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Uterine corpus endometrial carcinoma (UCEC) is one of the most common
gynecologic malignancies. Currently, for UCEC cancer, molecular classification
based on metabolic gene characteristics is rarely established. Here, we describe
the molecular subtype features of UCEC by classifying metabolism-related gene
profiles. Therefore, integrative analysis was performed on UCEC patients from the
TCGA public database. Consensus clustering of RNA expression data on
2,752 previously reported metabolic genes identified two metabolic subtypes,
namely, C1 and C2 subtypes. Two metabolic subtypes for prognostic
characteristics, immune infiltration, genetic alteration, and responses to
immunotherapy existed with distinct differences. Then, differentially expressed
genes (DEGs) among the two metabolic subtypes were also clustered into two
subclusters, and the aforementioned features were similar to the metabolic
subtypes, supporting that the metabolism-relevant molecular classification is
reliable. The results showed that the C1 subtype has high metabolic activity, high
immunogenicity, high gene mutation, and a good prognosis. The C2 subtype has
some features with low metabolic activity, low immunogenicity, high copy number
variation (CNV) alteration, and poor prognosis. Finally, a model was identified, with
three gene metabolism-related signatures, which can predict the prognosis. These
findings of this study demonstrate a new classification in UCEC based on the
metabolic pattern, thereby providing valuable information for understanding
UCEC’s molecular characteristics.
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Introduction

Uterine corpus endometrial carcinoma (UCEC) is one of the most common
malignancies in the female reproductive system (Matteson et al., 2018). As predicted by
Siegel et al. (2021), there were approximately 14,000 new UCEC patients in 2021 in the
United States, of which 4,000 deaths occurred. Generally, due to the unstable level of
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estrogen, UCEC is prevalent among post-menopausal women
(Chen et al., 2015). Overall, most UCEC patients can be
diagnosed at an early age, with the 5-year overall survival (OS)
rate reaching more than 90%. However, the prognosis of advanced
or recurrent UCEC patients is also very poor, with a 5-year OS rate
less than 30% (Morice et al., 2016). Many risk factors have been
demonstrated to contribute to the generation and development of
UCEC patients, such as smoking, drinking, overweight, and high
blood pressure (Zhang et al., 2014). In particular, molecular
changes are one of the factors that contribute to the
development of UCEC (Li et al., 2020). Some studies have
demonstrated that certain genetic alterations or molecular
changes can affect UCEC patient prognosis (Bell and Ellenson.,
2019). Then, in March 2020, the National Committee on Computer
Network (NCCN) first recommended The Cancer Genome Atlas
(TCGA) molecular subtype, indicating the era of genotype-based
precision therapy has come. In the public TCGA study, endometrial
cancer was divided into four subtypes, namely, POLE hyper-
mutation, high mutation microsatellite instability (MSI), and
non-specific molecular variation (NSMP) (Kandoth et al., 2013).
Recently, despite new diagnostic methods and clinical treatments
for UCEC emerging, the prognosis of UCEC patients remains very
poor. Therefore, in order to develop more precise diagnoses and
personalized therapies, deeply understanding the mechanisms
underlying UCEC’s genetic diversity at the molecular feature
level is needed. More recently, some signatures, such as immune
alterations and mRNA expression pattern analyses, were utilized
for molecular subtyping in many cancers. However, the
relationships between the molecule features and the clinical
characteristics of UCEC have not been fully studied.

Many studies have demonstrated that cancer is a metabolic-
disorder disease in patients (Coller, 2014; Boroughs and
DeBerardinis, 2015). In the development of cancer progression,
features such as mutations and cancer-related genes will influence
the metabolic procession, contain one-carbon metabolism, aerobic
glycolysis, and glutaminolysis, of which all progress will support
tumor cell growth and proliferation (Fiehn et al., 2016). Therefore,
researching the different metabolic target genes between tumor and
normal cells has become a useful therapeutic strategy. Moreover,
deeply exploring molecular changes during the metabolism
progress can contribute to the developmental progress of
targeted therapies (Martinez-Outschoorn et al., 2017). Many
studies about the metabolic subtype classification have been
reported; hepatocellular carcinoma (HCC) cancer was classified
into three subclasses using a panel of metabolic genes (Yang et al.,
2020). In cervical cancer, based on 2,752 previously described
metabolic genes, unsupervised clustering of RNA sequencing
data identified three META clusters (Li et al., 2021). However,
the study on the metabolism-related molecular subtype
classification of UCEC has yet to be reported.

In this study, using consensus cluster analysis, UCEC RNA data
from The Cancer Genome Atlas (TCGA) which was publicly available
identified two metabolic subtypes based on 2,752 metabolic genes
(Supplementary Table S1), namely, C1 and C2 subtypes. Then, we
further investigate the prognostic characteristics, metabolic signatures,
immune infiltration features, DEGs, genetic alteration, and
immunotherapy responses among the two metabolic subtypes.
Furthermore, using the LASSO-penalized Cox regression model,
metabolism-related signatures were identified and validated.

Materials and methods

Data source and processing

The UCEC clinical and molecular data (including RNA expression,
mutation, and CNV) were extracted from The Cancer Genome Atlas
(TCGA) (https://portal.gdc.cancer.gov/) and the UCSC Xena browser
(https://gdc.xenahubs.net). Normal samples and samples without key
clinical features were excluded from further analyses. After filtering,
544 patients were included in the metabolic subtype analysis and
training study. Of the 544 patients, 440 patients had mutation data,
and 533 patients had cnv data. For validation, 544 TCGA patients were
randomly divided into 7:3 (380 samples:164 samples) and were separately
selected as two validation datasets. Additional processed microarray data
of 91 UCEC samples from GSE17025 (based on the GPL570 platform)
were used for external validation.

Identification of UCEC subtypes

According to the previously published 2,752 metabolism-related
genes encoding all known human metabolic and transport enzymes
(Possemato et al., 2011), the ConsensusClusterPlus R package
(Wilkerson and Hayes, 2010) was used for unsupervised
decomposition and clustering, using 1,000 rounds of hc clustering,
with a maximum of k = 10 clusters. The distance matrix was set to
Pearson correlation (distance), and linkage function was set as ward. D
(innerLinkage) and average (finalLinkag). K of clusters was identified by
selecting the optimal number of clusters based on the inspection of plots,
dendrograms, and features provided by the ConsensusClusterPlus output.

Immune infiltration estimation of UCEC
subtypes

First, the CIBERSORT R package (https://cibersortx.stanford.edu/)
was used to evaluate the LM22 gene signatures in UCEC subtypes
(Newman et al., 2019). Then, the consensus ESTIMATE (Estimation of
STromal and Immune cells inMAlignant Tumor tissues using Expression)
algorithm with the ESTIMATE R package was employed to measure
ESTIMATE, immune and stromal scores, which reflected the immune and
stromal cell gene signature enrichment (Yoshihara et al., 2013).

Differentially expressed genes associated
with UCEC subtypes and generated gene
subtypes for validation

DEGs among the UCEC subtypes were identified using the R
edgeR package (Robinson et al., 2010). Genes with | log2FC| > 1 and
FDR <.05 were regarded as DEGs. The aforementioned DEGs were
utilized for gene clustering using the ConsensusClusterPlus R package
(Wilkerson and Hayes, 2010).

Functional and pathway enrichment analysis

GO and KEGG enrichment analyses and visualization of UCEC
subtypes and DEGs subtypes were performed via “clusterProfiler” R

Frontiers in Genetics frontiersin.org02

Zhao and Li 10.3389/fgene.2023.955466

https://portal.gdc.cancer.gov/
https://gdc.xenahubs.net/
https://cibersortx.stanford.edu/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.955466


package (Yu et al., 2012). Gene set variation analysis (GSVA) is an
unsupervised and non-parametric gene set enrichment approach that
estimates biosignature scores or pathways based on transcriptomic
data (Hänzelmann et al., 2013). We downloaded the gene sets from
MSigDB (Broad Institute) (Subramanian et al., 2005) and chose c2.
cp.kegg.v7.0. symbols.gmt, which was used to compare the differences
in metabolisms between UCEC subtypes.

Mutation and CNVdifferences betweenUCEC
subtypes

The Mutation Annotation Format (MAF) files which contain the
mutation information and the seg file which contains the CNV
information of the UCEC training set were downloaded and
processed. The “maftools” R package was used to analyze gene
mutations among UCEC subtypes (Mayakonda et al., 2018). The
“svpluscnv” R package (Lopez et al., 2021) and GISTIC2 software
(Mermel et al., 2011) were utilized to analyze cnv segments between
UCEC subtypes.

Immunotherapy response prediction of UCEC

The tumor immune dysfunction and exclusion (TIDE) (Jiang
et al., 2018), a new computing architecture that integrates the data
on two tumor immune escape mechanisms, was applied to predict the
potential response to immune checkpoint blockade (ICB) therapy.
Here, we used the UCEC TCGA expression data to predict the
differences in response to immunotherapy for each UCEC subtype
and the cell types that affect T-cell infiltration in tumors, including
cancer-associated fibroblasts, myeloid-derived suppressor cells, and
tumor-associated M2 macrophages.

Immunogenicity is determined by a variety of immune-related genes,
including genes related to effector cells, immunosuppressive cells, major
histocompatibility complex molecules, and immune regulatory factors.
Using machine learning, the immune-phenotyping score (IPS) can
unbiasedly assess and quantify immunogenicity. To evaluate the effect
of immunotherapy, we downloaded the IPS of patients with UCEC from
the TCIA database (https://tcia.at/) and compared the IPS between the
metabolic subtypes.

Establishment of the metabolic risk score
model

LASSO-penalized Cox regression model was built by using the
“glmnet” R package (Wu et al., 2020), and the lambda.1se, a penalty
parameter for preventing overfitting, was selected to construct an
optimal and prognostic gene set. Finally, the risk score of each UCEC
patient was calculated by the following formula: risk score =
∑N

i�1Expi*βi.

Gene expression verification in metabolic risk
score model

mRNA and protein expression levels of genes in tumor and
normal samples were obtained from the UALCAN database (http://

ualcan.path.uab.edu/) (Chandrashekar et al., 2017) and The Human
Protein Atlas database (https://www.proteinatlas.org/) (Uhlén et al.,
2015; Uhlen et al., 2017). Furthermore, genetic alteration of genes in
the model was derived from the cBioPortal database (https://www.
cbioportal.org/) (Cerami et al., 2012; Gao et al., 2013).

Statistical analysis

Survival analyses of patients with different metabolic subtypes
of UCEC were performed by the Kaplan–Meier method and
compared with the log-rank test. For comparisons between two
UCEC subtypes, statistical significance was estimated using
unpaired Student’s t-tests and Wilcoxon tests for normally
distributed variables and abnormally distributed variables,
respectively. The ROC curve was analyzed, and the area under
the curve (AUC) was calculated using the ‘‘survivalROC’’ package.
Univariate Cox regression, LASSO analysis, and multivariate
regression were then used sequentially to identify genes of
prognostic significance. All calculations and statistical analyses
were conducted using R (version 4.0.3), and all tests were two-
sided; p < .05 was considered statistically significant.

Results

Metabolic molecular subtype identification
and validation in UCEC

A workflow diagram of this study is presented in
Supplementary Figure S1A. For the consensus cluster analysis,
2,752 human metabolism-related genes were collected based on
previous report studies (Supplementary Table S1) (Matteson et al.,
2018), the mRNA expression matrix of these 2,752 metabolism-
related genes in the training set was acquired from 544 TCGA
UECE patients. First, genes with low expression were filtered. Then,
the standard deviation (SD) for each gene was calculated, and genes
with an SD value larger than 1 were selected for further analysis.
After filtering, 255 genes were selected for subsequent analysis, and
clustering of the UCEC patients was performed based on the
aforementioned genes, using the ConsensusClusterPlus package
in R. From the comprehensive clustering results, K = 2 was
determined to be the best clustering number (Supplementary
Figures S1B, S1C). Thus, two subtypes were identified in
the UCEC training set. There were 303 patients in subtype
cluster 1 (C1) and 241 patients in subtype cluster2
(C2) (Figure 1A). The survival analysis demonstrated the
significant difference in patients’ OS time among the UCEC two
subtypes (p = 5.6e-07) (Figure 1B), indicated the prognostic value
in UCEC.

In order to validate the stability of molecular subtypes, we further
selected GSE17025 datasets for clustering. The clustering results of
molecular subtypes in GSE17025 datasets were consistent with those
in TCGA, and the relevant results are shown in Supplementary
Figure S2.

ESTIMATE can be used to determine the presence of stromal
cells and the infiltration of immune cells in tumor samples,
based on gene expression data. In this study, the ESTIMATE
software was applied to estimate the stromal score, immune
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score, and ESTIMATE score of UCEC patients based on their
transcriptional profiles. Significant differences in the ESTIMATE
and immune scores, but insignificant differences in the stromal

score, were presented among the two UCEC metabolic
subtypes (Figure 1C). Next, we evaluated the immune
infiltration landscape among UCEC metabolic subtypes using

FIGURE 1
Identification of twometabolic subtypes in TCGAUCEC patients. (A)Consensus clustering of UCEC patients based on 255 identifiedmetabolic genes. (B)
OS of the two metabolic subtypes in the UCEC patients. (C) The violin plot of the stromal score, immune score, and ESTIMATE score of the two metabolic
subtypes. (D) Immune cell components that differ between the two metabolic subtypes in UCEC patients.
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CIBERSORT software. In accordance, there were significant
differences in immune cells (including B cell memory, plasma
cells, T cells, CD4 memory resting, Tregs, NK cell resting,
macrophage M0, macrophage M1, dendritic cells resting, and

dendritic cells activated) among the two UCEC metabolic
subtypes. In addition, these data illustrated that the two UCEC
metabolic subtypes maintained different immune signatures
(Figure 1D).

FIGURE 2
Association with the metabolism and cancer-associated pathways among UCEC metabolic subtypes. (A) Heatmap of the metabolic signatures of the
UCEC metabolic subtype. (B) Heatmap of the cancer-associated signatures of the UCEC metabolic subtype.
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Correlation of metabolism-related signatures
and cancer pathways of UCEC metabolic
subtypes

To better describe the classification among the metabolic
subtypes of UCEC patients, we further studied whether different
subtypes in UCEC patients had different metabolic characteristic
features. First, 115 metabolic signatures (Wang et al., 2020) were
listed and quantified by the GSVA R package using the ssGSEA
algorithm (Supplementary Table S2). Each patient got a score for
the corresponding metabolic pathway. After the filter,
70 metabolism-associated signatures were exhibited by a
heatmap (Figure 2A). It clearly showed that the C1 subtype
showed active metabolism compared with the C2 subtype.
Among the specific pathways, the C1 subtype was significantly
associated with most glucose, lipid, and amino acid metabolic
signatures, while the C2 subtype was associated with fatty acid
elongation, vitamin B6 metabolism, and other metabolism
signatures. Several cancer-relevant pathways were also studied
(Rosario et al., 2018; Sanchez-Vega et al., 2018). The results
exhibited that the C1 subtype has a significantly higher

expression in the wnt pathway, p53 pathway, and PI3K pathway,
while the C2 subtype has higher expression in the Hippo pathway,
RTK-RAS pathway, cell cycle pathway, TGF-β pathway, and so on
(Figure 2B).

Moreover, in order to understand the relationship between these
metabolic signatures and immune infiltration cells, we first used the
CIBERSORT algorithm to evaluate the immune infiltration of each
sample. Further analysis of the correlation between metabolic
signatures and immune infiltration indicated that plasma cells,
Tregs, and NK-activated cells are associated with many metabolic
pathways (Supplementary Figure S3). The aforementioned evidence
implied that it was of high importance to explore the potential
crosstalk pattern between metabolic signatures and immune
infiltration cells.

Validation performance of the UCEC
metabolic subtype classification

To affirm the metabolic subtype of UCEC patients, an
unsupervised cluster analysis of 326 of the most representative

FIGURE 3
Identification of UCEC gene-clusters based on DEGs of the UCECmetabolic subtype. (A) Sankey diagram shows the flow change between themetabolic
subtype and DEG subtype. (B) TheOS of the two DEG gene clusters in UCEC patients. (C) The violin plot of stromal score, immune score, and ESTIMATE score
of the two DEG gene clusters. (D) Immune cell components that differ between the two DEG gene clusters in UCEC patients.
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DEGs among the two metabolic subtypes obtained using the edgeR
package (Robinson et al., 2010) was used to divide the UCEC
patients into different subtypes (Supplementary Figure S4E). The
CDF plot and consensus matrix heatmap showed that k = 2 is the
optimal cluster number (Supplementary Figure S4A–D). The DEG
subtype is similar with the metabolic subtype (Figure 3A).
Furthermore, among these two gene subtypes, the difference in
the OS was strikingly consistent with the results of the two
metabolic subtypes (Figure 3B). Meanwhile, the expressions of
immune and ESTIMATE scores (Figure 3C), and immune
infiltration (Figure 3D), were higher in accordance with the
differences among the two metabolic subtypes, which
genomically verified two distinct metabolism-associated patterns
in UCEC patients.

Functional enrichment analysis of metabolic
subtypes in UCEC patients

GO and KEGG analyses were used to explore the different
potential molecular mechanisms and biological functions of the
326 identified DEGs among the two metabolic subtypes. The
C1 subtype was associated with some transport pathways, such as
transmembrane transport, potassium ion transport, potassium ion
transmembrane transport, and sodium ion transport. The C2 subtype
was related to processes including drug metabolism–cytochrome
P450, Tyrosine metabolism, glycolysis/gluconeogenesis progress,
and protein glycosylation (Supplementary Figure S5).

Sensitivity of immunotherapy among the
metabolic subtypes of UCEC patients

In order to model the two primary mechanisms of tumor immune
infiltration, TIDE algorithm was applied: the stimulation of T-cell
dysfunction accompanying high cytotoxic T-lymphocyte (CTL)
infiltration and the prevention of T-cell infiltration with low CTL
levels, which estimates the potential response to immunotherapy (Li
et al., 2021). Using the TIDE algorithm, the UCEC metabolic
C1 subtype was predicted to be more responsive to
immunotherapy than the C2 subtype (Figure 4A). Furthermore,
based on the dysfunction score and macrophage M2 score,
C1 subtype showed a high degree of T-cell dysfunction (Figures
4C, G). C2 subtype included the TIDE score, exclusion score,
myeloid-derived suppressor cells, and cancer-associated fibroblasts,
indicating a higher degree than the C1 subtype (Figures 4B, D–F).
These results showed more robust immune escape characteristics in
the C2 subtype compared with the C1 subtype.

Recent studies have shown that IPS can predict the therapeutic
effects of immune checkpoint inhibitors (ICIs) in cancer patients. This
was based on the existing high immunogenic potential. We applied the
immunophenotypic score to compare the C1 subtype and the
C2 subtype after applying different ICIs (Figures 5A–D). As shown
in the figure, regardless of whether cytotoxic T-lymphocyte antigen 4
(CTLA-4) or programmed cell death protein 1 (PD-1) was used for
treatment, the immunophenotypic score of the C1 subtype was higher
than that of the C2 subtype. This finding indicated that treatment with
ICIs was more effective for patients in the C1 subtype.

FIGURE 4
Immunotherapy prediction of UCEC patients using the TIDE algorithm. (A) Difference in response to immunotherapy among different metabolic
subtypes. (B) TIDE score, (C) dysfunction score, (D) exclusion score, (E)myeloid-derived suppressor cell (MDSC) score, (F) cancer-associated fibroblast (CAF)
score, and (G) M2-macrophages score.
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Landscape of somatic mutations and copy
number alterations of the metabolic subtypes
of UCEC

In order to reveal the genomic difference alterations among the two
metabolic subtypes of UCEC patients, we analyzed the top 15 frequency
mutation genes in patients of each subtype, which are displayed as a
waterfall plot in Figure 6A. ARID1A, PIK3CA, TTN, MUC16, KMT2D,
OBSCN, PTEN, and RYR2were in the top 15 genes of all genes in the two
metabolic subtypes. Among them, PTEN contributed 87% to the
mutation frequency in the metabolic C1 subtype compared to 36% in
the metabolic C2 subtype. The mutation frequency of ARID1A was also
higher in C1 (56%) than in C2 (29%). PIK3CA and MUC16 were
increased in C1 (54% and 30%) compared with C2 (44% and 23%).
Themutation frequencies of TTN, KMT2D, OBSCN, and RYR2 were not
significantly different among C1and C2. We found that TP53 had a 64%
higher mutation frequency in C2 while it has no mutation in C1, which
indicated that the TP53 mutation might play an important role in the
metabolic C2 subtype. Then, we compared the CNV alteration in C1 with
C2 subtypes, which showed some differences in chromosomal aberrations
(Figure 6B). Specifically, the CNV alteration in the C1 and C2 subtypes
had several similar amplification or deletion sites. By contrast, the
C1 subtype seems to have more amplification region alterations than
the C2 subtype. Meanwhile, the C2 subtype was revealed to have more
deletion regions than the C1 subtype. GISTIC2 showed that 3q26.2 was a
highly significant amplification in the C1 subtype, which contains the
MECOM gene (Supplementary Tables S3–S6). 10q23.31 was a highly
significant deletion in the C1 subtype, which contains PTEN and KLLN

genes (Supplementary Tables S3–S6). Other amplification and deletion
regions in the C1 subtype are shown in Supplementary Figure S6 and
Supplementary Tables S3–S6. CCNE1amplification in 19q12 was
significantly enriched in the C2 subtype. 19p13.3 was a highly
significant deletion in the C2 subtype, which contains DAPK3, EEF2,
SNORD37, and so on. Other amplification and deletion regions in the
C2 subtype are shown in Supplementary Figure S6 and Supplementary
Tables S3–S6.

Furthermore, we observed mutations in 2,752 metabolic genes. As
shown in Supplementary Figure S7, the top two most frequently mutated
metabolic genes in the C1 and C2 subtypes were the same, but the
mutation frequency was not the same. PTEN contributed 87% to the
mutation frequency in the metabolic C1 subtype compared to 36% in the
metabolic C2 subtype. Also, PIKCA is more frequently mutated in the
C1 subtype compared with the C2 subtype.

Prognostic risk model based on characteristic
genes of the metabolic subtypes of UCEC

Among the 326 different characteristic DEGs of the metabolic
subtypes based on univariate Cox analysis, 183 genes were shown to be
significantly correlated with the prognosis of patients, which was
confirmed in the LASSO regression analysis. We identified six
genes using LASSO-penalized Cox regression analysis in the
training set (Figures 7A, B). Subsequently, multivariate Cox
regression analysis was used to establish the metabolic signature,
and three genes were finally selected as predictors of OS in UCEC

FIGURE 5
The association between IPS and the metabolic subtypes of UCEC patients. (A) IPS of ctla4_neg_pd1_neg in C1 and C2 subtypes. (B) IPS of ctla4_neg_
pd1_pos in C1 and C2 subtypes. (C) IPS of ctla4_pos_pd1_neg in C1 and C2 subtypes. (D) IPS of ctla4_pos_pd1_pos in C1 and C2 subtypes.
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patients (Figure 7C). UCEC samples were divided into high-risk and
low-risk groups according to the median expression level of the risk
score, and the Kaplan–Meier analysis showed significant differences in
survival between the groups in the training sets. To further explore the
prognostic accuracy of our signature, we performed ROC analysis,
with areas under the curve >.69 for 1-, 3-, and 5-year OS times
(Figure 7D). Furthermore, the expression profile of the metabolic
signature genes was distinct in the twometabolic subtypes (Figure 7E).
The C2 subtype has a higher score than the C1 subtype (Figure 7F).
Survival analysis revealed that higher scores exhibited significantly

poorer prognosis of patients in each UCECmetabolic subtype (Figures
7G, H). The results are consentient with the aforementioned data that
the C2 subtype had the worst prognosis.

Validation of the risk model in TCGA
validation set

In our study, the TCGA patients were randomly divided into 7:3
(380 samples:164 samples) and datasets were selected as validation

FIGURE 6
Landscape of somatic mutation and copy number alteration of UCEC metabolic subtypes. (A) Somatic mutation waterfall plots of UCEC metabolic
C1 and C2 subtypes. (B) The distribution of copy number variations of the two metabolic subtypes in human chromosomes.

Frontiers in Genetics frontiersin.org09

Zhao and Li 10.3389/fgene.2023.955466

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.955466


FIGURE 7
Prognostic risk model based on metabolic characteristic genes of the metabolic subtypes in UCEC. (A) LASSO coefficients of the metabolic genes. (B)
Cross-validation of gene selection using 1-SE criteria in the LASSO regression analysis. (C) The forest plot of multivariate Cox regression analysis. (D) The
predictive value of gene signature in the training dataset. (E)Heatmap of the expression levels of signature genes in the metabolic subtypes. (F)Distribution of
risk scores in the UCEC metabolic subtypes. (G) Survival analysis of the metabolic-related signature in the UCEC metabolic C1 subtype. (H) Survival
analysis of the metabolic-related signature in the UCEC metabolic C1 subtype.
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sets, namely validation1 set and validation2 set. In the two
validation sets, patients were also divided into a high-risk group
and low-risk group. The KM plot showed significant statistical
differences in the survival probability of the high- and low-risk
groups, and the high-risk group had a lower survival probability.
ROC curves also further reflected the stable sensitivity and
specificity of the prognostic model (Figures 8A, B).

Gene expression verification and genetic
alteration analysis in the UCEC metabolic risk
model

In order to verify the expression of the three genes in the
risk model, the UALCAN database was used to visualize
their mRNA expression levels and found MBOAT2 and

FIGURE 8
Verification of the predictive value of gene signature in the 2 validation datasets. (A)Risk plot, ROC curve, and KM curve of high-risk and low-risk groups in
the validation1 set. (B) Risk plot, ROC curve, and KM curve of high-risk and low-risk groups in the validation2 set.
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MGAT4A were upregulated in tumors, while ASS1 was
downregulated (Figure 9A). Similarly, immunohistochemical
results of these three genes from The Human Protein
Atlas have similar trends in protein expression levels

(Figure 9B). The cBioPortal online tool was utilized for genetic
alteration analysis, and oncoplot showed that the frequency of these
three genes was approximately 5% in the TCGA UCEC cohort
(Figure 9C).

FIGURE 9
Verification of gene mRNA and protein expression in the risk model. (A) The mRNA expression levels of signature genes in UCEC tumor and normal
samples. (B)Representative protein expression levels of each gene in tumor and normal tissues. (C)Genetic alteration oncoplot of the three genes in theUCEC
risk model.
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Discussion

According to the traditional classification (based on some features,
e.g., different origins, pathogeneses, and genetic characteristics),
UCEC can be separated into type I and type II subtypes
(Bokhman, 1983). Type I UCEC is estrogen-dependent and has a
good prognosis (Hussein and Soslow, 2018). On the other hand, Type
II UCEC is non-estrogenic and has a poor prognosis (Carlson and
Nastic, 2019). In recent years, UCEC increased with a younger trend,
with incidence and mortality increasing. Early-stage UCEC could be
surgically removed followed by chemoradiotherapy, with a 5-year
survival rate of up to 90% (Guo et al., 2022). Metabolism has been
considered one of the key characteristic features of cancer. In this
study, based on the metabolic expression profiles, we divided the
UCEC patients into two metabolic subtypes and found that the two
metabolic subtypes showed distinct differences in many features, such
as patient survival outcomes, metabolic signatures, immune
signatures, genomic signatures, and immunotherapy efficiency.

In detail, the results showed that the C1 subtype had more active
metabolic pathways comparedwith the C2 subtype. Therefore, we defined
the C1 subtype as an active metabolic subtype and the C2 subtype as a
metabolic exhausted subtype. We all know the immune cell
microenvironment and the PI3K-Akt, Wnt, and MARK signaling
pathways were involved in UCEC development (Zhou et al., 2020).
Similarly, cancer pathway signatures such as the PI3K-pathway and
Wnt-pathway were also enriched in the C1 subtype, leading to tumor
development, which is consistent with the Type I UCEC report in other
studies (Hussein and Soslow, 2018). Moreover, tumor immune
microenvironment analysis demonstrated that the C1 subtype had the
higher immune score, stromal score, and ESTIMATEScore. These data
suggested that C1 subtype may have a high heterogeneity. Despite these
findings, some other studies have been conducted on UCEC thus far.
Based on the WNT metabolic gene family, UCEC was classified into two
subtypes using real-world data (Hu et al., 2021).

We compared the mutation and cnv alteration between the
C1 subtype and C2 subtype in further analysis. The results showed
that the C1 subtype has a higher mutation in genes such as PTEN,
PIK3R1, KRAS, ARID1, and CTNNB1, which has a good prognosis.
Interestingly, theC2 subtype had a highermutation in TP53, FBXW7, and
PPP2R1A genes, which had a poor prognosis. Also, the C2 subtype seems
to have a higher CNV alteration than C1. These results have higher
similarity with previous studies (Carlson and Nastic, 2019; Hussein and
Soslow, 2018; Kandoth et al., 2013). In previous analysis studies (Carlson
and Nastic, 2019; Hussein and Soslow, 2018; Kandoth et al., 2013), type I
UCEC is associated with mutations, such as PTEN, KRAS, ARID1A,
PIK3CA, and CTNNB1 and microsatellite instability (MSI).
P53 mutations and HER2 overexpression characterize type II UCEC.
Also, the C1 subtype and the C2 subtype in this study have similar
molecular features to the TCGAPOLE hyper-mutation subtype and high-
copy number type (such as the p53 gene mutation).

Then, we provide new insight into the treatment response relationship
between themetabolic classifications ofUCEC. Regarding immunotherapy
response prediction, the C1 subtype has a higher immune infiltration state,
which is typically associated with a good prognosis. TIDE is a new
computing architecture that predicts the immunotherapy response
mechanisms. The results showed that the C1 subtype was predicted to
be more responsive to immunotherapy. Together, these findings explain
that the C1 subtype has high immune infiltration and a good prognosis.
Using TCGA data, UCEC was identified in three immune subtypes, with

different tumor purities, immune scores, stromal scores, fractions of
different immune cells among UCEC subtypes (Liu et al., 2021). All
these results suggest that the tumor immune microenvironment has
different landscapes in UECE patients and subtypes.

It is well known that there is already a well-established UCEC
molecular classification by previous studies using TCGA (Kandoth
et al., 2013), which classified endometrial cancer into four subtypes:
POLE ultra-mutated, microsatellite instability hyper-mutated, copy-
number low, and copy-number high. In this study, we identified two
metabolic subtypes based on 2,752 metabolic genes. Comparing these
two metabolic genes with TCGA’s four subtypes, we found some
similarities, such as PTEN being highly mutated in the C1 subtype,
which is consentient with TCGA POLE ultra-mutated subtype.
Meanwhile, we found the C2 subtype has a higher CNV alteration
and frequent TP53 mutations (64%), which was also found in TCGA
copy-number high. Furthermore, we also have some new discoveries,
like the C1 subtype predicted to be more responsive to
immunotherapy, also with more mutations. These could provide
evidence for the treatment of endometrial cancer.

Finally, at the end of this study, we developed a metabolism-
related model signature, which had a better performance for prognosis
prediction in UCEC. The model signature consisted of 4 metabolic
genes, which were differentially expressed between the metabolic
subtypes of UCEC but were also significantly related to the
patient’s prognosis. Patients with high risk-scores showed
significantly poor prognosis in both training and validation datasets.

Conclusions

Using public TCGA cohort data, we accessed a molecular
classification of UCEC patients based on metabolism-related
subtypes. Then, we comprehensively described the subtypes’
metabolic characteristics, prognostic characteristics, immune
infiltration, genetic alteration, and responses to immunotherapy.
However, some flaws are also present in this study. First, a larger
sample size and further basic experiments are needed to support our
metabolic subtype. Then, validation of the classification in clinical
samples is also imperative. Overall, our works provide important
information for personalized therapies and prognostic predictions.
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