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Introduction: Protein engineering, which aims to improve the properties and
functions of proteins, holds great research significance and application value.
However, current models that predict the effects of amino acid substitutions
often perform poorly when evaluated for precision. Recent research has shown
that ProteinMPNN, a large-scale pre-training sequence design model based on
protein structure, performs exceptionally well. It is capable of designing mutants
with structures similar to the original protein. When applied to the field of protein
engineering, the diverse designs for mutation positions generated by this model
can be viewed as a more precise mutation range.

Methods:We collected three biological experimental datasets and compared the
design results of ProteinMPNN for wild-type proteins with the experimental
datasets to verify the ability of ProteinMPNN in improving protein fitness.

Results: The validation on biological experimental datasets shows that
ProteinMPNN has the ability to design mutation types with higher fitness in
single and multi-point mutations. We have verified the high accuracy of
ProteinMPNN in protein engineering tasks from both positive and negative
perspectives.

Discussion: Our research indicates that using large-scale pre trained models to
design protein mutants provides a new approach for protein engineering,
providing strong support for guiding biological experiments and applications
in biotechnology.
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1 Introduction

Protein engineering holds considerable importance in biotechnology and biomedicine,
which embodies the modification of natural sequences found in nature to optimize the
properties and functions of proteins, especially enzymes and it has been widely applied in
many fields (Narayanan et al., 2021). However, the experimental measurement of protein
properties and functions is laborious and is applicable only to proteins that can be purified
(Stevens, 2000). Currently, the prevalent methods are rational design In Silicon and directed
evolution screened by computational methods.
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In computational protein engineering, the most common approach
is to combine machine learning methods, statistical potentials, physical
and chemical properties, sequence features, and evolutionary
information to construct models or energy functions to predict the
mutation effects of protein sequences after amino acid substitution.
Certain endeavors have made progress in specific downstream tasks,
such as predicting enzyme catalytic activity (Li et al., 2021), solubility
(Khurana et al., 2018; Chen et al., 2021) and stability of natural proteins
(Broom et al., 2020; Chen et al., 2020; Li et al., 2020; Benevenuta et al.,
2021; Wang et al., 2023). Particularly noteworthy is the work predicting
the thermal stability of proteins based on the difference in folding free
energy before and after mutation.

The performances of these methods have been evaluated and
compared across different datasets of experimentally characterized
mutants, demonstrating that while all methods reflect correct trends
in their predictions, most are overly optimistic about their actual
performance (Benevenuta et al., 2023). When applied to independent
test sets, some models that claimed to achieve 70%–80% accuracy at
the time of publication, only achieved an actual accuracy rate of 20%
(Broom et al., 2020; Pucci et al., 2022). Such results fail to meet the
requirements for guiding wet experiments and limit the further
development of protein engineering in directional evolution strategies.

Deep learning model AlphaFold2 has made a significant
breakthrough in predicting protein structure from amino acid
sequences (Jumper et al., 2021), addressing a fundamental problem
in protein biochemistry. The corresponding inverse problem, which
predicts sequences and sequence mutations that can fold into the
same or similar structures from the protein structure, has also made
significant progress (Ferruz et al., 2022; Hesslow et al., 2022; Madani
et al., 2023). ProteinMPNN, a deep learning method for protein
sequence design, has shown outstanding performance in
computational and experimental tests (Dauparas et al., 2022).
Working on the backbone of natural proteins, ProteinMPNN
achieves a sequence recovery rate of 52.4%. Nevertheless, the
diverse design results for sites that are not perfectly replicated in
the sequence may also possess significant research value. A recent
study indicates that high-confidence erroneous predictions on the
wild-type could potentially identify mutation locations and possible
targets for protein engineering (Kulikova et al., 2021). Sequences
designed by ProteinMPNN, which fold similarly to the wild type, can
be viewed as mutants of the wild type protein. ProteinMPNN obtains
diverse design results through the deviation of natural protein
sequence recovery results, and defines a concise and accurate
mutation space. This process potentially results in proteins with
improved functions and properties.

In this study, the diverse results designed at each site in the
sequence are considered to be the mutation space under structural
constraints for that position. We tested this method using a
biological experimental dataset. Our comparative analysis of both
single and multiple point mutations datasets showed that the
sequences, designed by ProteinMPNN using natural proteins as
templates, demonstrated considerable effectiveness. Especially in the
design for single point, up to 60.8% of the results within the defined
mutation space were proved to be effective by the experimental
dataset, far superior to methods and tools for predicting the effect of
point mutations. This suggests that ProteinMPNN has the capability
to design mutants with improved adaptability, which carries
significant implications for determining a plausible mutation

space, reducing harmful mutations, expediting targeted
mutagenesis, and steering biological experiments.

2 Methods

2.1 TEM-1 β-lactamase

TEM-1 β-lactamase protein has been widely studied for its
resistance to penicillin antibiotics in E. coli, and its mutation
effects have also attracted much attention (Jacquier et al., 2013).
Firnberg et al. (2014) conducted comprehensive research on gene
point mutations, codon mutations, and nearly all possible single
amino acid substitutions of TEM-1 β-lactamase, proposed a
comprehensive distribution of fitness effects (DFE) and
established a fitness landscape model for the evolution of TEM-1
protein. The fitness scores of 95.6% (5212/5453) of the mutants in
the TEM-1 sequence mutation space were experimentally measured.
In this task, except for the signal sequence composed of the first
25 residues, ProteinMPNN will sequentially design the remaining
positions in the sequence and compare the design outcomes with
experimental data to determine the proportion of mutants in the
designed results that can maintain or enhance the fitness of TEM-1.

ProteinMPNN claims the ability to make inferences at higher
temperatures. In some deep learning models, appropriately using the
temperature parameter can fine-tune the model’s predictive
probability distribution to be either smoother or sharper. During
the design process of ProteinMPNN, the temperature sampling
parameter adjusts the probability values for the 20 amino acids at
each position in the sequence, thereby controlling the diversity of the
design outcomes. The temperature sampling parameter of
ProteinMPNN ranges from 0 to 1, with higher values leading to
increased diversity in the designed results. Diversity is crucial for this
task, low diversity may lead to the loss of many beneficial mutations,
while diversity greater than 0.5 can result in a noticeable decrease in
sequence recovery rates. This might cause ProteinMPNN to define
excessively large mutation ranges for each position, rendering it less
meaningful. Therefore, this task is conducted at three temperature
samples: 0.1, 0.3, and 0.5.

Some hypotheses suggest that enzyme thermostability can affect
protein abundance, thus influencing protein catalytic activity
(fitness) (DePristo et al., 2005; Camps et al., 2007; Tokuriki et al.,
2007; Wylie and Shakhnovich, 2011). The authors predicted ΔΔG
(ΔGwild-type − ΔGmutant) values for 4,783 missense mutations of
TEM-1 using tools like PoPMusic (Dehouck et al., 2011). They
combined the observed melting temperature and fitness correlation
from experiments, demonstrating a relationship between the
thermostability and fitness of individual proteins. In a related
work on model-guided protein sequence design, landscape
training data was also obtained from this dataset, and the fitness
was considered as thermodynamic stability (Ren et al., 2022).

Currently, there are many tools for predicting the stability
changes after single point mutations in protein sequences. We
selected three representative methods. PoPMusic, based on
folding free energy calculation, and mCSM(Pires et al., 2014),
which using graph-based signatures, are well-tested prediction
tools, with superior performance on most datasets compared to
other methods. DeepDDG (Cao et al., 2019), which also performs
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well on some independent datasets, is considered a representative of
stability prediction using deep learning algorithm. While
ProteinMPNN is not a predictor, its application in single-point
design results in a proportion of truly beneficial outcomes within its
design range (mutation space). This is conceptually similar to
precision in prediction tools, as this metric largely determines the
success rate of biological experiments guided by their respective
results. Hence, we will use these three methods to predict the
saturation mutations of all sites on TEM-1, and compare their
precision with the results of ProteinMPNN.

2.2 Green fluorescent protein (GFP)

Green fluorescent protein (GFP) is a protein originally derived
from the Victoria multibarrelled luminous jellyfish. It can be excited
by light ranging from blue to ultraviolet and emits green
fluorescence. The structure of GFP is defined by a sequence of
238 amino acid residues, forming a tightly packed structure. This
structure includes 11 β-pleated sheets arranged in a barrel shape,
which surrounds the central chromophore, S65-Y66-G67 (Ormö
et al., 1996). In molecular biology, medicine, and cell biology, GFP is
commonly used as a biomarker due to its stability and the fact that
its chromophore is formed through self-catalyzed cyclization
without the need for cofactors. Moreover, its stable structural
characteristics and reliable functional performance have made it
an ideal subject for exploring the complex relationships between
protein sequences, structures, and functions, as well as for
establishing comprehensive landscapes of protein fitness in recent
years. Sarkisyan et al. (2016) have contributed remarkable work to
the community. They experimentally measured the fluorescence
level of more than 50,000 sequences synthesized through random
mutagenesis in mutants. These mutants were obtained by making
single or multiple residue substitutions in the wild-type
GFP(avGFP) sequence from position 3 to 237. In the original
work, the authors reported that more than 75% of mutant
fluorescence intensity was lower than that of the wild type. But
the reduced fluorescence was more likely to result from the
combined effect of multiple residue mutations or the
accumulation of harmful mutations. Single mutations have a
small effect on fluorescence intensity, but 9.4% of single
mutations still result in a more than 5-fold decrease in
fluorescence. A related work collated the fitness landscape data of
this protein, providing fluorescence scores of 1051 single residue
mutants, of which 953 were considered to be light (on) and 98 were
dark (off) (Masso, 2020).

Considering the fact that most single pointmutations have limited
effects on fluorescence function, ProteinMPNN designed single-point
mutant sequence still has a high probability of maintaining
fluorescence. However, the current experimental data on single-
residue mutants, in comparison to the entire sequence’s mutational
space, remains sparse. The results generated by ProteinMPNN cannot
be fully compared with the experimental data. Therefore, in this task,
we will use the GFP’s off mutants as the comparison object of the
ProteinMPNN’s design results. Within the single residue mutation
dataset, a total of 98 mutant variants are distributed across 66 distinct
sites, indicating that mutations occurring within themutation space of
these sites can significantly diminish fluorescence intensity. Our aim is

to utilize ProteinMPNN to design these 66 positions. We intend to
assess whether ProteinMPNN can, in regions with uncertain
mutational effects, avoid deleterious mutations. ProteinMPNN
needs to delineate a small and reasonable mutation space for these
66 positions, and this mutation space should have minimal overlap
with the off mutants in the dataset. The criterion is that the probability
of harmful mutations in the ProteinMPNN design results, denoted as
P, should be lower than that of random mutations, Prand. i.e.,

P � N

DMPNN
(1)

Prand � Doff

D
(2)

the mutation space of all 66 positions involved in the mutation is D,
with a size of 66 × 19 = 1254. The set of 98 harmful mutations in the
dataset is Doff, the mutation space defined by ProteinMPNN is
DMPNN, where the harmful mutations N are the intersection of Doff

and DMPNN. In this task, the design is still carried out under three
temperature samples of 0.1, 0.3, and 0.5.

2.3 PTMUL

The mutational space and complexity of multiple point
mutations are far greater than single point mutations, and the
impact on protein structure changes and properties and functions
is also far more significant than single point mutations. Introducing
multiple amino acid substitutions at multiple positions in site-
directed mutagenes is also a common method. However, most of
the current work in downstream tasks only predicts the effect of
single point mutations, and there are few neural network models
that predict the effect of multiple point mutations. The primary
reason for this might be the severe lack of reliable data, restricting
neural networks from capturing multi-point mutational synergies.
In this case, a method for designing protein mutation sequences
based on structural design may be a solution to this problem. The
PTMUL dataset is a thermodynamic dataset containing only
multiple point mutations (Montanucci et al., 2019), including
914 records of multiple point mutations from 91 protein
structures and 77 clusters. Each mutant type includes mutations
with a number of mutation sites ranging from 2 to 10. This dataset is
sourced from Protherm (Kumar et al., 2006), which is one of the
most extensively used resources in protein stability research. We
obtained structural information for the relevant proteins from the
PDB website. After excluding proteins with excessively short
sequences, incomplete structures, and those lacking favorable
mutation records, we ultimately collected 251 mutation records
from 49 protein variants, comprising 185 different mutation site
combinations.

In this task, ProteinMPNN is configured with a temperature
sample of 0.3. For each mutation type involving three or fewer sites,
50 results are designed. For mutation types with more than three
sites, 100 results are generated. While this approach may result in
duplicate sequences within the outcomes, the results obtained after
manually excluding these duplicates ensure that ProteinMPNN has
conducted thorough designs for each mutation combination. As an
illustration, for E. coli ribonuclease H (PDB: 2RN2), there are a total
of 18 records in the PTMUL dataset. Among these, 6 records
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indicate a decrease in stability, while the remaining 12 records show
an increase in stability. Within these 12 records showing increased
stability, there are seven different combinations of mutation sites.
ProteinMPNN is used to conduct comprehensive designs for each of
these seven multi-point mutation combinations. The obtained
mutation results are then compared with the mutation records of
the 2RN2 protein from the dataset, verifying whether ProteinMPNN
retains the ability to design mutations with higher fitness for the
complex task of multi-point protein mutations.

3 Results

3.1 TEM-1 β-lactamase

The fitness dataset for TEM-1 β-lactamase protein is a saturated
dataset, enabling precise calculations of both ProteinMPNN’s accuracy
and third-party prediction tool precision in this task. In this dataset, we
have defined mutations with a Fitness score above 1.0 as those capable of
maintaining or improving the fitness of TEM-1. The proportion of such
mutations in the dataset is 21.7% (1094/5032, excluding signal
sequences). Consequently, in the results designed by ProteinMPNN,
the proportion ofmutant types that canmaintain or improve adaptability
should at least surpass this benchmark to indicate that the method is
effective. For third-party prediction tools, their precision must also be at
least higher than this proportion to prove that the prediction model
shows the correct trends. The purpose of using different temperature
samples in this task is to control the diversity of design results. Although a
lower temperature sample may increase the proportion of advantageous
mutations in the results, it can only recover some sites to the same unique
residues as the wild-type, reducing the diversity of design results and
missing out on somemutant results thatmay improve fitness. Raising the
temperature sample results in more comprehensive coverage of
advantageous mutations, but it may lead to an overall decrease in
precision. Our statistical results align with these expectations (Table 1).

In the context of the TEM-1 sequence design task, a total of
264 positions were individually designed. When the temperature
sample was set at 0.1, 139 positions recovered to the same amino
acids as the wild-type sequence, while the remaining 125 positions
yielded 171 mutation results. Among these, 104 were empirically
validated as mutations that maintained or improved fitness,
constituting 60.8% (104/171). With the temperature sample
increased to 0.3 and 0.5, the figures became 162/296 and 244/
480, with proportions of 54.7% and 50.8%, respectively.

Using third-party tools, out of 573 stability mutations predicted
by mCSM, 160 were experimentally confirmed as stable. The results
from PoPMusic and deepDDG were 206/600 and 518/203, with
precisions of 27.9%, 34.3%, and 39.1%, respectively (Figure 1). This

indicates that ProteinMPNN significantly outperforms methods for
predicting the effects of amino acid substitutions in this task.

The tolerance of each position on the TEM-1 sequence towards
mutations was expressed using K* values in the work by Firnberg et al.
(2014). A K* value of 20 indicates that all 19 amino acid substitutions
result infitness equivalent to thewild-type amino acid, while a K* value of
1 corresponds to all mutations causing complete loss of activity at that
sequence position (Figure 2A). Combining the K * value with the design
results of ProteinMPNN for analysis: There were a total of 44 sites with K
* values greater than 19. ProteinMPNN designed 150 mutant types for
these 44 sites at a temperature of 0.5, with an average of 3.4 results
designed for each site. Therewere 61 positionswithK* values in the range
of 17–19, for which a total of 172 mutations were designed, averaging
2.81 mutations per position. For positions with K* values ranging from
10–17 and below 10, there were 77 and 82 positions, respectively, and
ProteinMPNN designed 90 and 68 mutations for these groups, as
depicted in Figure 2. From the figure, it can be observed that
ProteinMPNN introduced the most diverse designs for the
44 positions with K* values greater than 19. These positions had the
fewest numbers, but the highest average design results per position
(Figure 2B). For positions with lower tolerance (K* values less than
10), ProteinMPNN had a higher probability of directly reverting them to
the same amino acids as the wild-type sequence. These results can be
interpreted as ProteinMPNN ‘focusing’ on positions with high tolerance,
where design feasibility is greater. This suggests that, without any external
intervention, ProteinMPNN can autonomously identify positions in the
sequence with higher design potential and thoroughly engineer them.
This ability is one of the reasons for ProteinMPNN’s outstanding
performance in this task.

TABLE 1 The results of TEM-1 designed by ProteinMPNN.

Temperature sample Sites with missense mutation All results Maintain of improve Ratio (%)

0.1 125 171 104 60.8

0.3 155 296 162 54.7

0.5 186 480 244 50.8

FIGURE 1
The precision of different methods in TEM-1 task.
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3.2 Green fluorescent protein (GFP)

ProteinMPNN’s design results for the 66 positions in the GFP
sequence also increase with the rising temperature. Table 2 shows
the number of harmful mutations (Off), the total number of
mutations, and the ratio in the design results.

From the specific design results, ProteinMPNN produced
123 results for these 66 positions at a temperature of 0.1. Only
one mutant type (Q181L) of 98 harmful mutations was designed at
site 181. At temperatures of 0.3 and 0.5, the number of sites designed
as harmful mutations was only 4 and 5. It is noteworthy that
previous studies have shown that glycine on the luminescent
residue group is the most important functional site, and any
substitution of this site with any amino acid will result in

complete loss of fluorescence. ProteinMPNN, however, perfectly
restored the wild-type glycine at this position at temperatures of 0.1,
0.3, and 0.5, providing the foundation for improving or maintaining
fluorescence levels in the mutant sequences.

When the temperature increases from 0.1 to 0.3 or 0.5, the
diversity of the design results increases, and the proportion of
harmful mutations also increases, indicating a higher proportion
of improving or maintaining the fitness of wild-type proteins in
the design results under smaller temperature parameters. The
proportion of harmful mutations in the entire mutation space is
Prand = 7.8%. Moreover, at all three temperatures, the probability
of harmful mutations in ProteinMPNN’s design results (referred
to as P) is consistently lower than Prand, indicating that
ProteinMPNN defines mutation spaces for the designed
positions with very minimal overlap with harmful mutations
in the dataset. This proves that ProteinMPNN still performs well
in GFP fitness (fluorescence intensity) tasks. Combined with the
results from the TEM-1 task, ProteinMPNN can adequately
design high-tolerance positions. When it comes to designing
positions with potentially harmful mutational effects (e.g., the
66 sites in GFP), ProteinMPNN can still avoid the majority of
harmful mutations and ensure their properties and
functionality.

3.3 PTMUL

PTMUL is not a saturated mutation dataset. Among
181 position combinations, there is an average of only 1.4 data
records for each combination. Consequently, determining whether
ProteinMPNN’s design results accurately hit the target is
exceedingly challenging in this context. Due to this dataset’s
characteristics, it is not feasible to calculate the proportion of
ProteinMPNN design results that genuinely improve protein
stability in this task. In this scenario, we use the concept of a
hitting rate for result evaluation. For example, considering 2RN2,
mutations like K91G:K95G and D94R:K95G can be directly
designed by ProteinMPNN, meaning these mutations are
directly hit in the design results and are considered direct hits.
In contrast, for the A52:V74 mutation site combination, mutations
A52V and V74L appeared separately in the design results but were
not combined in a single sequence. This situation is referred to as
an indirect hit. The results of this task indicate that among a total
of 49 proteins, ProteinMPNN directly designed 12 mutations that
improved stability. Out of the 185 mutation combinations, 24 were
directly hit by ProteinMPNN, while 38 were indirectly hit. In total,
269 different positions were involved in the design, and 126 of
them had more stable amino acid substitutions found by
ProteinMPNN, accounting for 46.8%. These findings
demonstrate ProteinMPNN’s capability in designing mutations

FIGURE 2
ProteinMPNNdesigned at different K* value. (A) The figure shows
the Number of positions in different K* value interval, and the K * value
indicates the tolerance of the site to mutations. (B) At three different
temperatures, ProteinMPNN had a higher average design
number for sites with stronger mutation tolerance.

TABLE 2 The results of GFP designed by ProteinMPNN.

Temperature sample Sites with off mutation All results Maintain of improve Ratio (%)

0.1 1 123 1 0.8

0.3 4 166 5 3.0

0.5 5 217 6 2.7
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with higher fitness and accurately defining mutation spaces in
multi-site tasks.

4 Discussion

Modeling In Silicon aim to guide wet lab experiments based
on computational results, ultimately translating into real-world
applications in engineering. Therefore, evaluating the model’s
computational results with experimental biological data holds
significant importance. The current popular prediction models
have serious data scarcity issues in the datasets used in specific
downstream tasks, which limits the generalization ability of
prediction models. Therefore, few methods can consistently
perform well in different test sets (Pucci et al., 2022;
Benevenuta et al., 2023). Moreover, since most mutations lead
to decreased fitness, datasets are dominated by harmful
mutations, causing prediction models to overfit on predicting
harmful mutations (Montanucci et al., 2019; Benevenuta et al.,
2023; Diaz et al., 2023). Presently, prediction models are
primarily evaluated using Pearson correlation coefficients,
classification accuracy, and error, with high accuracy often
stemming from the prediction of the relatively high
proportion of harmful mutations in the test set (Diaz et al.,
2023). However, precision is the real measure of a model’s
importance. What people are more concerned about is the
true proportion of beneficial mutations in the prediction
results, as this directly affects the success rate of lab experiments.

Despite some previous efforts to address these issues,
including extending relevant datasets and achieving certain
results (Diaz et al., 2023), the severe lack of real data obtained
from biological experiments continues to plague the community.
In this context, the utilization of AI models with large-scale
pretraining techniques could be one effective solution to this
problem. ProteinMPNN is a model trained extensively on
structural data, and it can generate sequences that, while
recovering the main chain structure, can reliably and
accurately fold into a natural protein scaffold. Introducing this
model into the field of protein engineering allows us to harness
the rich knowledge it has acquired from massive datasets to
directly design sequences with improved properties and
functions. This approach helps mitigate the severe lack of
high-quality data in downstream task datasets. Some
experiments have already successfully used ProteinMPNN’s
design results to guide the optimization of protein properties
and functions (Sumida et al., 2023).

As we look toward the future of protein engineering, large-
scale pretrained models, based on either structural or sequence
data, are poised to revolutionize the field. These advanced
computational tools are not merely incremental improvements
but represent a paradigm shift in how we approach the design and
optimization of proteins. These models offer the unique
advantage of tapping into the vast amount of sequence and
structural data accumulated over years of research. By
leveraging this wealth of information, pretrained models can
uncover patterns and relationships not readily apparent to
human researchers, leading to novel insights and the discovery
of unprecedented protein functionalities. Moreover, there is

immense potential for these models to become more
sophisticated through continuous learning. As they encounter
new data from ongoing protein engineering experiments, the
models can enhance their capabilities, becoming ever more
accurate and reliable. This capacity for self-improvement will
ensure that the models remain at the cutting-edge of technology,
dynamically evolving alongside scientific progress. We anticipate
more widespread applications of large-scale pretrained models,
whether based on structure or sequence, in the protein
engineering field. These models hold the promise of bringing
significant advancements, providing powerful tools for more
effectively improving protein properties and functions. This
will contribute to driving more scientific breakthroughs in the
field of protein.

5 Conclusion

In this study, we propose a method that involves using
protein sequence design tools to create mutants capable of
folding into the same or similar structures while preserving
the original structure. We applied the next-generation
sequence design tool, ProteinMPNN, to design proteins from
the tem-1, GFP, and PTMUL datasets and validated the approach
using experimental data. Our results demonstrate that
ProteinMPNN’s diverse restoration of wild-type sequence
residues yields a more accurate mutation space, including a
considerable proportion of mutants with improved fitness.
Given the current limitations in the accuracy of mutation
impact prediction tools, this method potentially offers a more
reliable choice for biological experiments. Despite the limitations
of protein mutation datasets, especially the lack of saturation,
which hinders further progress in our work, the outstanding
performance of ProteinMPNN has already proven this approach
to be a new solution for the field of protein engineering. As large-
scale pre-training models continue to advance and protein
research deepens, we have every reason to believe that
ProteinMPNN and similar methods will continue to play a
crucial role in providing stronger support for protein
engineering and the field of biomedicine in the future.
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