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There is a genetic difference between Hu sheep (short/fat-tailed sheep) and
Tibetan sheep (short/thin-tailed sheep) in tail type, because of fat metabolism.
Previous studies have mainly focused directly on sheep tail fat, which is not the
main organ of fat metabolism. The function of miRNAs in sheep liver fat
metabolism has not been thoroughly elucidated. In this study, miRNA-Seq was
used to identify miRNAs in the liver tissue of three Hu sheep (short/fat-tailed
sheep) and three Tibetan sheep (short/thin-tailed sheep) to characterize the
differences in fat metabolism of sheep. In our study, Hu sheep was in a control
group, we identified 11 differentially expressed miRNAs (DE miRNAs), including six
up-regulated miRNAs and five down-regulated miRNAs. Miranda and RNAhybrid
were used to predict the target genes of DEmiRNAs, obtaining 3,404 target genes.
A total of 115 and 67 GO terms as well as 54 and 5 KEGG pathways were
significantly (padj < 0.05) enriched for predicted 3,109 target genes of up-
regulated and 295 target genes of down-regulated miRNAs, respectively. oar-
miR-432 was one of the most up-regulated miRNAs between Hu sheep and
Tibetan sheep. And SIRT1 is one of the potential target genes of oar-miR-432.
Furthermore, functional validation using the dual-luciferase reporter assay
indicated that the up-regulated miRNA; oar-miR-432 potentially targeted
sirtuin 1 (SIRT1) expression. Then, the oar-miR-432 mimic transfected into
preadipocytes resulted in inhibited expression of SIRT1. This is the first time
reported that the expression of SIRT1 gene was regulated by oar-miR-432 in
fat metabolism of sheep liver. These results could provide ameaningful theoretical
basis for studying the fat metabolism of sheep.
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1 Introduction

MicroRNAs (miRNAs) are a kind of small RNA, whose length is about 22 nt
(nucleotide). Previous studies revealed that miRNAs have distinctive biological
characteristics in proliferation, differentiation, metabolism, and disease (Lin et al., 2020).
In animals and plants, miRNAs are involved in the regulation of post-transcriptional gene
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expression. miRNAs usually bind to the 3’UTR region of mRNA to
inhibit the post-transcriptional translation of target genes and
enhance the degradation or repress the translation of mRNAs
(Rouleau et al., 2017). In Chinese indigenous sheep, sheep can be
divided into short/thin-tailed sheep, long/thin-tailed sheep, short/
fat-tailed sheep, long/fat-tailed sheep, and fat-buttock sheep,
because of the degree of fat deposition along the tail vertebra and
the length of the tail vertebra (Lu et al., 2020). Hu sheep (short/fat-
tailed sheep) and Tibetan sheep (short/thin-tailed sheep) are two
Chinese indigenous sheep breeds with different tail types. Tail fat is
the main energy source for sheep migration, drought, and food
deprivation (Luo et al., 2021). However, studies mainly focus directly
on tail fat to study fat metabolism, which is not the main organ of fat
metabolism (Zhou et al., 2017; Li et al., 2020). The liver is a primary
organ of fat metabolism, fat metabolization in the liver is equally
important to its metabolism in fat tissue. Triglyceride is one of the
lipids mostly formed in the liver, whose metabolism is mainly
controlled through liver parenchyma cells. And the degree of fat
deposition in fat tissue depends on the fat flow in the liver for fat
synthesis. (Carotti et al., 2020). There are differences in the liver of
sheep with different tail types that can reflect the underlying
mechanism of sheep fat metabolism.

With the development of high-throughput sequencing
technology, miRNA-Seq has been widely used in the omics
analysis of humans (Zheng et al., 2016), mice (Peng et al., 2013),
chickens (Sikorska et al., 2021) and cows (Zhang et al., 2019; Chen
et al., 2020) species. And researchers showed that miRNA has an
important function in fat metabolism (Deng et al., 2020). Many
studies have explored the role of miRNA in liver fat metabolism
disease models to clarify the process of disease occurrence. In a non-
alcoholic fatty liver disease (NAFLD) mouse model, Lin et al.
identified that miR-29a not only made body weight gain decrease,
but also the subcutaneous, visceral, and intestinal fat accumulation
and hepatocellular steatosis (Jeon and Carr., 2020). In the non-
alcoholic steatohepatitis (NASH) mouse model, inhibiting the
expression of miR-21 decreased liver injury, inflammation, and
fibrosis (SOARES et al., 2016). In a high-fat-induced mouse model,
miR-378 targeted AMPK to promote the occurrence of liver fibrosis
and inflammation (Lin et al., 2019). Meanwhile, researchers have
analyzed the expression patterns of miRNA in the liver of pigs (Li
et al., 2021) and cows (Liang et al., 2017) across periods. These studies
represented a foundation for further understanding the molecular
regulatory mechanisms of liver tissue fat metabolism.

Because there is a genetic difference between Hu sheep (short/
fat-tailed sheep) and Tibetan sheep (short/thin-tailed sheep) in tail
type, comparing their livers’ miRNA features may find miRNAs
affecting the fat metabolism of Hu sheep (short/fat-tailed sheep) and
Tibetan sheep (short/thin-tailed sheep). Our results could provide a
theoretical basis for further study of the fat metabolism between
different sheep breeds.

2 Matericals and methods

2.1 Tissue collection and sequencing

All animal experiments were approved by the Science
Research Department of the Institute of Animal Sciences,

Chinese Academy of Agriculture Sciences (IAS-CAAS). Ethical
approval complied with the Animal Ethics Committee of the IAS-
CAAS (No. IAS 2019-49). Samples of liver tissues were collected
from three Hu sheep (short/fat-tailed sheep, Yongdeng, Gansu,
China) and three Tibetan sheep (short/thin-tailed sheep, Yushu,
Qinghai, China). Samples from Hu sheep are named HG1, HG2,
and HG3, respectively. Samples from Tibetan sheep are named
ZG1, ZG2, and ZG3, respectively. All sheep were males and
slaughtered at age 1.5. All samples were frozen in liquid
nitrogen in 1.5 mL RNase-free freezing tubes and stored
at −80°C for use. Trizol (Invitrogen, Carlsbad, CA,
United States) was used to extract total RNA. A
NanoDrop2000 spectrophotometer (Thermo Fisher Scientific,
Wilmington, MA, United States) was used to quantify RNA
purity at 260 and 280 nm. Six libraries were constructed with
a commercial sequencing provider: BGI (Mortazavi et al., 2008;
Wang et al., 2009). An Agilent 2,100 Bioanalyzer (Agilent
Technologies, Palo Alto, CA, United States) was used to
examine the integrity of the library. All FASTQ sequencing
files have been stored in the Sequence Read Archive (accession
numbers PRJNA785102).

2.2 Sequence analysis

The cleaning of the rawdatawas performed based on: 1) poor quality
sequencing reads, 2) reads with 5′ adaptors and without 3’ adaptors; 3)
reads without insert segments; and 5) reads containing poly A; and 6)
reads longer than 18 nucleotides. To ensure that each small RNA had a
unique label, according to the order of possible ribosomal RNA, small
conditional RNA, small nucleolar RNA, small nuclear RNA (snRNA),
and transfer RNA sequences to annotate (Balaskas et al., 2020). The sheep
reference genome Oar_v3.1 (https://www.ebi.ac.uk/ena/browser/view/
GCA_000298735.1, accessed on 20 February 2021) and miRbase21.0
(http://www.mirbase.org, accessed on 20 February 2021) was used to
map clean reads with Bowtie2 (Langmead et al., 2009).

2.3 MiRNA identification and differential
expression analysis

MiRDeep2 software was used to predict novel miRNAs (Kern et al.,
2020). The expression of miRNA was calculated by absolute numbers
counting of molecules using unique molecular identifiers (Pflug and
Haeseler., 2018). Moreover, the lengths of small RNAs (sRNAs) and the
proportion of miRNAs were calculated. The “oar-miR-" and “novel_
mir” terms identify known miRNAs and novel miRNAs, respectively.
Hu sheep is set as a control, DESeq2 software was used to perform the
differential expression analysis, in which the statistical significance was
set at a fold discover rate (FDR) adjusted p-value (padj ≤0.05) by Benja-
mini-Hochberg and |Log2Foldchange| > 0.5.

2.4 Target gene prediction of miRNAs and
gene function enrichment analysis

Miranda (John et al., 2004) and RNAhybrid (Lin et al., 2022)
were used to find more accurate targets of differentially expressed
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miRNA (DE miRNA). g: Profiler was used for genes function
enrichment analysis, in which the statistical significance was set
at a fold discover rate (FDR) adjusted p-value (padj ≤0.05) by
Benjamini–Hochberg (Raudvere et al., 2019). There are
3,109 target genes of upregulated and 295 target genes of
downregulated DE miRNAs were annotated with Gene Ontology
(GO) (http://www.geneontology.org/, accessed on 19 January 2022)
and the Kyoto Encyclopedia of Genes and Genomes (KEGG) (http://
www.genome.jp, accessed on 19 January 2022), respectively.

2.5 Quantitative real-Time PCR

Steam-loop real-time qPCR was used to validate miRNA
sequencing data from seven randomly selected miRNAs (oar-
miR-432, novel_mir70, novel_mir21, nov-el_mir64, novel_
mir58, oar-miR-19b, and oar-miR-29b). The total RNA of each
sample was reversed transcribed with a miRNA 1st Strand cDNA
Synthesis Kit. RT-qPCR was performed on a LightCycler® 480II
qPCR system using miRNA universal SYBR qPCR Master Mix
(Vazyme, Nanjing, China). U6 was used as the reference gene. To
detect the expression of SIRT1, HiScript III 1st Strand cDNA
Synthesis Kit (+gDNA wiper) and ChamQ universal SYBR qPCR
Master Mix (Vazyme, Nanjing, China) were used. And beta-actin
was used as the reference gene. The reverse transcription and PCR
primer sequences are listed in Supplementary Table S1. The
relative expression levels of miRNA and mRNA were calculated
using 2−ΔΔCT (Rao et al., 2013).

2.6 Dual -Luciferase reporter assay

To verify the target relationship of SIRT1 and oar-miR-432, Xho
I and NotI restriction enzyme cutting sites were amplified with the
wild-type 3’UTR of the SIRT1. The primers are listed in
Supplementary Table S1. The wild-type 3’UTR of the SIRT1 was
ligated to vectors and named psiCHECK2-SIRT1-3’UTR-WT.

Using a Site-Directed Mutagenesis Kit (Thermo Fisher
Scientific, MA, United States), the mutant-type 3’UTR of
SIRT1 was obtained and named psiCHECK2-SIRT1-3’UTR-
MT. PsiCHECK2-SIRT1-3’UTR-WT, psiCHECK2-SIRT1-
3’UTR-MT, or pure vectors were co-transfected with oar-miR-
432 mimics; pure vectors were co-transfected with negative
control (NC) or oar-miR-432 mimics into 293T (Pan et al.,
2018). After incubation for 6 h, the culture medium was
changed. After 48 h of incubation, the relative luciferase
activity in the cells was measured using a Dual-Luciferase
Reporter Assay System (Promega, Promega, WI,
United States). Each treatment was performed 4 times for
each group. All plasmid, oar-miR-432 mimics, and negative
control were synthesized by GenePharma (Shanghai, China).

2.7 Sheep preadipocytes culture and
transfection

Sheep preadipocytes were isolated from the tail fat of a 70-day-
old Hu sheep fetus by collagenase digestion. Preadipocyte

transfection and culture were according to our previous method
(Jin et al., 2022). When the cell showed contact inhibition, we
collected cells and extracted protein.

2.8 Western blot

Proteins from cell were extracted with RIPA buffer and
separated on SDS-PAGE gel including 4% concentrated glue and
12% separation gel. After transfer, the PVDF blot membranes were
blocked and then probed with rabbit polyclonal antibody against
SIRT1 (1: 1,000, Proteintech, Chicago, IL, United States) at 4°C
overnight. Alpha-tubulin poly-clonal antibody (1:3,000, Abclonal,
Beijing, China) was used as an internal reference. These blots were
further conjugated with a goat anti-rabbit IgG secondary antibody
(1:1,000, Proteintech, Chicago, IL, United States) labeled with HRP
via incubation and revealed with an ECL kit (Engreen, Beijing,
China), and exposed to X-ray films. Blot intensity quantification was
performed using ImageJ software (1.51j8) (Rha and Gyeol Yoo,
2015).

2.9 Statistical analysis

The data were processed by SPSS 20.0 two-tailed Student’s t-test
(Singh et al., 2019). All the results are presented as means ± standard
deviation. Furthermore, * indicates statistically significant (p < 0.05).
** indicates statistically significant (p < 0.01).

3 Result

3.1 Quality control

The results of the miRNA-Seq data after quality control are
displayed in Table 1. The clean tag count of each sample ranged from
27 to 28 million, and the Q20 of clean tags ranged from 98.20% to
98.50%. About 88.63%–92.75% of the clean reads were mapped to
the sheep reference genome.

3.2 Identification of miRNAs

In this study, 134 known miRNAs and 275 novel miRNAs were
identified from HG1; 132 known miRNAs and 291 novel miRNAs
were identified from HG2; 137 known miRNAs and 298 novel
miRNAs were identified from HG3; 132 known miRNAs and
295 novel miRNAs were identified from ZG1; 133 known
miRNAs and 198 novel miRNAs were identified from ZG2; and
129 known miRNAs and 273 novel miRNAs were identified from
ZG3 (Supplementary Table S2).

3.3 Analysis of differentially expressed
miRNAs

We found 379 novel miRNAs and 139 known miRNAs. Hu
sheep is set as a control, based on the padj ≤0.05, we detected 11 DE

Frontiers in Genetics frontiersin.org03

Fei et al. 10.3389/fgene.2023.985764

http://www.geneontology.org/
http://www.genome.jp
http://www.genome.jp
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.985764


miRNAs in ZG compared with HG (Figure 1 and Supplementary
Table S3). There are six upregulated miRNAs, including novel_
mir471, oar-miR-432, novel_mir21, novel_mir59, novel_
mir394 and, novel_mir70. There are five downregulated miRNAs,
including oar-miR-29b, novel_mir58, novel_mir54, oar-miR-19b,
and novel_mir64. Three miRNAs were reported that were associated
with fat metabolism.

3.4 DE miRNAs target prediction and
functional analysis

Miranda and RNAhybrid software were used to predict the
target genes of DE miRNAs, resulting in 3,404 predicted target
genes (Supplementary Table S4). GO annotation enrichment was
used to describe the functions of the target genes of upregulated
and downregulated DE miRNAs. These were involved in cellular
components (CCs), molecular function (MF), and biological
processes (BP), including animal organ development,
intracellular organelle lumen, ATP binding, intracellular
vesicles, and kinesin and calcium ion binding (Figures 2A,B
and Supplementary Table S5). A total of 115 GO terms were
significantly enriched by target genes of the upregulated DE
miRNAs, and 54 terms were significantly enriched by target
genes of the downregulated DE miRNAs. DE miRNAs were used
in a KEGG pathway enrichment analysis. Based on all the target
genes of upregulated and downregulated miRNAs, 67 and
5 KEGG pathways were significantly enriched, respectively
(Supplementary Table S6). As shown in Figures 2C,D, the
ECM–receptor interaction signaling pathway, KEGG root
term signaling pathway, transcriptional regulation in the
cancer signaling pathway, the focal adhesion signaling
pathway, and the breast cancer signaling pathway were
simultaneously enriched. Other signaling pathways related to
fat metabolism were enriched, including the PI3K-Akt signaling
pathway, calcium signaling pathway, AMPK signaling pathway,
and MAPK signaling pathway, which are related to fat
metabolism.

3.5 Verified the DE miRNA and the
expression of miRNA by RT-qPCR

The RT-qPCR technique was used to validate the sequencing results.
Seven miRNAs were randomly selected for RT-qPCR verification. The
validation results are displayed in Figure 3A and SupplementaryTable S7.

3.6 Plasmid identification

Eight randomly selected monoclonals and vector universal
primers were used to identify the wild-type psiCHECK2 plasmid
by polymerase chain reaction (PCR) (Supplementary Figure S1) and
sequencing. The sequencing primers are shown in Supplementary
Table S1. Site-directed mutation was used to obtain the mutant-type
psiCHECK2 plasmid. The sequencing results of wild-type
psiCHECK2 plasmid and mutant-type psiCHECK2 are in
Supplementary Table S8 and Supplementary Table S9. Eventually,
the plasmids were constructed successfully.

3.7 Validation of the target relationship
between oar-miR-432 and SIRT1

A dual-luciferase reporter assay indicated that oar-miR-
432 significantly suppressed the luciferase activities for co-
transfection with SIRT1 3’UTR wild-types, although did not
affect the mutant types of SIRT1 3’UTR or blank vectors
(Figure 4B and Supplementary Table S10). These results initially
confirmed the direct interactions between oar-miR-432 and SIRT1.

3.8 Expression of SIRT1 in Liver tissue

The RT-qPCR results showed that the expression trends in oar-miR-
432 and SIRT1 were contrasting. oar-miR-432 was highly expressed in
the liver tissue of Hu sheep, while the SIRT1 was highly expressed in the
liver tissue of Tibetan sheep (Figure 3B, Supplementary Table S7).

TABLE 1 Summary of sequencing data for each library.

Sample name Sequence
type

Raw tag
count

Clean tag
count

Percentage of clean
tag (%)

Q20* of clean
tag (%)

Percentage of mapped
tag (%)

HG1 (short/fat-tailed
sheep)

SE50 28,376,193 27,508,714 96.94 98.50 92.75

HG2 (short/fat-tailed
sheep)

SE50 28,289,347 27,054,271 95.63 98.40 91.58

HG3 (short/fat-tailed
sheep)

SE50 29,793,809 28,483305 95.60 98.40 90.48

ZG1 (short/thin-tailed
sheep)

SE50 30,184,839 28,487,066 94.35 98.30 88.63

ZG2 (short/thin-tailed
sheep)

SE50 28,886,721 27,154,416 94.70 98.20 89.46

ZG3 (short/thin-tailed
sheep)

SE50 29,008,123 27,666,601 95.38 98.50 89.77
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3.9 Expression of SIRT1 in preadipocytes

Oar-miR-432 mimics and negative control were transfected into
preadipocytes. Then we detected the expression of oar-miR-432 and
SIRT1. The expression of oar-miR-432 was increased by oar-miR-
432 mimics (Jin et al., 2022). The result of the Western blot showed
the expression of SIRT1 was inhibited by oar-miR-432 mimics
(Figures 3C,D, Supplementary Table S11, Supplementary Figure
S2, Supplementary Figure S3).

4 Discussion

Thus far, miRNA expression has been studied in the liver tissues of
buffalos (Rha and Gyeol Yoo, 2015), dairy cows (Bu et al., 2017), mice
(Seclaman et al., 2019), rats (Wang et al., 2017), pigeons (Wang et al.,

2020), pigs (Kai et al., 2019), chickens (Xu et al., 2019), and geese (Zheng
et al., 2015). RNA-Seqwas used to construct 41 pairs of ceRNAnetworks
on liver tissue from three Holstein cows, which provide new insight into
resolving bovine lipid metabolism (Liang et al., 2017). In bovine
hepatocytes, miR-27a-5p inhibited calcium sensing receptor (CASR)
expression, triacylglycerol (TAG) accumulation was significantly
suppressed, and low very density lipoprotein (VLDL) secretion was
reduced (Yang et al., 2018). established miRNA-mRNA regulatory
networks related to lipid deposition and metabolism in the livers of
Landrace pigs with the extreme backfat thickness (Kai et al., 2019). RNA-
Seqwas used to constructmiRNA-mRNAnetworks between Jinhua and
Landrace pigs (Huang et al., 2019). These studies provided new insights
into the molecular mechanisms to explore fat metabolism in pigs. Also,
the study found there was a lncRNA-FNIP2/miR-24-3p/FNIP2 axis,
which can regulate lipid metabolism in Sanghuang chicken liver (Guo
et al., 2021).

FIGURE 1
The volcano plots of all expressed miRNAs in the livers of Hu sheep (short/fat-tailed sheep) and Tibetan sheep (short/thin-tailed sheep). The x-axis
denotes the values of log2 (fold-change), whereas the y-axis denotes the −log10 (padj). The colored dots represent the expressed miRNAs, with blue
indicating downregulated miRNAs and red indicating upregulated miRNAs (padj ≤0.05). The black dots indicate that the miRNAs are not statistically
significant (padj >0.05).
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In this study, we used high-throughput sequencing to identify the
expression of miRNA in the livers of Hu sheep and Tibetan sheep. This
study complements the current understanding of miRNA expression
patterns in sheep livers and will help future research on the specific role
of miRNA in regulating fat metabolism. In our study, we identified

11 differential miRNAs. miR-432, miR-19b, and miR-29b are
associated with fat metabolism, and a previous study showed that
miR-432 inhibits milk fat synthesis by targeting stearoyl CoA
desaturase (SCD) and LPL in ovine mammary epithelial cells.
Additionally, miR-432 inhibits the proliferation of ovine mammary

FIGURE 2
Significantly enriched Gene Ontology and KEGG for the target genes of DE miRNAs. (A) Some GO terms of target genes of upregulated DE miRNAs
for BP, CC, and MF in two groups. (B) GO terms of target genes of downregulated DE miRNAs for BP, CC, and MF in two groups. The x-axis displays
enrichment, and the y-axis rep-resents the GO terms. The filled colored circles display each statistically significant GO term. The size of the circles
represents the gene number. (C) Signal pathway of the target genes of upregulated DEmiRNAs in two groups. (D) Some signal pathways of the target
genes of upregulated DE miRNAs in two groups. The x-axis displays the enrich-ment factor of the target genes, and the y-axis represents the KEGG
pathway. The filled colored circles represent each statistically significant KEGG pathway. The size of the circles represents the number of genes.

FIGURE 3
The results of RT-qPCR and Western blot. (A) RNA-Seq and RT-qPCR results of seven differentially expressed miRNAs in ZG compared with HG. (B)
RT-qPCR results of SIRT1 in HG and ZG. (C) (D) Western blot results of SIRT1 in preadipocytes. NC exhibits negative control.
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epithelial cells (Hao et al., 2021). Transcriptome analysis revealed that
miR-432 was differentially expressed in the backfat of cattle; the protein
kinase AMP-activated catalytic subunit alpha 1/2 (PRKAA1/2) and
peroxisome proliferator-activated receptor alpha (PPARA) were
regulation targets to modulate lipid and fatty acid metabolism (Sun
et al., 2014). Interestingly, miR-432 was differentially expressed in tail
fat between Hu sheep and Tibetan sheep, which could have an
important function in sheep fat metabolism (Fei et al., 2022). In
mice SVF cells, miR-19b had an inhibitory effect on the browning
process of adipose tissue (Lv et al., 2018). Researchers found that miR-
29b can regulate blood sugar in adult mice, representing a target for
treating metabolism disease (Hung et al., 2019). Additionally, miR-29b
inhibits the differentiation of pig muscle and subcutaneous
preadipocytes through targeted regulation complement component 1
(C1q) and TNF-related protein 6 (CTRP6) (Wu et al., 2021). Ma et al.
found that lncRNAs, including TCONS_00372,767 and TCONS_
00171,926, were related to fat metabolism among Lanzhou fat-tailed
sheep, small-tailed Han sheep, and Tibetan sheep, and constructed two
co-expression networks of differentially expressed mRNA and lncRNA
(Ma et al., 2018). The research conducted by Cheng et al. showed that
there were differences in the livers of Mongolian and Lanzhou fat-tailed
sheep through RNA-Seq, which provided a reference for researching the
sheep genome (Cheng et a., 2016).

Hu sheep set as a control to identify DE miRNAs. The
extracellular matrix (ECM)–receptor interaction signaling pathway
was significantly enriched by the target genes of upregulated DE
miRNAs and downregulated DE miRNAs. The main constituents of
the ECM–receptor interaction signaling pathway in adipose tissue

include collagen (type I, IV, and VI), fibronectin (FN), laminin
(LN1,8), hyaluronan, and proteoglycan (Lee et al., 2013). The
functional analysis showed differently expressed genes in the
subcutaneous and intramuscular fat of cattle were enriched in
ECM–receptor interaction signaling pathway. In the study of San
et al., some genes which affected intramuscular fat (IMF) deposition
was significantly enriched in the ECM–receptor interaction signaling
pathway (San et al., 2021). In our study, the target genes of
upregulated DE miRNAs were enriched in the PI3K-Akt signaling
pathway, calcium signaling pathway, the AMPK signaling pathway,
and MAPK signaling pathway, which are associated with fat
metabolism (Fu et al., 2022). In our study, forkhead boxO3
(FoxO3) was enriched in the PI3K/AKT signaling pathway and
AMPK signal pathway. In mice fed high-glucose and high-sucrose
diets, FoxO3 promoted hepatic triglyceride synthesis and hepatic
triglyceride accumulation in the liver by positively regulating the
sterol regulatory element binding transcription factor 1 (SREBP1c)
(Wang et al., 2019). Additionally, SIRT1 was enriched in the AMPK
signal pathway. SIRT1 plays an important biological role in regulating
liver lipid metabolism, oxidative stress, and inflammation, and can be
used as a therapeutic target for the treatment of alcoholic and non-
alcoholic fatty liver diseases (Ding et al., 2017). It has been shown that
vitamin D can activate the AMPK/SIRT1 pathway to inhibit the
accumulation of fat in C2C12 skeletal muscle cells (Chang and Kim.,
2019). miR-29 can regulate SIRT1 to inhibit fat deposits in mouse
livers (Kurtz et al., 2015). Additionally, Liang et al. that dietary
cholesterol can promote the occurrence of steatohepatitis through
the calcium signaling pathway (Liang et al., 2018). In a diabetic mouse
model, the ginsenosidemetabolite compoundK inhibits the activation
of the NLR family pyrin domain containing 3 (NLRP3) through the
NF-κB/p38 signaling pathway (Song et al., 2018). Previous studies
have shown that in human liver fat cells, transforming growth factor-
beta 1 (TGF-β1) regulates the platelet-derived growth factor receptor
beta (PDGFD-β) subunit to maintain the activation and proliferation
of fat cells (Pinzani et al., 1995). In our previous study, these pathways
were enriched significantly, including ECM–receptor interaction
signaling pathway, PI3K-Akt signaling pathway, calcium signaling
pathway, AMPK signaling pathway, and MAPK signaling pathway
(Fei et al., 2022). All of the results showed that these pathways could
have a vital function in sheep fat metabolism.

In this research, our goal was to preliminarily determine how
oar-miR-432 and SIRT1 regulate fat metabolism. In our current
study, we use dual-luciferase reporter assays to verify the binding
relationship between miR-432 and the target gene SIRT1. The
expression of SIRT1 was detected in the liver tissues of Hu sheep
and Tibetan sheep. RT-qPCR results showed that the expression of
SIRT1 in Tibetan sheep was significantly higher than that in Hu
sheep. We transfected oar-miR-432 in preadipocytes, and we found
oar-miR-432 can inhibit the expression of SIRT1 at the protein level.
This is the first time reported that the expression of SIRT1 gene was
regulated by oar-miR-432 in fat metabolism of sheep liver. The
regulation of the process leading from mRNA to protein is generally
very complex. Studies have shown that gene repression could be
changed due to the post-transcriptional regulation of miRNA
(Pasquier and Gardès., 2016). Our study showed that oar-miR-
432 downregulated the expression of SIRT1 at the transcriptional
level in sheep liver tissue. Meanwhile, the result of Western blot
showed that oar-miR-432 can downregulated the expression of

FIGURE 4
Result of the luciferase reporter assay. (A) Potential binding site
between oar-miR-432 and SIRT13’UTR. The underlined sequences
represent the mutant sites. (B) WT exhibits the psiCHECK2-SIRT1-
3’UTR-WT. MT exhibits psiCHECK2-SIRT1-3’UTR-MT.
psiCHECK2 exhibits psiCHECK2 pure vectors. Mimics exhibits oar-
miR-432 mimics. NC exhibits negative control. **: indicates
statistically significant (p < 0.01).
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SIRT1 protein in preadipocytes. Our study indicated that p53 is
independent of the oar-miR-432 SIRT1 gene regulation.

5 Conclusion

In summary, our results provide a comprehensive expression
profile of miRNA in the livers between two different sheep breeds.
The DE miRNAs reported in this article may play an important role
in sheep fat metabolism. We have verified that oar-miR-432 can
target the regulation gene SIRT1 in sheep. This study provides a
reference for further research addressing the modulation of fat
metabolism in different sheep breeds.
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