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Background:Colon cancer (CC) is a prevalentmalignant tumor that affects people
all around the world. In this study, N6-methylandenosine-related long non-
coding RNAs (m6A-related lncRNAs) in 473 colon cancers and 41 adjacent
tissues of CC patients from The Cancer Genome Atlas (TCGA) were investigated.

Method: The Pearson correlation analysis was conducted to examine the m6A-
related lncRNAs, and the univariate Cox regression analysis was performed to
screen 38 prognostic m6A-related lncRNAs. The least absolute shrinkage and
selection operator (LASSO) regression analysis were carried out on 38 prognostic
lncRNAs to develop a 14 m6A-related lncRNAs prognostic signature (m6A-LPS) in
CC. The availability of the m6A-LPS was evaluated using the Kaplan–Meier and
Receiver Operating Characteristic (ROC) curves.

Results: Three m6A modification patterns with significantly different N stages,
survival time, and immune landscapes were identified. It has been discovered that
the m6A-LPS, which is based on 14 m6A-related lncRNAs (TNFRSF10A-AS1,
AC245041.1, AL513550.1, UTAT33, SNHG26, AC092944.1, ITGB1-DT,
AL138921.1, AC099850.3, NCBP2-AS1, AL137782.1, AC073896.3, AP006621.2,
AC147651.1), may represent a new, promising biomarker with great potential. It
was re-evaluated in terms of survival rate, clinical features, tumor infiltration
immune cells, biomarkers related to Immune Checkpoint Inhibitors (ICIs), and
chemotherapeutic drug efficacy. The m6A-LPS has been revealed to be a novel
potential and promising predictor for evaluating the prognosis of CC patients.

Conclusion: This study revealed that the risk signature is a promising predictive
indicator that may provide more accurate clinical applications in CC therapeutics
and enable effective therapy strategies for clinicians.

KEYWORDS

colon cancer, m6A-related lncRNAs, tumor immune microenvironment, prognostic
signatures, immune landscape

OPEN ACCESS

EDITED BY

Maurice HT Ling,
Temasek Polytechnic, Singapore

REVIEWED BY

Ho Chun Loong,
Southern University of Science and
Technology, China
Yuhao Zhang,
Zhejiang Provincial People’s Hospital,
China

*CORRESPONDENCE

Hui Cai,
caialonteam@163.com

Xingguang Liu,
chenhongkouqiang@126.com

†These authors share first authorship

RECEIVED 28 March 2022
ACCEPTED 28 April 2023
PUBLISHED 16 June 2023

CITATION

Wang Y, Zhang D, Li Y, Wu Y, Ma H,
Jiang X, Fu L, Zhang G, Wang H, Liu X and
Cai H (2023), Constructing a novel
signature and predicting the immune
landscape of colon cancer using N6-
methylandenosine-related lncRNAs.
Front. Genet. 14:906346.
doi: 10.3389/fgene.2023.906346

COPYRIGHT

© 2023 Wang, Zhang, Li, Wu, Ma, Jiang,
Fu, Zhang, Wang, Liu and Cai. This is an
open-access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Genetics frontiersin.org01

TYPE Original Research
PUBLISHED 16 June 2023
DOI 10.3389/fgene.2023.906346

https://www.frontiersin.org/articles/10.3389/fgene.2023.906346/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.906346/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.906346/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.906346/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.906346/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2023.906346&domain=pdf&date_stamp=2023-06-16
mailto:caialonteam@163.com
mailto:caialonteam@163.com
mailto:chenhongkouqiang@126.com
mailto:chenhongkouqiang@126.com
https://doi.org/10.3389/fgene.2023.906346
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2023.906346


Introduction

Globally, colon cancer is a common malignant tumor in
humans that has a high morbidity and mortality rate (Lu and
Zhang, 2020; Xiaoyong et al., 2022). A poor prognosis leads to CC
posing a serious threat to the health of humans. Most colon cancers
are caused by poor dietary habits, age, lifestyle, lack of exercise, and
smoking (Xavier and Podolsky, 2007). In recent years, there have
been increased studies focusing on the modification of m6A within
the epigenetics field. The m6A modification, which transfers the
methyl group to the nitrogen-6 position of the adenosine base in
RNA, is the most abundant and reversible mRNA epigenetic
modification (Zhang et al., 2021a). The m6A methyltransferase,
also known as “writers”, installs m6A modification from RNA,
while the demethylase, also known as “erasers”, removes m6A
modification from RNA (Xu et al., 2021a). After m6A
modification, the mature mRNA is recognized by the “reader”
when it is exported from the nucleus to the cytoplasm (Zaccara
et al., 2019). The “reader” is a binding protein capable of
recognizing important chemical signals for m6A modification.
As a promising biomarker, m6A-related regulatory factors
participate in various biological processes in the occurrence and
progression of numerous diseases, especially malignant tumors
(Tian et al., 2020). The m6A-related regulatory factors are involved
in almost every RNA metabolism and processing step that
influence RNA function (Lan et al., 2021).

Long non-coding RNA (lncRNA), a type of transcribed RNA,
has various important biological functions (Johnsson et al., 2014).
As lncRNA is vital in almost all aspects of biological function, it is
indispensable for modulation, especially m6A. Furthermore,
lncRNA may also regulate m6A methylation through certain
pathways. In addition, m6A modification may affect lncRNA by
several regulatory mechanisms. Furthermore, m6A modification
may alter the structure of sectional RNA, allowing the
corresponding RNA-binding proteins to enter the ambient m6A
residues. Moreover, modification of m6A may affect the formation
of the RNA-DNA triplex, modulating the binding of RNA to target
DNA, and thereby regulating target genomic sites (Ma et al., 2019).
It has been reported that m6A-related lncRNAs contribute to
improving prognostic risk assessment and the development of
individualized therapy decisions in various cancers. For example,
Feng et al. (2021) demonstrated the prognostic predictive value of
the 6A-LPS, which included four m6A-related lncRNAs, and
evaluated the correlation with PD-L1 in head and neck squamous
cell carcinoma. Xu et al. (2021b) elucidated a risk signature
composed of 12 m6A-related lncRNAs as promising prediction
targets in lung adenocarcinoma prognosis and immune
responses. The m6A-related lncRNA signature has been shown
to have significant molecular prognostic value in gastric cancer
and may improve the development of personalized immunotherapy
strategies (Wang et al., 2021). However, the specific mechanism
through which m6A-related lncRNAs promote CC occurrence and
development remains unknown.

In this study, the expression data of 14,142 lncRNAs and
21 m6A regulators from TCGA were analyzed to identify three
m6A modification patterns, as well as develop an m6A-LPS using
the LASSO regression analysis. The 14 lncRNAs used to construct
the m6A-LPS were reported in CC for the first time. In addition, a

nomogram was established to predict the survival time of CC
patients. Finally, the relationship with immunotherapy responses
was investigated.

Materials and methods

Datasets and screening of m6A-related
lncRNAs

The transcriptome sequencing results, relevant clinical details, and
somatic mutation data of CC patients were collated via TCGA (https://
cancergenome.nih.gov/), which embodied mRNA and lncRNA
expression data from 473 colon cancers and 41 adjacent tissues of CC
patients. The GTF file was downloaded via Ensembl for annotation to
distinguish betweenmRNAand lncRNAs. Furthermore, a list of 21m6A-
related genes was screened based on previous literature, including
8 writers (RBM15, RBM15B, WTAP, METTL3, METTL14, KIAA1429,
CBLL1, and ZC3H13), 2 erasers (FTO and ALKBH5), and 11 readers
(YTHDC1, YTHDC2, IGF2BP1, IGF2BP2, IGF2BP3, HNRNPC,
HNRNPA2B1, YTHDF1, YTHDF2, YTHDF3, and RBMX). If the
expression level of a lncRNA was related to one or more of these
genes, it was identified as an m6A-related lncRNA. The correlation
between lncRNAandm6a regulators in the datasetwas determined by the
Pearson method. The square of correlation coefficient|R2|>0.5 and p < 0.
001 were used as the identification criteria for m6A-related lncRNAs.

Consensus clustering and comparison of
immune cell infiltration

Consensus clustering analysis was used to identify distinct
modification patterns and cluster the TCGA-COAD samples based
on the expression levels of prognostic lncRNAs. Consensus clustering
was used to determine the optimal number of clusters. The
ConsensusClusterPlus R package, which was the unsupervised
clustering method, provided stable visual evidence to estimate the
number of unsupervised clusters in a dataset (Wilkerson et al., 2010).
In order to ensure the classification was stable, 1,000 repetitions were
performed utilizing ConsensuClusterPlus package (Wilkerson et al.,
2010). In order to analyze the differences in immune infiltration levels
among multiple clusters, 22 immune cell types infiltrating the TCGA-
COAD samples were identified using the CIBERSORT package
(Wang et al., 2021; Wang et al., 2021; Y et al., 2022). The p-value
corresponding to the output result is of < 0.05 was considered
statistically significant.

Construction of the m6A-LPS

The single-factor Cox regression was used in conjunction with
survival data, and the prognosis-related lncRNAs with p < 0.05 were
screened using the log-rank test according to the TCGA database.
Subsequently, the Lasso regression analysis was carried out on these
lncRNAs to develop the m6A-LPS. The risk score for each case was
determined based on the expression of the predicted lncRNA
multiplied by the coefficient from the LASSO algorithm. The
Kaplan–Meier (K-M) method was used for assessing the difference
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in overall survival (OS). The receiver operating characteristic (ROC)
curve was drawn using the R package “survivalROC”. The sensitivity
and specificity of the m6A-LPS were examined using the area under
the curve (AUC). In order to determine if the m6A- LPS and
clinicopathological features served as independent factors for OS,
the univariate and multivariate Cox regression analyses were carried
out. The principal component analysis (PCA) was used to compare
the distribution of high- and low-risk score patients in CC by the
“prcomp” function of the “stats” R package.

Estimation of immune landscape and
immunosuppressive molecules with the
m6A-LPS

In order to assess the various immune landscapes in the different
risk subgroups, the currently acknowledged methods were utilized

to identify the infiltration of 22 immune cell types in the TCGA-
COAD samples, including TIMER (Li et al., 2017;Wang et al., 2020),
CIBER SORT (Chen et al., 2018; Zhang et al., 2020), XCELL (Aran
et al., 2017; Aran, 2020), QUANTISEQ (Plattner et al., 2020),
MCPcounter (Dienstmann et al., 2019), EPIC (Racle et al., 2017),
and CIBERSORT-ABS (Tamminga et al., 2020). A detailed
Spearman correlation analysis was performed using the R
ggplot2 packages. A p-value of < 0.05 was considered statistically
significant. The differences of 22 immune cell types were also
analyzed by the Wilcoxon test using the R ggpubr package. The
differences in the expression levels of biomarkers related to Immune
Checkpoint Inhibitors (ICIs) between different subgroups were
examined using a violin plot obtained with the R ggpubr package.

GSEA enrichment analysis

We used GSEA to examine immune function and biological
pathways. Functional enrichment analyses via Gene Ontology (GO)
and the Kyoto Gene and Genomic Encyclopedia (KEGG) pathway
analyses, were conducted by gene set enrichment analysis (GSEA)
4.1.0 (Subramanian et al., 2005; Kanehisa et al., 2017). p < 0.05 was
considered a significant category.

Quantitative real-time PCR

In accordance with the instructions of the manufacturer, cDNA
synthesis was performed by using the SYBR-Green Mix (Vazyme
Biotech Co.,Ltd.). The Real-time PCR (qRT-PCR) analysis was
conducted on The LightCycler 480 Real-Time PCR System. The
primers used for qRT-PCR were purchased from Servicebio (Wuhan
China). The related GAPDH mRNA expression was used as an
endogenous control. The primer sequences used in our study were
summarized in Table 1.

Statistical analysis

Gene expression and risk scores between subgroups were
compared using the Wilcox test. The Kaplan–Meier (K-M)
method was used for assessing the difference in OS among three
subgroups. An assessment of linear correlation between two random
variables was performed using the Pearson correlation coefficient.
All statistical analyses were performed using R (version 3.6.2),
GraphPad Prism 9 and Perl software in the present experiment.
All analyses performed were bilateral, with p < 0.05 being
statistically significant.

Results

Determining m6A-related lncRNAs in CC
patients

The workflow for the m6A-LPS analysis is illustrated in Figure 1.
Initially, the expression data of 14,142 lncRNAs and 21 m6A
regulators from TCGA, as well as the survival status, and clinical

TABLE 1 The primer sequences for qRT-PCR.

Gene The primer sequences (5′-3′)

AC245041.1-F GGATGTGCCATGACTGCTTACA

AC245041.1-R ACGCCACTGCCTTCTCAAACT

AL513550.1-F GCAACTCCACTTACAGACTACGGA

AL513550.1-R GTGGTGGAACTGTATCTGCAACAAA

AC099850.3-F AGTGGCAGTGTTGCAATCTCG

AC099850.3-R AAGGAATCTCTGAAGTCCATAGCAG

AL137782.1-F GTCAATGAGCCCTGAAGAACGA

AL137782.1-R GCACATATCAGTTGCCTCCAAA

AC073896.3-F GAAACCCTGAGACAACCATACC

AC073896.3-R TCTCCTGACTTCGTGATCCG

AP006621.2-F GATGCGGAACCCATAGATCCT

AP006621.2-R CGTCTTAGCGGCTGTCACTTACT

AC147651.1-F CATGGAAGCTCCGGGTTTC

AC147651.1-R CTCCTCCTTGGTGTCCCAGATT

SNHG26-F GGTCTGGCGCTTGAAAGAATC

SNHG26-R AGGGGGCCTTCTAGTCATGG

AL138921.1-F CCTGCCATCTATCCTCCAACTC

AL138921.1-R GAACTACTGTGCTGGCAAACCC

AC092944.1-F TCCAGATCACCACACCACATC

AC092944.1-R ACAAACTGCCCGCACCTTA

TNFRSF10A-AS1 (1)-F ACATTTGTTTAGGATGAGAGCTGC

TNFRSF10A-AS1 (1)-R GGCCGTCCAGTAAGCTAAGGT

ITGB1-DT-F ATAATTGGTCCGTGCCTGATTT

ITGB1-DT-R ACAGTGCTTGACGGTGGTGTTA

NCBP2-AS1-F GTGGGTAGGATCACTTAGGCTCA

NCBP2-AS1-R CATTGTGGTCCGCTTCTCTG
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data, were identified and obtained. A total of 1,234 lncRNAs were
identified by determining the Pearson coefficient of the lncRNA-
mRNA co-expression analysis (Figure 2A; Supplementary Table S1).
As shown in Figure 2B; Supplementary Table S2, 38 prognostic
m6A-related lncRNAs were filtered through a univariate Cox
regression analysis. The differences in expression of the
38 prognostic lncRNAs in CC and normal samples were analyzed
using the Wilcoxon test. The differential expression of 38 lncRNA
heatmaps (Figure 2C) and boxplots (Figure 2D) were plotted using
the “pheatmap” and “ggpot2” packages, respectively. The
correlations between the 38 prognostic lncRNAs and PD-L1 in
TCGA were examined using Spearman’s method, as displayed in
Figure 2E

Consensus clustering and comparison of
immune cell infiltration

Consensus cluster analysis was used to further explore the
expression characteristics of m6A-related lncRNAs in the TCGA-
COAD samples. The TCGA-COAD cohort was clustered into k
subtypes (k = 2–9) based on the 38 prognostic lncRNA expression
levels with the R package ConsensusClusterPlus (Figures 3A–D;
Supplementary Figure S1). The proportion of ambiguous clustering
measurements and the similarity in expression levels we measured
for the m6A-related lncRNAs shared by TCGA ultimately
determined k = 3 to have the best cluster stability. There was

also the least crossover between CC samples, when the
consistency matrix with a k value of 3 was selected.

In order to explore the clinical application value among the three
clusters, the relationship between cluster and clinical features was
evaluated using the Chi-square test, and the obtained heatmap is
displayed in Figure 3G Among the three clusters, there was a
significant difference in the N stage and, according to the
Kaplan–Meier method (p = 0.010) (Figure 3E), a clear difference in
survival time. The intracluster proportions for the three clusters were
then analyzed based on age, gender, T,N,M, and clinical stage as shown
in Figure 3H Subsequently, the CIBERSORT algorithm was used to
analyze the infiltration of 22 immune cell types among three clusters. It
was found that the Tregs differed significantly among the three clusters
(Supplementary Figure S2). The T cells regulatory (Tregs) differed
significantly among three clusters (Figure 3F). Furthermore,
cluster3 displayed a greater number of Mast cells resting compared
with cluster1. The NK cells resting, CD4 T cells memory activated,
CD8 T cells, T cells gamma delta, and T cells regulatory differed
significantly between cluster1 and cluster2. The T cells CD4 memory
activated, NK cells resting, T cells gamma delta, and T cells regulatory
differed significantly between cluster3 and cluster2.

Construction of the m6A-LPS

The LASSO regression analysis was performed on 38 prognostic
lncRNAs to develop a 14 m6A-LPS in TCGA dataset (Figures 4A, B;

FIGURE 1
Study flow chart.

Frontiers in Genetics frontiersin.org04

Wang et al. 10.3389/fgene.2023.906346

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.906346


FIGURE 2
Identification of m6A-related lncRNAs in CC. (A) Sankey relational diagram for 21 m6A genes and m6A-related lncRNAs. (B) Univariate Cox
regression analysis forest map of the 38 m6A-Related prognostic lncRNAs. Heat map (C) and box plot (D) of the differential expression of the 38 m6A-
Related prognostic lncRNAs. (E) The correlation among expression of the m6A-related prognostic lncRNAs and PD-L1. (F) Heatmap for the correlations
between 21 m6A genes and the 14 prognostic m6A-related lncRNAs. (G) Univariate Cox regression analysis for 14 m6A-related prognostic lncRNAs
in the m6A-LPS. (***p < 0.001; **p < 0.01; *p < 0.05)
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FIGURE 3
Consensus Clustering of the m6A-Related prognostic lncRNAs and Comparison of Immune Cell Infiltration. (A) The consensus clustering matrix at
k = 3 and their correlation area. The rows and columns of the matrix represent samples. The values of the consistency matrix are shown in white to dark
blue from 0 to 1, which represents the degree of consensus. (B)Consensus clustering cumulative distribution function (CDF) for k = 2 to 9. (C) The relative
variation of the area under the CDF curve that k from 2 to 9. Delta area curve of consensus clustering, indicating the relative change in area under the
CDF curve for each category number k compared with k–1. The horizontal axis represents the category number k and the vertical axis represents the
relative change in area under CDF curve. (D) Tracking plot for k from 2 to 9. (E) Kaplan–Meier survival curves of COAD for three clusters. (F) The T cells
regulatory (Tregs) differed significantly among three clusters. (G)The heatmap of the expression of the m6A-Related prognostic lncRNAs for three
clusters. (***p < 0.001; **p < 0.01; *p < 0.05). (H) age, gender, T stage, N stage, M stage, and clinical stage distributions for three clusters.
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FIGURE 4
The m6A-LPS predicts overall survival in patients with CC. LASSO regression was performed, calculating the minimum criteria (A,B). The patients in
the high-risk cohort had significantly shorter OS than those in the low-risk cohort in the training (C) and test sets (F); ROC curves of the m6A-LPS and
clinical features for prediction of 3-year OS in the training (D) and test sets (E); risk score distribution, the distribution of survival time and survival status,
and the heatmap of the expression of 14 m6A-related prognostic lncRNAs in the training (G) and test sets (H).
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Supplementary Table 3). The correlations between the 14 prognostic
lncRNAs and the m6A genes in TCGA were displayed in Figure 2F
As shown in Figure 2G; Table 2, forest maps corresponding to these
14 prognostic lncRNAs were drawn, with the prognostic favorable
factors TNFRSF10A-AS1, AC099850.3, AL137782.1, and
AC073896.3 among them. The rest, on the other hand, were
classified as prognostic unfavorable factors, and their over-
expression might reduce survival. The Kaplan–Meier method was
used to determine the prognostic value of the 14 hub lncRNAs in
CC, with the median expression being the cutoff value. As displayed
in Supplementary Figure S3, the four of the 14 hub lncRNAs
(AC092944.1, AL138921.1, SNHG26, and TNFRSF10A-AS1) were
identified using the Kaplan Meier-plotter (p < 0.05).

We obtained the risk score of each case; risk score = (−0.02102 ×
TNFRSF10A-AS1 expression) + (0.259351 × AC245041.1 expression)
+ (0.19614 × AL513550.1 expression) + (0.21851 × UTAT33
expression) + (0.075165 × SNHG26 expression) + (1.187719 ×
AC092944.1 expression) + (0.433276 × ITGB1-DT expression) +
(1.296707 × AL138921.1 expression) + (−0.04355 ×
AC099850.3 expression) + (0.034475 × NCBP2-AS1 expression) +
(−0.53815 × AL137782.1 expression) + (−0.20653 × AC073896.3
expression) + (0.09041 × AP006621.2 expression) + (0.299669 ×
AC147651.1 expression). In order to validate the accuracy of the
m6A-LPS, all cases were randomly separated into either a training set
or test set. Furthermore, all cases in the TCGA-COAD cohort were
separated into high- and low-risk subgroups in every set based on the
median risk score. The K-M analysis revealed that the OS of high-risk
patients declined compared to the low-risk patients in the training set
(p < 0.001) (Figure 4C), which was further validated by the results of
the test set (p = 0.001) (Figure 4F). Finally, the ROC curve revealed
that the m6A-LPS exhibited a relatively decent predictive value in
both the training and test sets in predicting a 3-year OS of CC in
comparison to other clinical factors, as shown in Figures 4D, E.

Figures 4G, H displays the risk score distribution, survival status,
survival time, and expression heatmap based on the m6A-LPS in both
the training and test sets. The ROC analysis revealed that the AUCs of
the m6A-LPS at 1-, 3-, 5-year was 0.714, 0.777, 0.799 in the training
set, respectively (Figure 5A); and that the AUCs of the m6A-LPS at 1-,
3-, 5-year was 0.686, 0.768, 0.774 in the test set (Figure 5B),
respectively. The calibration curves for the probability of OS at 1,
3, 5 year showed good consistency between the actual observation and
the m6A-LPS prediction (Figures 5C, D). According to Figures 5E, F,
the mortality rate of the high-risk patients was higher in the training
and test sets than in the low-risk patients. Following that, PCA
indicated that the training (Figure 5G) and test sets (Figure 5H)
should be distributed in two directions.

An independent prognostic analysis and
construction of an m6A-LPS-based
nomogram

The univariate and multivariate Cox regression analyses were
conducted to confirm whether the m6A-LPS and clinicopathological
features had independent prognostic characteristics for patients with
CC in the TCGA-COAD cohort. The univariate Cox regression
analyses revealed that the m6A-LPS, age, clinical stage, T, M, and
N were all significantly related to OS (Figure 5I). Furthermore, the
findings of the multivariate Cox analysis indicated that both m6A-
LPS, and Twere independent predictors for determining theOS of CC
patients in the TCGA-COAD cohort (Figure 5J). As an applicable
quantitative tool in the clinic, a nomogram containingm6A- LPS with
clinical features was established to evaluate the life expectancy of CC
patients in the TCGA-COAD cohort (Figure 6A). The total score for
each case was obtained by calculating the points of every parameter to
predict the 1-year, 3-year, and 5-year OS among CC patients. The
calibration curves for the probability of OS at 1, 3, 5 year showed good
consistency between the actual observation and the nomogram
prediction (Figure 6B). Finally, as shown in Figure 6C, the ROC
curve revealed that the m6A-LPS-based nomogram had relatively
decent predictive value in predicting 1-year (AUCs = 0.779), 3-year
(AUCs = 0.812) and 5-year (AUCs = 0.820) OS.

PCA confirms the ability of the m6A-LPS to
group

To validate risk models, PCA was also applied, and the results
were displayed using the R software’s “scatterplot3D” tools. PCA
was used to identify the distinct patterns of m6A distribution on
expression profiles of the whole gene (Figure 6E), 21 m6A genes
(Figure 6F), m6A-related lncRNAs(Figure 6G), and 14 hub lncRNAs
of the m6A-LPS (Figure 6H). It was clear from the m6A-LPS results
that there were more noticeable differences in distributions between
the low- and high-risk groups than from the other three approaches.
Based on the m6A-LPS, we intuitively observed that CC patients
were effectively divided into two subgroups. The risk score’s
concordance index increased over time, outpacing the
concordance index of other clinical indicators (Figure 6D). In
light of these findings, the m6A-LPS may be a better predictor of
the prognosis of CC.

TABLE 2 Univariate Cox regression analysis of the 14 m6A-related prognostic
lncRNAs.

Gene HR HR.95L HR.95H p-value

TNFRSF10A-AS1 0.877764 0.780347 0.987343 0.029842

AC245041.1 1.420121 1.16086 1.737284 0.000649

AL513550.1 1.32972 1.031234 1.7146 0.028014

UTAT33 1.956639 1.101711 3.474992 0.021992

SNHG26 1.465938 1.066651 2.014693 0.018389

AC092944.1 4.305508 1.249897 14.83114 0.020698

ITGB1-DT 2.126028 1.265159 3.572669 0.004398

AL138921.1 4.858409 1.449434 16.28507 0.010424

AC099850.3 0.949232 0.902233 0.998679 0.044325

NCBP2-AS1 1.492425 1.03152 2.15927 0.033617

AL137782.1 0.521446 0.286828 0.947978 0.032749

AC073896.3 0.609172 0.38826 0.955779 0.031024

AP006621.2 1.195053 1.06858 1.336495 0.001795

AC147651.1 1.974547 1.210404 3.221101 0.006435
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FIGURE 5
ROC curves of them6A-LPS to predict 1-, 3-, and 5-year survival in the training (A) and test sets (B). A calibration plot of them6A-LPS to predict 1-, 3-
, and 5-year survival in the training (C) and test sets (D). Mortality rates of the low- and high-risk subgroups in the training (E) and test sets (F). Principal
component analysis (PCA) plot in the training (G) and test sets (H). Univariable (I)andmultivariable (J) analyses for the risk score and other clinical features.
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Clinical correlation analysis

In order to explore the clinical practice of the m6A- LPS, the chi-
square test was used to investigate the relationship between the
m6A-LPS and clinical features. The heatmap from the resulting
diagram is displayed in Figure 8A. The cluster, T, N, and clinical
stages were all significantly different in the various risk-subgroups.

Following that, the Wilcoxon or Kruskal-Wallis tests were used to
examine the relationships between 14 hub lncRNAs and clinical
features (Figure 7B—M; Supplementary Table 4). AC147651.1,
TNFRSF10A-AS1, and the m6A- LPS were significantly linked to
the clinical stage; AL138921.1 and the m6A- LPS were significantly
linked to the T stage; AC099850.3-N, SNHG26, TNFRSF10A-AS1,
and the m6A- LPS were significantly linked to the N stage;

FIGURE 6
(A)Nomogram incorporatedwith them6A-LPS and clinical features for prediction of 1-, 3- and 5- years OS in patients with CC. (B)Calibration plot of
the nomogram to predict 1-, 3-, and 5-year survival. (C) ROC curves of the nomogram to predict 1-, 3-, and 5-year survival.f of m6A-LPS for the patients
divided by each clinical characteristic. (D) The concordance of risk score and other clinical indicators. PCA was used to identify the distinct patterns of
m6A distribution on expression profiles of the whole gene (E), 21 m6A genes (F), m6A-related lncRNAs (G), and 14 hub lncRNAs of the m6A-LPS (H).
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AC245041.1 was significantly linked to age; AL137782.1 was
significantly associated linked to the M stage.

Estimation of the immune landscape and
immunosuppressive molecules with the
m6A-LPS

A detailed correlation analysis using the Spearman method was
performed to determine the correlation between the m6A-LPS and

tumor-infiltrating immune cells based on the cohort data from
TCGA-COAD, with the results shown in a bubble plot (Figure 8A).
The results indicated that the m6A-LPS had a negative relation with
neutrophils, plasmacytoid dendritic cells, and resting mast cells, and a
positive relation with regulatory T cells, monocytes, B cells, and CD8+

T cells (Supplementary Figure 5; Supplementary Table 5). The results
were similar to consensus clustering analysis. The regulatory T cells are
highly expressed in both cluster 2 and high-risk groups, and both have the
worse prognosis (Figures 7N, O). As ICIs were recommended for treating
CC in clinics, the differences in ICI-related biomarkers between the two

FIGURE 7
Clinical Application Value of the m6A- LPS. (A) The heatmap of m6A-related gene expression, cluster, clinical features, andm6A- LPS. The box plots
along with the scatter plots showed that cluster (B), clinical stage(C), T stage(D), and N stage (E) were significantly associated with the risk score. (F–M)
Correlations between 14 hub lncRNAs and clinical features. (N,O) The difference of Treg cell infiltration in high and low risk groups.
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subgroups in the TCGA-COAD cohort were investigated. The Box-
Violin plots revealed that ICI-related biomarkers, such asCD274 (PD-L1),
CXCL10,GZMB, and IFNG, were upregulated in high-risk patients in the
TCGA-COADcohort (Figures 8B–F), whereasTBX2was downregulated.

Investigation of the correlation between the
m6A-LPS and chemotherapeutics

In order to evaluate the m6A-LPS in clinical practice for treating
CC, the therapeutic response was estimated by calculating the half-

maximal inhibitory concentration (IC50) of the standard
chemotherapeutic drugs for each sample. IC50 of
chemotherapeutics was obtained from the Genomics of Drug
Sensitivity in Cancer (GDSC) website in TCGA. The differences
in the IC50 between the high- and low-risk subgroups were examined
using the Wilcoxon signed-rank test. The results were displayed in a
box plot obtained utilizing the R packages ggpubr, pRRophetic, and
ggplot2. The box plot revealed a positive association between a high-
risk score and a higher IC50 of mitomycin (p = 0.0091) (Figure 8G)
and gemcitabine (p = 0.0038) (Figure 8H), suggesting that the m6A-
LPS has potential as a predictor in CC patients for chemosensitivity.

FIGURE 8
Assessment of Tumor-Infiltrating Cells and Immunosuppressed Molecules by the m6A-LPS. (A) The bubble plot visualized the correlation between
them6A-LPS and tumor infiltration immune cells by Spearman correlation analysis. Box-Violin plots visualized the correlation between them6A-LPS and
immune-checkpoint-relevant genes, CD274 (B), CXCL10 (C), GZMB (D), IFNG (E), and TBX2 (F); *p < 0.05, ** p < 0.01, and *** p < 0.001. Boxplots
evaluating the response to the mitomycin (G) and gemcitabine (H) chemotherapeutic between high-and low-risk patients.
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Exploration of the correlation between the
m6A-LPS and somatic variants

The maftools R package was utilized to explore the differences
between the two subgroups in tumor mutation burden (TMB) in the
TCGA-COAD cohort. Figures 9A, B showed the first 20 most
frequently mutated genes in the high- and low-risk subgroups. It
indicates that the low-risk subgroup has a more extensive TMB than
the high-risk subgroup. Then, all cases in the TCGA-COAD cohort
were separated into high TMB and low TMB subgroups according to
the cutoff of TMB. The K-M analysis revealed that the OS of the high
TMB subgroup declined compared to the low TMB subgroup (p =
0.036) (Figure 9C). Following that, the synergistic effect of TMB and
risk score in the prognostic stratification of CC patients was assessed.
The survival curve of TMB combined with risk score showed that

there was a clear difference in survival time among the four
subgroups (p < 0.001), including high TMB & high-risk score,
high TMB & low-risk score, low TMB & low-risk score, and Low
TMB & high-risk score (Figure 9D).

GSEA enrichment analysis

GSEA was applied to predict the potential GO and KEGG
pathways, and the top 5 most relevant items were selected.
Figures 10A–F showed the potential functions and access among
the three clusters. Following that, GSEA was applied to predict the
potential GO and KEGG pathways in the high- and low-risk
subgroups. With regard to KEGG pathway analysis as shown in
Figure 10G, we found that the following pathways were active in

FIGURE 9
Mutation frequency of the top 20 genes with the most frequent mutations in the training (A) and test sets (B). (C) Kaplan–Meier curves for patients
with high and low TMB subgroups in the TCGA cohort. (D)Survival analysis of distinct groups stratified by both TMB and risk score.
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high-risk subgroups: “oocyte meiosis”, “pathways in cancer”,
“regulation of actin cytoskeleton”; and that the following
pathways were active in low-risk: “drug metabolism cytochrome

p450”, “retinol metabolism”, “glycine serine and threonine
metabolism”, “tryptophan metabolism”, “fatty acid metabolism”.
In addition, the results of GO analysis (Figure 10H) indicated that

FIGURE 10
Significantly enriched GO terms and KEGG pathways via GSEA. The top five most relevant items GO terms (A) and KEGG pathways (B) between the
cluster2 and cluster1; The top fivemost relevant itemsGO terms (C) and KEGG pathways (D) between the cluster3 and cluster1; The top fivemost relevant
items GO terms (E) and KEGG pathways (F) between the cluster3 and cluster2; The top five most relevant items GO terms (G) and KEGG pathways (H)
between the high- and low-risk subgroups.
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“negative regulation of cellular amide metabolic process,” and
“intrinsic apoptotic signaling pathway,” were mainly enriched in
high-risk subgroups, and that “monocarboxylic acid catabolic
process,” “organic acid catabolic process,” “aromatase activity,”
“fatty acid catabolic process,” and “fatty acid beta-oxidation”
were mainly enriched in low-risk subgroups. The results revealed
the differentially enriched pathway and biological processes were
mostly related to tumor progression and metabolism.

Validation of survival predictive ability of the
m6A-LPS

The data of 452 CC patients in the TCGA-COAD cohort were
examined. In addition, a K-M curve was drawn to demonstrate the
correlation between clinicopathologic characteristics and prognosis.
The results indicated that age, T, N, M, and clinical stage were
statistically significant for prognosis (Supplementary Figure S4).

FIGURE 11
Kaplan–Meier curves for the prognostic value of m6A-LPS for the patients divided by each clinical characteristic. (A) age, (B) gender, (C) stage (D) T,
(E) M, (F) N.
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Following that, a stratified analysis for CC patients was performed,
which revealed that the m6A-LPS, as a dependable prognostic
indicator, had a robust predictive ability for the survival of CC

patients (Figure 11A—F). However, the m6A-LPS was not able to
independently estimate the survival of CC patients in the T1-2
(Figure 11D) subgroups.

FIGURE 12
The bar plot of 14 prognostic lncRNAs in normal and tumor tissues (A–N). The expression characteristics of the AC092944.1, AC245041.1,
AL513550.1, AC073896.3, AC099850.3, AL137782.1, AP006621.2, ITGB1-DT, NCBP2-AS1, SNHG26, TNFRSF10A-AS1 in multiple types of CC cell
lines (O–Y).

Frontiers in Genetics frontiersin.org16

Wang et al. 10.3389/fgene.2023.906346

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.906346


Experimental validation

The expression of the 14 prognostic lncRNAs significantly
differed in CC and normal samples (p < 0.05, Figures 12A–N) in
the TCGA-COAD cohort. The expression levels of 11 prognostic
lncRNAs were investigated in 3 CC cell lines (HCT116, HT29,
SW620), normal colon epithelial cells (NCM460) as control (Figures
12O–Y). The results showed that AC073896.3, AC099850.3,
AL137782.1, AP006621.2, ITGB1-DT, NCBP2-AS1, SNHG26, and
TNFRSF10A-AS1 were significantly increased in CC cell lines,
compared with NCM460. AC092944.1, AC245041.1, and
AL513550.1 were significantly decreased in CC cell lines cell line,
compared with NCM460.

Discussion

LncRNAs have been shown to promote or inhibit protein-
coding genes in a number of physiological and pathological
processes (Wilusz et al., 2009; Ma et al., 2017; Zhang et al., 2019).
Increasing evidence suggests that m6A-related genes can
regulate the incidence and progression of a variety of
malignant tumors by modifying specific lncRNAs.
Furthermore, lncRNAs could be used as competitive
endogenous RNAs to regulate tumor invasive progression by
targeting m6A-related genes.

Recently, several studies reported that the m6A-associated
regulators were dysregulated in CC, as well as being involved in
the initiation and progression of the disease. Ni et al. (2019)
identified a novel negative functional loop, the lncRNA GAS5-
YAP-YTHDF3 axis, in a clinical study. Compared to the adjacent
tissues, the expression of GAS5 was lower in CRC tissues. In CRC
patients, the high expression levels of YAP and YTHDF3 were linked
to the low expression of GAS5. These findings offer a novel
therapeutic option for CRC patients. According to Yang et al.
(2020), METTL14 was downregulated in CRC and the low
expression of METTL14 may be associated with the proliferation
and invasion in CRC. Moreover, it was discovered that lncRNA
XIST was a downstream target ofMETTL14, and that the expression
of XIST was negatively correlated withMETTL14 and YTHDF2. The
lncRNA RP11 is upregulated in clinical settings and is regulated by
m6A methylation. Furthermore, m6A-induced lncRNA RP11 can
promote CRC cell metastasis and proliferation through the
upregulation of Zeb1 (Wu et al., 2019).

The majority of previously published studies focused on the
intrinsic carcinogenic pathways of CC. However, how lncRNA
interacts with m6A regulators in carcinogenesis and progression of
CC, as well as the overall patterns of the m6A-related lncRNA in
CC, remain unknown. Therefore, in-depth studies of the m6A-
related lncRNA will contribute to the identification of therapeutic
biomarkers that have clinical prognostic value and the
development of more effective therapeutic strategies. In the
present study, we identified the m6A-related lncRNAs using
correlation analysis implemented by the Pearson method from
TCGA. The TCGA confirmed 38 m6A-related lncRNAs related to
the prognosis, and three m6A modification patterns with
significantly different N stages, survival time, and immune
landscape were identified according to these lncRNAs.

Additionally, 14 of 38 prognostic lncRNAs were applied to
develop an m6A-related lncRNA model to predict the OS of
CC patients. In further analysis, the overall survival, cluster, T,
N, and clinical stage significantly differed in the different risk-
subgroups in further analysis. Notably, the ROC curve revealed
that the m6A-LPS exhibited a relatively decent predictive value in
both the training and test sets in predicting a 3-year OS of CC in
comparison to other clinical factors. In addition, a nomogram was
established to predict the survival time of CC patients. Finally, the
relationship with immunotherapy responses was investigated.
Surprisingly, there was a significant correlation between the
m6A-LPS and the tumor-infiltrating immune cells. The m6A-
LPS has potential as a predictor of ICI treatment response and
chemosensitivity in CC patients.

Chang et al. (2021) identified a positive feedback loop “ITGB1-
DT/ITGB1/Wnt/β-catenin/MYC” among the 14 hub lncRNAs,
significantly promoting the proliferation, migration, and invasive
ability of lung adenocarcinoma cells. The enhanced expression of
ITGB1-DT, an oncogenic lncRNA, has been linked to the poor OS
and disease-free survival (Chang et al., 2021). NCBP2-AS1 has been
implicated in a model of colon adenocarcinoma recurrence
prognosis based on competing endogenous RNAs (Jin et al.,
2020). In renal cell carcinoma, AP006621.2 has been identified as
a redox-related prognostic factor (Qi-Dong et al., 2020). In bladder
cancer, SNHG26 was discovered to be an epithelial-mesenchymal
transition-related prognostic factor (Tong et al., 2021). In addition,
AC073896.3 and TNFRSF10A-AS1 have been used as components of
an autophagy-related lncRNA signature to improve colorectal
cancer prognosis (Wei et al., 2020; Zhou et al., 2020). Meanwhile,
AC073896.3 and TNFRSF10A-AS1 are prognostic favorable factors
for colon cancer, which is consistent with our study (Wei et al., 2020;
Zhou et al., 2020). AL137782.1 and AC073896.3 are protective
factors for colon cancer, which is consistent with our study
(Zhang et al., 2021b). Recently, AC099850.3 was proven to be
involved in the migration and proliferation of hepatocellular
carcinoma by regulating the expression of cell-cycle-related
molecules (Wu et al., 2021). In addition, AC099850.3 was highly
expressed in HCC and squamous cell carcinoma of the tongue and
increased the predicted value of the signature through coexpression
and the ceRNA mechanism (Zhou et al., 2019; Jia et al., 2020; Wu
et al., 2020; Jiang et al., 2021). However, there have been few reports
on the other lncRNAs.

Compared with the similar study by Chen S (Chen et al.,
2021), our model has a better predictive value for OS of cancer
patients at 1-, 3-, 5-year. Furthermore, we also comprehensively
investigated the relationship between the model and consensus
cluster, tumor infiltration immune cells, immunosuppressed
biomarkers, somatic variants, and chemotherapeutic drug
efficacy. Inevitably, there were several limitations to this study.
As a retrospective study, this study demonstrated a certain degree
of heterogeneity among patients, hence, future validation studies
are required. In addition, the m6A-LPS, as well as its correlation
with TME, did not undergo external verification because of
insufficient data from other independent cohorts. Therefore,
several methods were utilized to verify this novel prognostic
signature. Finally, the data of TCGA released publicly was
mainly mined and analyzed as this study required further
external validation in multicenter cohorts.
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Conclusion

This is the first study that comprehensively identified and
systematically analyzed the expression data of m6A-related lncRNAs
in CC in the TCGA database. Them6A-LPS, which is based on 14m6A-
related lncRNAs, has been revealed to be a novel potential and promising
biomarker for evaluating the prognosis of CC patients. The survival rate,
clinical features, tumor infiltration immune cells, immunosuppressed
biomarkers, and chemotherapeutic drug efficacy were all re-evaluated.
This study revealed that the risk signature is a promising predictive
indicator that may provide more accurate clinical applications in CC
therapeutics and enable effective therapy strategies for clinicians.
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