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N6-methyladenosine (m6A) modification has been demonstrated to exhibit a
crucial prognostic effect on colorectal cancer (CRC). Nonetheless, potential
mechanism of m6A in survival rate and immunotherapeutic response remains
unknown. Here we investigated the genes associated with m6A regulators and
developed a risk score for predicting the overall survival (OS) of CRC patients.
RNA-seq transcriptomic profiling data of COAD/READ samples were obtained
from The Cancer Genome Atlas (TCGA) database. Absolute Shrinkage and
Selection Operator (LASSO)- Cox regression analysis was conducted to identify
the m6A-related gene expression signatures and the selected genes were
inputted into stepwise regression to develop a prognostic risk score in TCGA,
and its predictive performance of CRC survival was further validated in Gene
Expression Omnibus (GEO) datasets. According to our results, the risk score
comprising 18 m6A-related mRNAs was significantly associated with CRC
survival in both TCGA and GEO datasets. And the stratified analysis also
confirmed that high-risk score acted as a poor factor in different age, sex, T
stage, and tumour, node, metastasis (TNM) stages. The m6A-related prognostic
score in combination with clinical characteristics yielded time-dependent area
under the receiver operating characteristic curve (AUCs) of 0.85 (95%CI:
0.79–0.91), 0.84 (95%CI: 0.79–0.90) and 0.80 (95%CI: 0.71–0.88) for the
prediction of the 1-, 3-, 5-year OS of CRC in TCGA cohort. Furthermore,
mutation of oncogenes occurred more frequently in the high-risk group and
the composition of immune cells in tumour microenvironment (TME) was
significantly distinct between the low- and high-risk groups. The low-risk
group had a lower microsatellite instability (MSI) score, T-cell exclusion score
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and dysfunction score, implying that low-risk patients may have a better
immunotherapy response than high-risk patients. In summary, a prognostic risk
score derived from m6A-related gene expression signatures could serve as a
potential prognostic predictor for CRC survival and indicator for predicting
immunotherapy response in CRC patients.

KEYWORDS

colorectal cancer, prognostic risk score, gene expression, overall survival, immune
responses

Introduction

Colorectal cancer (CRC) is the third most common cancer and a
leading cause of cancer mortality worldwide (Bray et al., 2018).
Although the survival time of CRC patients has been significantly
extended by clinical treatment, the 5-year OS of CRC patients is still
not ideal, with a rate of approximate 68% (Yuan et al., 2021).
Presently, emerging evidence has shown that the discovery and
application of molecular biomarkers may provide important clinical
implications on the prognosis and treatment of CRC patients
(Bramsen et al., 2017).

N6-methyladenosine (m6A) is one of the most prominent
and abundant forms of internal RNA modification involved in
stabilizing transcripts, affecting degradation process of mRNA
and non-coding RNA, and promoting initiate translational
efficiency (Wang et al., 2014; Liu et al., 2015; Ma et al., 2019;
Sun et al., 2019). This modification regulated by
methyltransferases, demethylases, and binding proteins, is a
dynamic reversible process in mammalian cells, which are also
known as “writers”, “erasers”, and “readers” (Yang et al., 2018).
Of note, some of these effects are mediated by m6A “readers”
proteins, which can selectively recognize m6A and exert a
regulatory function on the m6A-marked mRNAs (He and He,
2021). Several recent systematic studies of the cross-link between
m6A modification, substrate genes, and post-modification
regulation to reveal the biological role of m6A in cancer
development comprehensively (Luo et al., 2018; Chang et al.,
2019). METTL3 enhances translation of oncogene BRD4 through
forming an mRNA loop in lung adenocarcinoma, and promotes
expression of SRY (sex-determining region Y)-box 2 (SOX2)
through IGF2BP2-directed suppression of RNA degradation in
CRC (Choe et al., 2018; Li et al., 2019). The m6A functions
induced by m6A related modification enzymes can be influenced
by environmental exposure (e.g., reactive oxygen species,
inflammation, and cyclobutene pyrimidine dimers) and
genomic signals (e.g., somatic mutation), thereby epigenetics
provides a molecular basis for cancer development (Li D.
et al., 2020; Rong et al., 2021). To date, accumulating evidence
demonstrated that dysregulated m6A methylation modification
is associated with multiple biological processes, including
dysregulate cell proliferation and death, immunomodulatory
abnormality and tumour malignant progression (Fu et al.,
2014), thus could be closely related to a variety of human
diseases, in particular cancer (Hong, 2018). For instance, it is
shown that YTHDF2 may act as a tumour suppressor to restrain
cell proliferation and growth via destabilizing the EGFR mRNA
in hepatocellular carcinoma (Zhong et al., 2019). Previous study

on the pathological role of m6A modification in CRC reported that
METTL3, one of m6A regulators, directly induced m6A-glucose
transporter 1 (GLUT1)-mammalian target of rapamycin complex
1 (mTORC1) axis to promote CRC initiation and progression
(Chen et al., 2021). Likewise, another experimental study showed
that METTL3 stabilizes HK2 and SLC2A1 (GLUT1) expression in
CRC through an m6A-IGF2BP2/3- dependent mechanism,
thereby pointing to the notion that m6A modification is a
promising indicator of controlling human CRC aggressiveness
(Shen et al., 2020). However, the specific role of m6A regulators
in the dysregulation of mRNAs in CRC prognosis remains unclear.

The tumour microenvironment (TME), which is composed of
various cancer cells, stromal cells, and distinct recruited cells
(infiltrating immune cells, bone marrow-derived cells), plays a
vital role in tumour progression and affects the clinical benefit
from novel strategies of immunological checkpoint blockade (ICB)
(Hanahan and Coussens, 2012; Topalian et al., 2012). ICB treatment,
such as those programmed cell death protein 1 (PD1), programmed
death-ligand 1 (PDL1) and cytotoxic T-lymphocyte antigen 4
(CTLA-4) is now the first class of immunotherapy to have a
broad impact on survival for cancer patients, across a wide
variety of tumour histologies and treatment settings (Littman,
2015; Lonberg and Korman, 2017; Ribas and Wolchok, 2018;
Wieder et al., 2018). Emerging studies have made efforts to
understand the heterogeneity and complexity of the TME by
elaborate analysis of m6A modification, therefore improving
immunotherapy strategies (Li N. et al., 2020). Predicting the
immunotherapy response of CRC patients based on multiple
m6A-related biomarkers has the potential to develop a
personalised treatment strategy and therefore to increase the
success of ICB (Fang and Declerck, 2013; Quail and Joyce, 2013;
Binnewies et al., 2018).

In this study, we sought to elucidate the m6A related mRNAs
signatures for predicting the overall survival (OS) and immune
responses of CRC patients using transcriptome data from The
Cancer Genome Atlas (TCGA) (2012) (Cancer Genome Atlas
Network, 2012) and Gene Expression Omnibus (GEO) (Smith
et al., 2010; Marisa et al., 2013) datasets. We focused on the
m6A-related genes and developed a multivariate Cox prediction
model for the OS of CRC patients and examined its prognostic
ability in immunotherapy response. We additionally explored the
candidate drugs targeting these m6A-related gene signatures using
the publicly available Genomics of Drug Sensitivity in Cancer
(GDSC) database for predicting drug sensitivity (Yang et al.,
2013). Findings from this study are helpful to predict the
prognosis of CRC and develop personalized CRC treatment
strategies.
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Materials and methods

Study population and datasets

A study sample of 644 CRC patients from the TCGAwas used as
a training dataset. RNA-seq [Fragments Per Kilobase of transcript
per Million mapped reads (FPKM normalized)] were acquired from
Genomic Data Commons Data Portal (https://portal.gdc.cancer.
gov/) using the R package “TCGAbiolinks”, which was
specifically developed for integrative analysis with Genetic Data
Commons (GDC) data (Colaprico et al., 2016). Then FPKM values
were transformed into transcripts per kilobase million (TPM)
values. The corresponding clinicopathological information and
somatic mutation data of CRC patients were obtained from the
cBioPortal database (https://portal.gdc.cancer.gov/). Two study
samples (GSE39582, N = 566; GSE17536, N = 177) from the
GEO database were used as validation datasets, and their
normalized microarray gene expression data and
clinicopathological data were obtained online (https://www.ncbi.
nlm.nih.gov/geo/). Those RNA probe sets were re-annotated using
the Ensemble database (http://www.ensembl.org). CRC patients
with missing survival data and OS values or OS < 30 days were
excluded in order to reduce statistical bias in this analysis.

Identification of m6A-related prognostic
genes

The expression matrices of 21 m6A regulators were retrieved
from the TCGA, including the expression data of eight writers
(METTL3, METTL14, METTL16, RBMX2, RBM15B, WTAP,
KIAA1429, and ZC3H13), two erasers (FTO and ALKBH5), and
eleven readers (YTHDF1, YTHDF2, YTHDF3, YTHDC1, YTHDC2,
IGF2BP1, EMR1, LRPPRC, HNRNPA2B1, HNRNPC, and ELAVL1).
Based on the RNA-seq data, Pearson’s correlation analysis was firstly
implemented to identify m6A-related genes, using the criteria of |
Pearson R| >0.3 and p < 0.001. Univariable and multivariable Cox
regression models (false discovery rate, FDR<0.05) and the least
absolute shrinkage and selection operator (LASSO) Cox regression
were conducted subsequently to select the m6A-related prognostic
genes that were distinctly related to the OS of CRC patients. The
proteins of m6A regulators and m6A-related prognostic genes in
CRC and normal tissues were further examined by using
immunohistochemistry data in the human Protein Atlas (HPA)
(https://www.proteinatlas.org/) database, which provided
expression levels of 24,000 protein in different tissues and cells
(Uhlen et al., 2017).

Development and validation of the m6A-
related prognostic risk score

A weighted prognostic risk score of m6A-related gene
expression was constructed based on the following formula: Risk
score =∑n

i�1Coef (Genei) × Expr(Genei), where Coef (Genei) was
the coefficient of genes correlated with CRC survival, and Expr
(Genei) was the expression of genes. The prognostic value of the risk
score was evaluated by Kaplan-Meier survival curves with log-rank

tests in both TCGA and GEO study samples. Multivariate Cox
regression analysis was performed to evaluate the prediction
performance of the m6A-related prognostic risk score. Patients
with CRC were further stratified into low- and high-risk groups
based on the median value of the prognostic risk score of m6A-
related genes.

Analysis of the molecular characteristics in
the low- and high-risk groups

To explore the biological function and alternative pathways
of these m6A-related gene signatures, we performed a co-
expression and pathway enrichment analysis based on the
TCGA database, using the Kyoto Encyclopaedia of Genes and
Genomes Pathway (KEGG pathway) as reference (Kanehisa and
Goto, 2000). Linear regression was performed to detect co-
expressed genes (FDR<0.05). In the gene mutation analysis,
we obtained somatic mutation information from the
cBioPortal database, and the quantity and quality of gene
mutations were analysed in low- and high-risk groups by
using the Maftools package in R.

Exploration of immunotherapeutic response
between low- and high-risk groups

To depict immune characteristics of CRC patients, the entire
expression data were imported into CIBERSORT (https://cibersort.
stanford.edu/) and a deconvolution algorithm using support vector
regression was used and iterated 1,000 times to determine the
relative proportions of 22 immune cell types in tumours. The
relative proportions of immune cell types and clinicopathologic
factors were compared between the low- and high-risk groups. The
tumour Immune Dysfunction and Exclusion (TIDE) score was
calculated online (http://tide.dfci.harvard.edu/) to predict the
likelihood of immunotherapeutic response between the low- and
high-risk groups.

Prediction of potential compounds targeting
therapeutic sensitivity in CRC patients

To obtain potential compounds with differential therapeutic
sensitivity, we investigated the predictive capacity of the low- and
high-risk groups in responding immunotherapy. The 50%
inhibiting concentration half-maximal inhibitory concentration
(IC50) value of 138 anti-cancer drugs was inferred from the GDSC
website based on the COAD/READ dataset of the TCGA project.
The “pRRophetic” algorithm (Geeleher et al., 2014) was used to
predict the IC50 of compounds in the low- and high-risk groups
separately.

Statistical analysis

An independent t-test was performed to compare continuous
variables between two groups. Categorical data were tested using the
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FIGURE 1
Landscape of genetic of m6A regulators in colorectal cancer. (A) Themutation frequency of 21m6A regulators in 169 patients with CRC from TCGA
cohort. (B) Bar graphs showing the frequency of CNV gain (green), loss (blue) and non CNV (yellow) of m6A regulators in TCGA-COAD/READ cohort. (C)
Principal component analysis for the expression profiles of 21 m6A regulators to distinguish tumours from normal samples in TCGA cohort.
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χ2 test. Pearson correlation analysis was implemented to identify
m6A-related genes (with the | Pearson r | >0.05 and p < 0.001).
Univariate survival analysis was performed by K-M survival analysis
with the log-rank test to calculate the significance of differences in
the OS. Multivariate survival analysis was performed using the Cox
regression model to estimate the hazard ratio (HR). The time-
dependent area under the receiver operating characteristic curve
(AUC) was estimated to evaluate the predictive power of the risk

score and TNM stage to the OS. Stratification analysis was
performed to investigate the survival difference in subgroups,
including age, sex, T stage, N stage, M stage, American Joint
Committee on Cancer (AJCC) TNM stage and radiation therapy
history. A nomogram of the risk score and other predictors was set
up accordingly for the prediction of the 1-, 3-, 5- year OS. The p
values were two-sided and p < 0.05 was considered as statistically
significant.

TABLE 1 Correlation between subgroups and clinicopathological factors in the TCGA cohort.

Variable Overall (n = 551) High-risk (n = 275) Low-risk (n = 276) p-value

Age, n (%) 0.730

<60 years 164 (29.8%) 80 (29.1%) 84 (30.4%)

≥60 years 387 (70.2%) 195 (70.9%) 192 (69.6%)

Gender, n (%) 0.581

Female 254 (46.1%) 130 (47.2%) 124 (44.9%)

Male 297 (53.9%) 145 (52.7%) 152 (55.1%)

Cancer type, n (%) 0.368

COAD 408 (74.0%) 199 (72.4%) 209 (75.7%)

READ 143 (26.0%) 76 (27.6) 67 (24.3%)

AJCC stage, n (%) <0.001

I 96 (17.4%) 35 (12.7%) 61 (22.1%)

II 201 (36.5%) 85 (30.9%) 116 (42.0%)

III 163 (29.6%) 98 (35.6%) 65 (23.6%)

IV 79 (14.3%) 50 (18.2%) 29 (10.5%)

Not available 12 (2.2%) 7 (2.6%) 5 (1.8%)

T stage, n (%) 0.004

T1-2 116 (21.1%) 44 (16.0%) 72 (26.1%)

T3-4 435 (78.9%) 231 (84.0%) 204 (73.9%)

M stage, n (%) 0.020

M0 411 (74.6%) 193 (70.2%) 218 (79.0%)

M1-x 135 (24.5%) 79 (28.7%) 56 (20.3%)

Not available 5 (0.9%) 3 (1.1%) 2 (0.7%)

N stage, n (%) <0.001

N0 314 (57.0%) 128 (46.5%) 186 (67.4%)

N1-x 237 (43.0%) 147 (53.5%) 90 (32.6%)

Radiotherapy, n (%) 0.301

No 457 (83.0%) 224 (81.5%) 233 (84.4%)

Yes 27 (4.9%) 16 (5.8%) 11 (4.0%)

Not available 67 (12.1%) 35 (12.7%) 32 (11.6%)

Survival status, n (%) <0.001

Alive 438 (79.5%) 189 (68.7%) 249 (90.2%)

Dead 113 (20.5%) 86 (31.3%) 27 (9.8%)
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Results

Landscape of genetic variation of m6A
regulators in CRC patients

A total of 21 m6A regulators, namely, 8 “writers”, 2 “erasers”,
and 11 “readers”, were included in this study. We firstly assessed
the prevalence of somatic mutations and copy number variations
(CNV) of these 21 m6A regulators. Among the 551 samples, 169
(30.67%) had mutations in any of the m6A modification regulators
(Figure 1A; Table 1). ZC3H13 exhibited the highest mutation
frequency (23%) followed by KIAA1429 (18%) and YTHDC2
(15%), while demethylases ALKBH5 (2%) and WTAP (3%)
showed low number of mutations in CRC samples. Somatic
copy number alterations of these m6A regulators were then
examined, and we found that METTL14 (34%), METTL16
(56%), ALKBH5 (58%) and YTHDF2 (38%) had a widespread
frequency of CNV deletions (Figures 1B, C). To ascertain whether
the above genetic variations influenced the expression of m6A
regulators in CRC patients, we investigated the mRNA alterations
of the m6A regulators between paired normal and tumour samples
of CRC patients. This showed that alterations of CNV were
prominent factors, resulting in perturbations on the m6A
regulators expression. Compared to the normal colon tissues,
regulators with CNV gain demonstrated markedly higher
expression in CRC tissues (e.g., YTHDF1 and KIAA1429)
(Figure 1B; Supplementary Figure S1). And vice versa, some
regulators showed downregulated mRNA expression but with
high frequency of CNV loss (e.g., ALKBH5). This analysis
showed the high heterogeneity of genetic and expressional
alteration landscape of m6A regulators between normal and
tumour samples, demonstrating that the expression imbalance
of m6A regulators may be important in the initiation and
progression of CRC.

Identification of m6A-related genes in
patients with CRC

A total of 551 COAD/READ patients from the TCGA database
were included in our study to calculate the prognostic risk score of
m6A-related genes. The detailed workflow for risk model
construction and subsequent analyses is shown in Figure 2. We
abstracted the matrix expression of 21 m6A regulators and
19,982 mRNAs from the TCGA database. Correlations between
these 21 m6A regulators and 19,982 mRNAs were examined and we
identified 4,274 mRNAs that were significantly correlated with m6A
regulators base on the criteria of |Pearson R|>0.5 and p < 0.001. To
identify m6A-related genes that correlated with the OS of CRC
patients, we screened from 4,274 m6A-associated mRNAs in the
TCGA training set using univariate Cox regression analysis. At
FDR<0.05, fifty-seven m6A-related mRNAs correlated significantly
with OS (Supplementary Table S1).

Construction of the prognostic risk score
based on m6A-related gene expression
signatures

To avoid overfitting, the LASSO-Cox regression was applied to
optimise the selection of gene signatures in relation to the OS.
Consequently, 18 m6A-related mRNAs (PMM2, ERI1, NEK9,
USP53, CNOT3, CDK5RAP2, ING5, HMGXB4, SH3D19, UBE2H,
CLK1, SFPQ, UBP1, PDCD6IP, ZNF248, SCL25A53, CLCC1 and
GPR125) were finally selected to construct a m6A-related prognostic
risk score for CRC survival (Supplementary Figures S2A, S2B). The
correlation between m6A regulators and m6A-related gene
expression in the TCGA dataset is showed in Supplementary
Figure S3. Twelve out of the 18 gene products and 17 out of the
21 m6A regulators were obtained from the HPA database, and the

FIGURE 2
Flow chart of this study.
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other six genes and four m6A regulators were not available or in low
reliability. The immunohistochemistry-stained proteins of the
17 m6A regulators and 12 genes in CRC and normal tissues were
shown in Supplementary Figures S4A, S4B. A weighted prognostic
risk score of m6A-related gene expression was constructed based on
the gene expression levels of the 18 selected markers. CRC patients
were separated into high- and low-risk groups based on the median
value of the prognostic risk score constructed by the m6A-related
gene expression signatures. The distribution of risk scores between
the low- and high-risk groups is depicted in Figure 3A, and the
survival status and survival time of CRC patients in the low- and
high-risk groups are shown in Figure 3B. The expression levels of the

18 m6A-related genes in the low- and high-risk groups are shown in
Figure 3C. Kaplan–Meier survival curves showed that CRC patients
with higher risk scores had worse clinical outcomes (lower OS rates
and a shorter OS time, HR = 1.30, 95%CI: 1.21–1.41; p = 5.85e-10,
log-rank test) (Figure 3D). Based on the entire gene expression
profiles, 21 m6A regulators and the expression profile of the
18 m6A-related genes, PCA analysis was further conducted to
test the difference between the low- and high-risk groups
(Supplementary Figures S5A–C). As showed Supplementary
Figures S5A, B, the gene expression profiles of the low- and
high-risk groups were differently distributed (Supplementary
Figures S5C).

FIGURE 3
Prognostic value of the risk patterns of the 18m6A-related gene signatures in the TCGA training dataset, GSE39582 andGSE17536 validation dataset.
(A) Distribution of m6A-related gene expression model-based risk score for TCGA. (B) Different patterns of survival status and survival time between the
high- and low-risk subgroups for TCGA. (C) Clustering analysis heatmap shows the expression standards of the 18 prognostic genes for each patient for
TCGA. (D) Kaplan-Meier survival curves of the OS of patients in the high- and low-risk subgroups for TCGA. (E) Distribution of m6A-related gene
expression model-based risk score for the GSE39582. (F)Different patterns of survival status and survival time between the high- and low-risk subgroups
for the GSE39582. (G) Clustering analysis heatmap shows the expression standards of the 18 prognostic genes for each patient for the GSE39582. (H)
Kaplan-Meier survival curves of the OS of patients in the high- and low-risk subgroups for the GSE39582. (I)Distribution of m6A-related gene expression
model-based risk score for the GSE17536. (J) Different patterns of survival status and survival time between the high- and low-risk subgroups for the
GSE17536. (K) Clustering analysis heatmap shows the expression standards of the 18 prognostic genes for each patient for the GSE17536. (L) Kaplan-
Meier survival curves of the OS of patients in the high- and low-risk subgroups for the GSE17536.
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Validation of the prognostic risk score based
on m6A-related gene expression signatures

Detailed clinicopathologic characteristics of CRC patients in
TCGA and GEO datasets are shown in Table 1 and Table 2. The
expression of 18 m6A-related genes was closely correlated with the OS
of CRC patients as determined by K-M analysis (Supplementary
Figures S6). According to the subgroups classified by sex, age,
AJCC TNM stage or tumour stage, the OS of the low-risk group
continued to be superior to that of the high-risk group (Supplementary
Figures S7A–H). To validate the prognostic capability, we calculated
the risk scores for CRC patients in two GEO (GSE39582, N = 553;
GSE17536, N = 176) datasets using the same formula. As showed in
Figures 3E–G; Figures 3I–K, patients stratified into the high-risk group
had a significantly worse prognosis than those in the low-risk group
(Figure 3H, HR = 2.27, 95%CI: 1.68–3.06, p = 9.30e-03, log-rank test;
Figure 3L, HR = 1.66, 95%CI: 1.40–1.96, p = 2.58e-05, log-rank test),
which was consistent with the results of TCGA dataset.

Molecular characteristics of the low- and
high-risk groups stratified by the prognostic
risk score

To demonstrate the potential mechanisms and pathways
involved in the molecular heterogeneity leading to the different
outcomes between the low- and high-risk groups, we performed
functional enrichment analysis with annotation of KEGG gene set.
We found that m6A-related gene expression signatures were
differentially enriched (FDR<0.05) in the pathways related to
cancer, immune response, and neural signaling between the two
groups (Supplementary Table S2), and pathways that more than half
of the gene signatures enriched in were summarized in
Supplementary Figure S8. When examining the somatic
mutations, we found that the top 20 cancer driver genes mutated
more frequently in the high-risk group than in the low-risk group,
including four tumour suppressor genes (e.g., APC, TP53, LRP1B
and ZFHX4) and the other sixteen genes (e.g., TTN, KARS, MUC16,
SYNE1, PIK3CA, FAT4, RYR2 DNAH5, RYR1 and FBXW7, etc.)
are oncogenes in disease development and progression (Figures
4A,B), and significant co-occurrences were also observed among
mutations of these genes (as shown in Figure 4C).

Estimation of the tumour immune
microenvironment and cancer
immunotherapy response

To analyse the composition of immune cells in different risk
groups, we used the Wilcoxon test to compare the distribution of

immune cells. As shown in Figure 5A, we found that CD8 T cells,
Tregs regulatory T cells, M0 macrophages, and resting natural
killer (NK) cells were more abundant in the high-risk group,
while plasma cells, resting memory CD4 T cells, activated
memory CD4 T cells and M2 macrophages were more
abundant in the low-risk group. Likewise, activated memory
CD4 T cells and M2 macrophages are significantly distributed in
different stages of CRC patients (Supplementary Figure S9). The
correlations between the m6A-related signature model and
immunotherapeutic biomarkers were then investigated.
Compared with that in the low-risk group, PD1 and
CTLA4 expression in the high-risk was significantly higher,
suggesting that high-risk CRC patients have a potential
response to anti-PD-1 immunotherapy (Figures 5B–D).
Additionally, higher TIDE prediction score represented a
higher potential for immune evasion, which suggested that
the patients were less likely to benefit from (ICB) therapy. In
our results, the low-risk group had a lower TIDE score than the
high-risk group, implying that low-risk patients may have a
better immunotherapy response than high-risk patients. Also,
we found that the high-risk group had a higher microsatellite
instability (MSI) score, T-cell exclusion score and dysfunction
score (Figures 5E–H). To find the potency of m6A-related
prognostic score as a biomarker for predicting the response of
CRC patients to drugs, “pRRophetic” algorithm was used to infer
the therapeutic response based on the IC50 value of the 138 anti-
cancer drugs in TCGA-COAD/READ patients. We found
50 chemotherapeutic drugs displaying differential
IC50 between these two groups (Supplementary Figure S10).

Construction of nomogram based on
prognostic risk score and clinical
characteristics

We next investigated the distribution of the risk score of
patients with CRC using different conventional clinical
information (including sex, T stage, N stage, M stage and
AJCC TNM stage), and confirmed that CRC patients with
higher T, N or TNM stage had a higher risk score
(Figure 6A). Univariate Cox analysis showed that age,
radiation history, T stage, N stage and the prognostic risk
score were significantly associated with the prognosis of CRC
(Figure 6B). Multivariate Cox analysis confirmed that the
prognostic risk score based on m6A-related gene expression
signatures was an independent predictor of CRC survival
(Figure 6C). Multivariate Cox prediction models combing
prognostic risk score and clinical characteristics yielded
AUCs of 0.854 (95%CI: 0.795–0.913), 0.844 (95%CI:
0.790–0.898) and 0.796 (95%CI: 0.708–0.883) for the

TABLE 2 Clinical information of CRC cohorts from GEO dataset.

Accession number Platform Tumor samples Survival data Stage Gender PMID

GSE39582 GPL570 566 553 T stage I-IV: 553 M:322; F:263 23700391

GSE17536 GPL570 177 176 Stage I-IV: 176 M:96; F:81 19914252
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FIGURE 4
Molecular characteristics of different risk subgroups. (A, B) Waterfall plot displays tumour somatic mutation information of the genes with high
mutation frequencies in the high-risk subgroup (A) and low-risk subgroup (B). Mutated genes (rows, top 20) are ordered by mutation rate; samples
(columns) are arranged to emphasize mutual exclusivity among mutations. The right shows the mutation percentage, and the top shows the overall
number of mutations. The color coding indicates the mutation type. (C) The co-expression patterns of top 20 mutated genes in CRC patients.
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prediction of the 1-, 3-, 5-year OS (Figures 7A–C), which
displayed superior predictive performance over the model
that only included clinical characteristics with AUCs of 0.808
(95%CI: 0.740–0.875), 0.793 (95%CI: 0.730–0.856) and 0.755
(95%CI: 0.665–0.845). Calibration plots showed that the
observed vs predicted rates of 1-, 3-, 5-year OS had good
concordance (Figures 7D–F). Accordingly, based on the risk
score and clinical characteristics, a prognostic nomogram was
established for the prediction of OS in CRC patients as shown in
Figure 7G. The validation results (Supplementary Figure S11)
were consistent with the findings in TCGA training set, which
indicated that m6A-based model had a stable OS-predictive
ability.

Discussion

Here, we developed a prognostic risk score based on m6A-
related gene expression signatures and performed external
validation to assess its prediction accuracy. Our study indicated
that the m6A-based prognostic risk score was an independent

predictor for CRC survival and had improved the prediction
accuracy of CRC survival when combined with clinical
characteristics. When stratified by this risk score, a worse
survival rate, lower immunogenicity, and greater number of
somatic mutations were shown in the high-risk group. The low-
risk group had a lower TIDE score than the high-risk group for
predicting immunotherapy response, implying that low-risk
patients could benefit more from immunotherapy than high-risk
patients.

Evidence from numerous studies have been discovered that
RNA modifications regulate most steps of the gene expression,
from DNA transcription to RNA translation (Helm and Motorin,
2017; Delaunay and Frye, 2019), through the effect of CNV and
mutations to m6A regulators, including the alterations of
RBM15, YTHDF2, YTHDC1, YTHDC2, and METTL14
(Zhang Q. et al., 2020). Besides, recent studies suggest that
m6A modification plays important roles in RNA metabolism
and cell proliferation, with significant implications on a variety of
cell-physiological processes and cancer development (Zhang C.
et al., 2020; Tian et al., 2020). In our study, functional enrichment
analyses indicated that CDK5R4P2, CLK1, CNOT3, GPR125,

FIGURE 5
The landscape and estimation of the tumor immune microenvironment using the m6A-related gene signatures model. (A) The proportions of TME
cells in different risk subgroups. Significant statistical differences between the two subgroups were assessed using the Wilcoxon test, the asterisks
represented the statistical p-value (blank, not significant; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001). (B–D) Expression of the immune
checkpoints PD1(B), PDL1(C) and CTLA4 (D) between high- and low-risk groups. (E–H) TIDE (E), MSI (F), and T-cell exclusion (G) and dysfunction (H)
score in the high- and low-risk patients. The scores between the two risk subgroups were compared through the Wilcoxon test (*p < 0.05; **p < 0.01;
***p < 0.001; ns, not significant).
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ING5, SFPQ and UBE2H are mainly involved in the neural,
destabilization and metabolic processes of mRNA signatures,
and influence the growth, differentiation and communications
of multiple colon cell types. Interestingly, GPR125 and SFPQ
were enriched in a neural signaling pathway in relation to
Spinocerebellar ataxia. Additionally, CLK1, a novel CLK
kinases inhibitor, has been reported to impair the growth of
CRC cell lines and organoids, and inhibit anchorage-

independent colony formation and cell migration, thus
promoting cytotoxicity (Sohail et al., 2021). UBE2H belongs to
the ubiquitin-conjugating enzyme (UBE2) family, and there are
several studies investing the role of UBE2 family in
carcinogenesis, especially malignant breast cancer (Ayesha
et al., 2016) and lung cancer (Jiang et al., 2017; Liu and Xu,
2018). Evidence from the existing research suggested that MET-
UBE2H might be a novel prognostic biomarker or target in lung

FIGURE 6
Correlation between the 18-gene expression signatures and clinical characteristics. (A) Difference analysis of the distribution of risk scores in
different T, N, M, AJCC TNM stages, gender, and radiation history. Statistical difference of two groups was compared by the Wilcoxon test and three or
more groups were compared by the Kruskal–Wallis test (*p < 0.05; **p < 0.01; ***p < 0.001; ns not significant). (B, C) Univariate (B) and multivariate (C)
Cox regression analyses of correlations between the 18-gene expression signatures and clinical characteristics with OS, and revealed that the risk
score based on the m6A-related gene expression signatures was an independent prognostic predictor in the TCGA dataset.
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adenocarcinoma (Zhu et al., 2018). And UBE2H was also
identified as an m6A-related hub gene closely related to the
clinicopathology and prognosis of CRC using a prognostic
signature model (Zhang and Zhang, 2021). In concordance
with our findings, Cejas et al also found that CNOT3
overexpression in colon tissues was associated with worse
prognosis outcomes of CRC (Cejas et al., 2017).

Our study firstly developed a prognostic risk score based on
18 m6A-related gene expression signatures that could be used as
an index to predict the OS of CRC patients, and further validated
its predictive performance in two independent external datasets.
The risk stratification analysis showed that the m6A-based
prognostic risk score had a good prognostic accuracy in
predicting the OS in both the TCGA and validation datasets.

Time-dependent AUC also confirmed that combination of the
m6A-related prognostic risk score with clinical predictors (TNM
stage and age) displayed superior predictive performance over
the model that only included clinical characteristics of OS for
CRC patients. Stratified analysis also confirmed that the risk
score could predict CRC survival with good performance in
different clinical subgroups (age, T stage, AJCC TNM stage).
Taken together, this m6A-based prognostic risk score could be
used as an independent predictor for CRC survival and the
application of risk score in combination with clinical
characteristics could improve the prediction accuracy of CRC
survival.

Using this m6A-related prognostic risk score as a classifier,
CRC patients were stratified into low- and high-risk groups to

FIGURE 7
Assessment of the prognostic risk model of the m6A-related gene expression signatures and clinical features in CRC. (A–C) Time-dependent
receiver operating characteristic (ROC) curves for the nomogram, risk score, and clinical characteristics in the TCGA dataset on predicting 1- (A), 3- (B),
and 5-year (C) OS. (D–F) The calibration plot of the nomogram predicts the probability of the 1- (D), 3- (E), and 5- (F) year OS. (G) Nomogram for
predicting the 1-, 3-, and 5-year OS of patients with CRC.
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gain further biological insight into the gene mutations and
immunologic nature of CRC patients in different risk groups.
We found that m6A-related gene expression signatures were
differentially enriched in the pathways related to cancer,
immune response, and neural signaling between the two
groups. When examining the somatic mutations, we found
that the top 20 cancer driver genes mutated more frequently
in the high-risk group than in the low-risk group, and significant
co-occurrences were also observed among mutations of these
genes. By examining the immunologic nature of CRC patients in
different risk groups, we found high-risk group generally had
higher monocytes and macrophages M1 infiltration and
fractions of T cells CD8, and lower memory resting
CD4 T cells than low-risk patients. Evidence from
experimental studies observed that the infiltration levels of
CD8+T increased in YTHDF1-deficient mouse tumour,
thereby enhancing an elevated antigen-specific CD8+T cell
antitumor response in vivo (Han et al., 2019). Additionally, it
has been reported that CRC patients enriched with
M1 phenotype and the high islet density of M1 macrophages
would have poor prognosis (Zhang et al., 2012), as well as
M0 macrophages (Zhang et al., 2021). And researches have
revealed that the strategies converting M2 macrophages to
M1 macrophages of tumour associated macrophages (TAMs)
suppressed tumour growth (Dong et al., 2020). Of note, another
study of human CRC specimens illustrated that those with high
densities of CD4+T were associated with a lower likelihood of
tumour relapse and improved OS (Galon et al., 2006), which are
consistent with the findings from our study. These indicate
that the m6A-related gene expression signatures may
modulate the TME phenotypes to influence the survival of
CRC patients.

Emerging pieces of evidence showed that different TME
phenotypes might have different degrees of benefit from
immunotherapeutic treatment (Wang et al., 2019). It is reported
that less immunogenic cancer cells are selected for during tumour
development in immune-competent hosts to evade antitumor
immune responses (Dunn et al., 2002), which may result in
increased immunosuppressive cells (e.g., regulatory T cells and
TAMs) and expression of immunosuppressive molecules (e.g.,
CTLA4 and PD1). As expected, we found that CTLA4 and
PD1 expression levels was significantly higher in high-risk CRC
patients. A Tumour Immune Dysfunction and Exclusion (TIDE)
score has been increasingly used as an index for predicting
immunotherapeutic response (Jiang et al., 2018). Consistently,
using the TIDE algorithm, we estimated the immune response
and found that patients in the low-risk group have a superior
response to immunotherapy. Chemotherapy results indicated that
the high-risk patients with CRC were more sensitive to
24 chemotherapies than low-risk patients. These results suggested
that the poorer prognosis for high-risk patients could be due to
higher immunosuppression in the TME, and that TME may
influence the response of chemotherapy and immunotherapy.
Based on these findings, this m6A-based risk score might also be
used as an indicator for predicting immunotherapy response among
CRC patients.

Our study also provides insight into the process and
mechanism of m6A modification of gene expression signatures

for future studies. However, we are also aware of several
limitations in this study. Although the m6A-related gene
signatures prognostic risk score showed superior performance
on the prediction of CRC survival and the response to
immunotherapy, it should be prospectively validated in real
clinical settings and the clinicopathological factors should also
be considered. Moreover, distribution of immune cells in this
m6A-based classifier (e.g., T cells and macrophages infiltration)
could be influenced by the difference in research datasets,
sequencing method and sample size, and both the TIDE and
MSI scores focused on the function and status of T cells, which
could not fully reflect the complexity of the TME involved in the
immunotherapeutic response. Thus, further observational and
experimental studies should be performed to elucidate the
accuracy of this prognostic risk score in the prediction of CRC
survival, and to understand how targeted immunotherapy against
m6A regulators could be applied in the clinic to achieve much
improved cancer therapy in the future.

In conclusion, we developed a prognostic risk score based on the
expression signature of 18 genes associated with m6A modification
to predict the OS of CRC patients and their response to
immunotherapy. This work highlights the clinical implications of
this risk score in distinguishing immune and molecular
characteristics and identifying response of target treatments. The
derived m6A-related risk score showed the potential to be used as a
prognostic and therapeutic indicator for the prediction of CRC
prognosis and the development of individualized CRC treatment
strategy.
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