and variance of l(m)

i,k,PoLNG, denoted as E(l(m)
i,k,PoLNG) and var(l(m)

i,k,PoLNG),
respectively. Next, we fit a quantile regression with 90% quantile and
no intercept term, with var(l(m)

i,k,PoLNG) being the dependent variable
and E2(l(m)

i,k,PoLNG) being the independent variable. Finally, α(m)
0 is

computed as the reciprocal of the slope in the quantile regression.
The idea behind this heuristic procedure is based on Eq. 11, while

the conditional mean and variance are approximated with the
variational mean and variance. According to Eq. 11, there exists a
linear relationship between var(l(m)

i,k |li,k) and l2i,k with slope equal to
1

α(m)
0

. By fitting W(m) with the PoLNG model, we are able to obtain the
variational mean and variance, which approximate li,k and
var(l(m)

i,k |li,k), respectively. Considering the fact that the variance of
the variational distributions is typically underestimated, we perform
quantile regression with a high quantile rather than linear regression.

We also use the variational parameters obtained from fitting the
PoLNG model to individual data modality as the warm start for the
iPoLNG model. Because a large α(m)

0 indicates a small level of noise in
data modality W(m), we define ~m � argmaxmα

(m)
0 and use the

variational parameters �μ( ~m)
k , �Σ( ~m)

k obtained from the PoLNG model
as the initial values for the variational parameters in the iPoLNG

FIGURE 1
Overview of the iPoLNGmodel. The input consists of two data modalities measuring different aspects of biological profiles in the same set of cells. Each
data modalityW(m) is approximated by the matrix product of a diagonal matrix S(m) that takes into account the cell sequencing depth, a feature loading matrix
Θ(m) and a cell loading matrix L(m) for m = 1, 2. The feature loading matrices can characterize cell-type specific markers and facilitate functional pathway
enrichment analysis. The cell loading matrices have different variances due to the levels of noise across different data modalities, but share the same
mean, L, which represents the low-dimensional cell embedding and facilitates cell clustering.
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model. Also, to alleviate the effect of non-identifiability, we use
a( ~m)
i,k , b( ~m)

i,k obtained from the PoLNG model as the initial values for
the variational parameters for all m in the iPoLNG model. In the
following analysis, the number of epochs is fixed to 3,000, the learning
rate is set as 0.1, and the Adam optimizer is used in the SVI algorithm
for both PoLNG and iPoLNG models.

3 Results

3.1 Real data analysis

To show that our model facilitates downstream analysis, iPoLNG
is applied to several single-cell multiomics datasets, including one
dataset generated from SHARE-seq, which measures gene expression
and chromatin accessibility in the same single cells from a mouse
brain, one dataset generated from Paired-Tag, which jointly profiles
H3K27me3 histone modification and transcriptome in the same single
cells from a mouse brain, and two cryopreserved human peripheral
blood mononuclear (PBMC) datasets generated from 10X Genomics
Single Cell Multiome ATAC + Gene Expression Sequencing.

For these datasets, we first filter out the low-quality cells that
express in less than 500 genes in the gene expression data or in less
than 200 regions in the epigenomic data. To select the informative
features, we perform log-normalization with a scaling factor of
10,000 and select the top 5,000 highly variable genes and top
20,000 highly variable regions with selection.method = ‘‘vst” using
R package Seurat (Stuart et al., 2019). The log normalizaion is merely
used for selecting the highly variable features and the counts of the
features are modeled by iPoLNG. Finally we take out the common cells
in both data modalities as the input of the single cell multiomics data
analysis.

3.1.1 iPoLNG achieves good clustering performance
on datasets from different technologies

We evaluate the clustering performance of iPoLNG on these
datasets and compare our method with several existing methods
designed for single-cell multiomics data integration, including scAI
(Jin et al., 2020) andMOFA+ (Argelaguet et al., 2018; Argelaguet et al.,
2020). scAI is implemented with the default parameters, and MOFA+
is implemented with the default parameters and two algorithms:
mean-field variational inference (VI) using CPU and stochastic
variational inference (SVI) with GPU acceleration. iPoLNG accepts
raw count data as the input, while scAI and MOFA + accept the log-
normalized data as the input. All these three methods can infer a low-
dimensional representation of the data with a user-defined number of
latent factors. We set the number of latent factors K = 50. After
obtaining the cell by factor loading matrix, we perform Leiden
clustering algorithm (Traag et al., 2019) with a binary search for
the resolution parameter to cluster the data into the specific number of
clusters. For datasets with given cell-type labels in the publications, the
number of clusters is set as the number of the unique labels. The
number of cluster is set as 8 for PBMC3k dataset and 19 for PBMC10k
dataset.

For datasets with given cell-type labels, Adjusted Rand Index
(ARI) (Hubert and Arabie, 1985) is computed to measure the
accuracy of the clustering results. For PBMC datasets with
unknown cell-type labels, Residual Average Gini Index (RAGI)
score (Chen et al., 2019a) is computed based on canonical marker

genes and housekeeping genes (see Supplementary Materials). A high
RAGI score indicates a reasonable clustering result where the
expression of marker genes is high in one or a few clusters, while
the expression of housekeeping genes is broadly distributed across all
the clusters. Considering the fact that the given cell-type labels in the
original publications are also from some computational methods and
can be wrong for some of the cells, we also compute the RAGI score.
As Leiden clustering algorithmmakes use of greedy search and leads to
different clustering results with different initialization, we calculate the
mean and standard error in 10 runs with different random seeds in the
clustering step.

The clustering performance evaluated by ARI or RAGI is
presented in Figure 2. In the Paired-Tag mouse brain dataset,
iPoLNG achieves the highest ARI score (0.698), followed by scAI
(0.653). In the SHARE-seq mouse brain dataset, iPoLNG reaches an
ARI score of 0.606, which is comparable to the ARI score of 0.607 in
scAI, although the clustering results of iPoLNG show a relatively high
fluctuation. Neither VI nor SVI versions of MOFA + performs well in
these two datasets. The clustering performance measured by RAGI
also shows a trend similar to that measured by ARI for Paired-Tag and
SHARE-seq mouse brain datasets. In 10xPBMC3k dataset, iPoLNG
has the highest RAGI score (0.423). In 10xPBMC10k dataset, the
RAGI score of iPoLNG is 0.426, slightly higher than that of MOFA+
(0.418 for SVI and 0.419 for VI), while scAI cannot perform as well as
the other methods in this dataset.

In some applications, the cell structure revealed by different
modalities can be different. We illustrate that iPoLNG is able to
handle such scenarios by comparing the clustering performance of
PoLNG (the simplified version of iPoLNGwith just one data modality)
with iPoLNG. In the Paired-Tag mouse brain dataset, the ARI score of
running PoLNG for the single-cell RNA-seq data is 0.594, while the
ARI score of running PoLNG for the single-cell histone modification
data is very close to 0. In the SHARE-seq mouse brain dataset, the ARI
score of running PoLNG for the single-cell RNA-seq data is 0.500,
while the ARI score of running PoLNG for the single-cell ATAC-seq
data is 0.02. The large difference in ARI between the two modalities
indicates that the cell structure revealed by these modalities are
different. When we integrate the information of both modalities
using iPoLNG, the ARI score improves significantly compared to
using RNA alone (from 0.594 to 0.698 in the Paired-Tag mouse brain
dataset, and from 0.500 to 0.606 in the SHARE-seq mouse brain
dataset).

3.1.2 The factor loading matrices in iPoLNG provide
rich biological insights

We inspect the cell by factor loading matrix L̂ inferred by iPoLNG
for the 10xPBMC3k dataset (Figure 3A) and the heatmap for the top
8 differentially expressed genes for each cluster (Figure 3C). The
differentially expressed genes are found by the FindAllMarkers()
function using R package Seurat. Similarity in the factor loading
matrix tends to be consistent with the similarity in the heatmap of
marker genes: for example, clusters 1, 2 and 3 tend to have high factor
scores for factors 16 and 29 (Figure 3A), and their expression pattern
for the marker genes tend to be more similar to each other (Figure 3C).

Next, we focus on cluster 6, whose major factor score is allocated to
factor 28. From the heatmap of gene expression, we find that cells in
cluster 6 tend to have high gene expression values in canonical marker
genes of B cells, including BANK1, MS4A1, CD79A, and IGHM
(Figure 3C). By plotting θ̂

(RNA)
28,· according to the ranking of gene
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factor scores (Figure 3B), the canonical marker genes of B cells also
tend to have large gene factor scores, which is consistent with the
conclusion from the heatmap of gene expression.

We also perform gene ontology (GO) enrichment analysis using
the feature by factor loading matrices Θ̂

(RNA)
and Θ̂

(ATAC)
. We still

focus on cluster 6 and factor 28 in 10xPBMC3k data. More specifically,
we select the top 200 genes with large factor scores in θ̂

(RNA)
28,· as the

input of Metascape (Zhou et al., 2019), and the top 1,000 regions with
large factor scores in θ̂

(ATAC)
28,· as the input of Genomic Regions

Enrichment of Annotations Tool (GREAT) (McLean et al., 2010).
The results for Metascape and GREAT are presented in
Supplementary Files S1, S2, respectively. The enriched biological
processes and pathways with highly significant p-values include
immune response, regulation of lymphocyte activation and
pathways that are highly related to B cells. In conclusion, the GO
enrichment analysis agrees well with the previous analysis of marker
genes on cluster 6.

3.1.3 iPoLNG is able to handle partial information in
the input

In some applications, we have one dataset that have multiple
modalities, but the other dataset that only measures one of the
modalities, and we expect that the dataset with only one modality
can be jointly trained with the multi-modal dataset so that it can
borrow some information from the multi-modal dataset. iPoLNG is
able to handle such partial information in the input by setting the
unobserved count as 0, which is mathematically equivalent to not
including the unobserved data in the likelihood function of the data.

We design a new experiment to illustrate the power of iPoLNG to
handle partial information and compare the result with Cobolt (Gong
et al., 2021), which also enables integrating single-modality dataset
withmulti-modal dataset. First, for the epigenomic datamodalityW(2),

we randomly mask the data matrix for a certain percentage of the cells
by setting the observed count as 0, i.e., W(2) � (W(2)T

unmasked,W
(2)T
masked)T

and W(2)
masked � O is a zero matrix. Correspondingly, we denote the

transcriptomic data modality W(1) � (W(1)T
unmasked,W

(1)T
masked)T, where

W(1)T
masked represents the transcriptomic data for the cells in which the

epigenomic modality is masked. Next, we apply PoLNG to the
transcriptomic data modality of these masked cells, W(1)T

masked. We
apply iPoLNG and Cobolt to (W(1)T

unmasked,W
(1)T
masked)T and

(W(2)T
unmasked,O

T)T, where both transcriptomic and epigenomic data
are observed for unmasked cells, and only transcriptomic data is
observed for masked cells. Finally, we perform Leiden clustering on the
low-dimensional embeddings of the masked cells in PoLNG, iPoLNG
and Cobolt, respectively, and measure the clustering performance by
computing their ARI scores. We set the percentage of masked cells to
be 20%, 40%, 60% and 80% of all the cells, and the results for the
Paired-Tag mouse brain dataset and the SHARE-seq mouse brain
dataset are presented in Figure 4. The clustering performance of
iPoLNG is better than that of Cobolt and PoLNG under all
settings, showing the power of iPoLNG to enable a dataset with
single modality to borrow information from a larger dataset with
two modalities.

3.2 Model validation and comparison using
simulated data

We next perform simulation study to demonstrate the
effectiveness of our proposed method.

To generate simulated data, we first fit the iPoLNGmodel with K =
50 to one dataset from Paired-Tag, where W(1) is the transcriptome
data and W(2) is the H3K27me3 histone modification data of a mouse
brain, and obtain the hyperparameters α(1)0 , α(2)0 and the fitted

FIGURE 2
Clustering performance of iPoLNG, MOFA+ (SVI), MOFA+ (VI), and scAI on real data. (A) Comparison of ARI scores for Paired-Tag and SHARE-seq with
given cell-type labels. (B) Comparison of RAGI scores for Paired-Tag, SHARE-seq, 10xPBMC3k, and 10xPBMC10k. The error bar represents the mean and
standard error in 10 runs with different random seeds in the clustering step.
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variational parameters L̂, Θ̂
(1)
, Θ̂

(2)
. Next, we take a subset of this

dataset to obtain all cells in the following five cell types “HC_EXNEU_CA1”

(403 CELLS), “FC_EXNEU_PT” (219 CELLS), “HC_EXNEU_DG” (396 CELLS), “BR_INNEU_

CGE” (169CELLS), “HC_EXNEU_CA23” (440CELLS), calculate the columnmean of

L̂ within each cluster to obtain “cluster centers” �l1,·,�l2,·,�l3,·,�l4,·,�l5,·. In
the simulated data, we assume that there are 5 clusters and the cells in
the ith cluster are generated from �li,·. More specifically, we utilize the
hyperparameters α(1)0 , α(2)0 , cluster centers �l1,·,�l2,·,�l3,·,�l4,·,�l5,·, the fitted

FIGURE 3
Downstream analysis with iPoLNG for 10xPBMC3k data. (A) The heatmap of the cell by factor loading matrix L̂. The major factor score of cluster 6 is
allocated to factor 28. (B) Gene scores for θ̂

(RNA)
28,· , sorted in increasing order. The labelled marker genes of B cells tend to have high gene scores. (C) The

heatmap for the top 8 cluster-specific differentially expressed genes for each cluster. This heatmap validates the similarity of cells within and across clusters.
Cells in cluster 6 tend to have high gene expression values in the canonical marker genes of B cells.
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variational parameters Θ̂
(1)
, Θ̂

(2)
and the sequencing depth obtained

from all 1,627 cells in the 5 clusters to generate simulated data
according to our generative model (10) (See Supplementary File S3
for the value of fitted variational parameters and the sequencing
depths for the cells.) In order to evaluate the performance of our
algorithm for data under different levels of noise, we divide the
sequencing depth in the transcriptomic data by
1,2,5,10 respectively to generate simulated datasets with 4 different
levels of noise. We expect that datasets with small sequecing depths
tend to have low UMI counts, thus high sparsity and a high level of
noise. For each setting, 5 datasets are generated with different seeds.

We again evaluate the clustering performance of iPoLNG and
compare our method with scAI and MOFA+. We varied the number
of factors K as 5, 20, 50 for all methods. The boxplots of ARI values for
the simulated datasets are presented in Figure 5A. When the level of
noise is low (sequencing depth divided by 1 or 2), both iPoLNG and
scAI can reach ARI values of nearly 1, which suggests that they can
accurately recover the cell types in the simulated data. As the level of
noise increases, the performance of all methods becomes worse as
expected, but iPoLNG still remains the best method among all settings.
We also note that iPoLNG is robust to the choice of the number of
factors. When K is larger than 5, i.e. the number of cell types, the
clustering performance of iPoLNG does not decrease significantly
under small or moderate levels of noise.

We also evaluate the running time of the methods (Figure 5B).
Cells are sampled with replacement from the preprocessed
10xPBMC3k dataset to generate simulated data with different
numbers of cells. With GPU acceleration, the running time of
iPoLNG for the simulated dataset with 20,000 cells is 13.9 min for
K = 5, 14.7 min for K = 20 and 14.9 min for K = 50, which remains the
smallest among all the methods under the same setting. MOFA+ (SVI)
is the second fastest method, but its running time is 2–6 times the
running time of iPoLNG. The slight change of running time across K

also illustrates iPoLNG’s running time is robust to the number of
factors K. By contrast, the running time of MOFA+ and scAI can be
significantly affected by the number of factors.

4 Discussion

Single-cell multiomics technologies generate datasets with multi-
modal measurements from the same set of cells, thus posing significant
challenges for integrating and characterizing multiple types of
measurements in a biologically meaningful way. The single-cell
data is high-dimensional yet intrinsically sparse, and different
layers of single-cell multiomics data usually exhibit different levels
of noise.

In this study, we introduced iPoLNG, an unsupervised method for
integrating single-cell multiomics data to dissect the cellular
heterogeneity from multiple data modalities. From a biological
perspective, iPoLNG infers two kinds of low-dimensional
representations of the high-dimensional single-cell multiomics data:
one cell by factor loading matrix and two feature by factor loading
matrices. The cell by factor loading matrix can identify distinct cell
types and improve clustering accuracy compared to other models that
reconstruct the latent space of cells, and the feature by factor loading
matrices can characterize cell-type specific markers and facilitate gene
ontology (GO) enrichment analysis. From a technical perspective,
iPoLNG presents several advantages. First, it directly models the
unique molecular identifiers (UMIs) of single-cell multiomics data
and takes into account the sequencing depths of cells, which suggests
the discrete counts without any normalization procedure can directly
serve as the input of the model. Second, as a scalable algorithm,
stochastic variational inference with GPU acceleration in iPoLNG
potentially enables the computation of large-scale single-cell datasets
with a considerably high speed. Third, the hyperparameters that

FIGURE 4
Clustering performance of iPoLNG, Cobolt and PoLNG on the partially masked dataset for (A) Paired-Tagmouse brain RNA +H3K27me3 and (B) SHARE-
seq mouse brain RNA + ATAC. We set the percentage of masked cells to be 20%, 40%, 60% and 80% of all the cells.
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FIGURE 5
Comparison of clustering performance and running time for simulated data. (A) ARI scores for K = 5, 20, 50 and the level of noise is adjusted by dividing
the sequencing depth by 1, 2, 5, and 10. The boxplot represents the ARI scores for 5 simulated datasets under the same setting. (B) Computational time for
iPoLNG, MOFA+ and scAI. MOFA+ (VI) and scAI were run on a server with Intel Xeon Gold 6246R CPU and 120 GB RAM. iPoLNG andMOFA+ (SVI) were run on
a server with NVIDIA Tesla V100 GPU and 80 GB RAM.
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control the levels of noise across different data modalities in iPoLNG
are automatically learned by fitting the PoLNG model to individual
data modality, which saves the efforts to tune these hyperparameters.

iPoLNG also exhibits some limitations. First, modelling the
discrete counts directly suggests that it lacks the flexibility to fit
continuous data. Second, this method is tailored specifically for
multi-modal measurements from the same sample space,
contrasting with some other methods (Stuart et al., 2019; Welch
et al., 2019) that aim at integrating cells on the same feature space.
Third, iPoLNG assumes independence between features by a diagonal
covariance matrix in the Logit-Normal distribution, but genomic
features are known to show interaction via gene regulatory
networks (Duren et al., 2017; Colomé-Tatché and Theis, 2018;
Delgado and Gómez-Vela, 2019).

We speculate the future direction of iPoLNG as follows. We may
incorporate the idea of Deep Exponential Families (Ranganath et al.,
2015) to model the complex biological structures by adding additional
layers for the latent factors. Themodel may also be extended to analyze
spatial epigenome-transcriptome co-profiling data by modelling the
information of spatial coordinates with links (Chang and Blei, 2009).
Additionally, the model may be extended to incorporate the regulatory
links between transcriptome and epigenome (Colomé-Tatché and
Theis, 2018).
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