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Introduction: Dihydrouridine (D) is a conserved modification of tRNA among all
three life domains. D modification enhances the flexibility of a single nucleotide
base in the spatial structure and is disease- and evolution-associated. Recent
studies have also suggested the presence of dihydrouridine on mRNA.

Methods: To identify D in epitranscriptome, we provided a prediction framework
named “DPred_3S” based on the machine learning approach for three species D
epitranscriptome, which used epitranscriptome sequencing data as training data
for the first time.

Results: The optimal features were evaluated by the F-score and integration of
different features; our model achieved area under the receiver operating
characteristic curve (AUROC) scores 0.955, 0.946, and 0.905 for
Saccharomyces cerevisiae, Escherichia coli, and Schizosaccharomyces pombe,
respectively. The performances of differentmachine learning algorithmswere also
compared in this study.

Discussion: The high performances of our model suggest the D sites can be
distinguished based on their surrounding sequence, but the lower performance of
cross-species prediction may be limited by technique preferences.

KEYWORDS

dihydrouridine, machine learning, Escherichia coli, Schizosaccharomyces pombe,
Saccharomyces cerevisiae

Introduction

The first RNA modification was reported in 1951, and currently, at least 170 types of RNA
modifications have been identified among all life domains (Boccaletto et al., 2022). Among these
modifications, dihydrouridine (D) is the second most popular tRNA modification (Machnicka
et al., 2014), which was introduced as the natural component of yeast tRNA in 1965 (Holley et al.,
1965). Additionally, D is conserved in the D-loop of tRNA in Bacteria, Eukaryota, and some
Archaea based on mass spectrometry (Kowalak et al., 1995). In recent studies, it has been
observed that D has several molecular functions and participates in many biological processes,
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such as the spatial configuration of RNA, evaluation (Song et al., 2023),
cancer development (Xing et al., 2004; Kasprzak et al., 2012), and virus
replication. Additionally, the potential associations between SNP and D
in disease development were revealed (Song et al., 2023).

The hydrogenation of the uridine C5–C6 bond is regulated by
dihydrouridine synthase (DUS) enzymes, which are from a
conserved gene family COG0042 (Kasprzak et al., 2012). Each
family member is responsible for dihydrouridylation of one or
two U positions in a tRNA molecule (Xing et al., 2004).
Interestingly, the mRNA expression is associated with the
DUS expression based on the knockdown experiment (Kato
et al., 2005). The cross-linking and immunoprecipitation
(CLIP) analyses also showed that DUS can bind with mRNA
(Mitchell et al., 2013). These results suggest that D not only
appears in tRNA but also in mRNA.

With the advance in sequencing techniques, the concept of
epitranscriptome arose in 2011 (Jia et al., 2011). Multiple methods
have been developed in the past 10 years to help decipher the
epitranscriptome landscape of different modifications (Dominissini
et al., 2016; Yang et al., 2017; Koh et al., 2019). Rho-seq (Finet
et al., 2022) is the first D epitranscriptome profiling method based
on the reverse transcription arrest. The results of Rho-seq reported
hundreds of D sites and suggested the mRNA D modification affects
meiotic chromosome segregation. In another study, D-seq (Draycott
et al., 2022) was also developed with a similar concept of Rho-seq. In
addition to the NGS platform, nanopore techniques could be used to
detect RNA modifications, including D sites (Wang et al., 2023a; Song
et al., 2023; Zhang et al., 2023).

Although the sequencing method can provide a precise and
accurate location of D modification, the experiment is still time-
consuming and expensive. The bioinformatics prediction provides
another convenient method to detect putative modification sites.
There are some studies providing prediction tools for D

identification (Xu et al., 2019; Dou et al., 2021); however, there are
two limitations in those studies. First, the number of D sites is limited;
only 176 sites were identified by the LC/MSmethod among five species.
Second, these works only considered the D modification of tRNA. To
address these, we provided a new prediction framework “DPred_3S” to
support the prediction of D sites in three species epitranscriptome. After
features and parameter optimization, our models achieved credible
performances. The workflow for DPred_3S is summarized in Figure 1.
The project code and training sequences are available at https://github.
com/SXWuFJMU/Dpred_3S/.

Methods and materials

Putative D sites from Rho-seq and D-seq

The processing data were obtained from the original paper.
There are 106 and 372 D sites identified in the epitranscriptome of
Escherichia coli and Schizosaccharomyces pombe, respectively (see
Table 1). To select positive samples, the sequence length 41 bp of D
was primarily used to extract sequence information, which is widely
used in many previous studies (Chen et al., 2019a; Liu and Chen,
2020; Song et al., 2020; Liu et al., 2021; Xu et al., 2021). The
unmodified uridines were randomly selected from the
transcriptome and extended 20 bp in both directions as negative
samples. The ratio of positive and negative samples is 1:1. To remove
redundant sequences, CD-HIT (Fu et al., 2012) software with default
parameters was used to keep the sequence similarity less than 85%.
For model training and cross-validation, 80% samples were used and
the remaining 20% were considered independent testing data.

Feature encoding and selection

Sequence-derived features were widely used in the
bioinformatics prediction, such as RNA-binding proteins, RNA
modification, microRNA interaction, and RNA sub-location.
Some recent works have summarized the commonly used
encoding features in the bioinformatics prediction field (Hou
et al., 2019; Liu, 2019; Su et al., 2020; Chen et al., 2021a). In this
study, we considered eight types of encoding methods in the
beginning to find the optimal features of D site prediction.

FIGURE 1
Workflow for DPred_3S. The information on D sites was obtained by Rho-seq or D-seq and filtered by CD-HIT to reduce sequence redundancy.
Different feature encoding methods were integrated with their importance and combined together to find the optimal features for D prediction. The
different machine learning algorithms were compared in this work also.

TABLE 1 Identified D sites by Rho-seq or D-seq.

D sites CD-HIT Training Test

Escherichia_coli 106 57 45 12

Schizosaccharomyces pombe 372 247 198 49

Saccharomyces cerevisiae 178 176 140 36
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Binary encoding method

Binary encoding is known as one-hot encoding (ONE_HOT).
Each nucleic acid was converted into a four numeric vector based on
the following settings: A = (1,0,0,0), U = (0,1,0,0), G = (0,0,1,0), and
C = (0,0,0,1).

Chemical property
In the chemical property (ChemProper), the ring structure, functional

groups, and hydrogen bonds of nucleic acids were considered to be the
features. A and C have the amino group, whereas G and U have the keto
group. In hybridization, A and U have two hydrogen bonds, but G and C
have three hydrogen bonds, and A and G have two ring structures,
whereasC andUonly have one. Based on these concepts, each nucleic acid
can be presented as three numeric vectors as

A � 1, 1, 1( )
U � 0, 0, 1( )
G � 0, 1, 0( )
C � 1, 0, 0( ).

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Electron–ion interaction pseudopotentials
The electron–ion interaction pseudopotentials (EIIPs) were

proposed by Veljko and Dragutin (Lalović and Veljković, 1990),
and each nucleic acid can be represented by a number due to their
electron–ion interaction pseudopotentials. The A, U, G, and C
values equal to 0.1260, 0.1335, 0.0806, and 0.1340, respectively.

Nucleic acid composition (CONPOSI)
The frequency of each dinucleotide is calculated, which can be

presented as a vector with 16 numbers:

f � f AA, f AU , f AC,. . . . . .. f UG, f UU( ).

Accumulated nucleotide frequency (frequency)
This encoding method considered the position and order of

nucleic acids. In a sequence, the frequency of nucleotide in the i-th
position is equal to the sum of all the instances of the i-th nucleotide
before the i+1 position divided by position i, which can be
summarized as the following formula fi � di/i.

Auto-correlation (autoCor) and cross-correlation
(crossCor)

These twomethods were invented based on the physicochemical
(PC) properties between two nucleotides. autoCor considers the
correlation coefficient of the same PC properties between two
subsequences, whereas crossCor focuses on the correlation
coefficient of the different PC properties between two
subsequences. More detail information was introduced in
previous studies (Song et al., 2022).

Pseudo k-tuple composition (PseKNC)
PseKNC is the most popular encoding method which was used

in multiple types of bioinformatics prediction, including but not
limited to protein, DNA, and RNA prediction (Chen et al., 2013; Lin
et al., 2014; Chen et al., 2018). The PseKNC section in the webserver
iLearnPlus (Chen et al., 2021b) was used in this project to generate
sequence-derived features.

In feature optimization, the F-score (Chen and Lin, 2006) was
used to evaluate the discriminative capability in the i-th position. (+)
and (−) presented the features were from positive samples and
negative samples, respectively.

Fi �
(�x +( )

i − �xi)2 + (�x −( )
i − �xi)2

1
n+−1∑n+

d�1(�x +( )
d,i − �x +( )

i )2 + 1
n−−1∑n−

d�1(�x −( )
d,i − �x −( )

i )2
In addition, based on the order of F-score, the incremental

feature selection (IFS) (Lin et al., 2014) was used to identify the
optimal features.

Machine learning algorithms and evaluation

Support vector machine (SVM) is a widely used machine
learning approach in bioinformatics research. In this study, SVM
with default parameters from LIBSVM (R language interface) was
used in feature optimization (Chang and Lin, 2011). To evaluate the
impact of machine learning algorithms, generalized linear model
(GLM), random forest (RF), and naive Bayes (NB) from the R
package caret were used to compare the performances from different
methods (Kuhn, 2008). Finally, we analyzed the regularization

TABLE 2 Top N features with the highest AUROC.

E. coli S. pombe S. cerevisiae

Performance TopN Performance TopN Performance TopN

EIIP 0.665 2 0.685 8 0.579 14

autoCor 0.463 9 0.526 5 0.525 4

crossCor 0.595 9 0.554 9 0.543 2

PseKNC 0.645 15 0.656 10 0.550 11

ChemProper 0.942 43 0.771 55 0.847 53

ONE_HOT 0.938 47 0.773 34 0.870 36

CONPOSI 0.752 5 0.774 12 0.653 63

Frequency 0.562 8 0.583 3 0.655 13
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parameter C and the kernel width parameter γ in SVM to select the
optimal parameter for our model.

2−5 ≤C ≤ 215 with step of 2
2−15 ≤ y ≤ 25 with step of 2−1

{
To evaluate the performances, AUROC (area under the receiver

operating characteristic curve) was used as the key evaluator. AUPRC

(area under the precision-recall curve) was calculated in SVM parameter
optimization. The accuracy (ACC), sensitivity (Sn), and specificity (Sp)
were calculated to measure the performance on algorithm comparison:

Sn � TP
TP + FN

,

Sp � TN
TN + FP

,

FIGURE 2
Identification of the optimal combination of feature encoding methods. For each feature, only top N features were used in this section, and three
different types of features were integrated together.
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Acc � TP + TN
TP + FP + TN + FN

.

Results

Feature selection for D prediction

To select the optimal features, the F-score was calculated for
each encoding method. Based on the order of F-score, the top N
features were used in the five-fold cross-validation. When the top N
features achieved the highest performances, more features included
in the training will not improve the performances. The results are
summarized in Table 2. For E. coliD site prediction, 43 features with
the highest F-score from the chemical property encoding method
show the best performance (AUROC: 0.942). For S. pombe
prediction, 12 features with decreasing F-score from the nucleic
acid composition method achieved the highest AUROC value.

The feature combination is a common way to improve the
prediction performance. In this study, we considered the
combination of three types of features. The reason we only
considered three rather than more feature types is the limited
number of sample sequences as the redundant features may
adversely affect the predictor. Different encoding methods with
their identified top N features were combined and analyzed by
five-fold cross-validation. The results (Figure 2) suggested the best
performances for E. coli D site prediction were observed when
CONPOSI, Frequency, and EIIP were used together, whereas the
best choice for S. pombe is PseKNC Chemical Proper and
CONPOSI. For the D site prediction on S. cerevisiae, the optimal
feature is the combination of Chemical property, CONPOSI, and
autoCovar. Interestingly, although using chemical property shows
the best performance for E. coli when one encoding method was
used, a combination with more features could not improve its
performance.

Performance comparison among different
approaches

To evaluate the impact of machine learning algorithms on the D
site prediction, besides SVM, GLM, RF, and NB were used to
construct predictors. AUROC, ACC, Sn, and Sp were calculated
to measure the performance of each algorithm. The results are
summarized in Figure 3. Based on the independent test, the
performances were stable when different algorithms were used
based on optimized sequence features. SVM shows the best
performances in E. coli and S. pombe, while the RF model
achieved best performances in S. cerevisiae.

Parameter analysis

The regularization parameter C and the kernel width parameter γ in
SVM were analyzed in this study to find the optimal model (Figure 4).
For the S. pombeD site prediction, when parameter C equaled to 2̂ (−1)
and γ equaled to 2^(−6), the model achieved the best performance with
AUROC and AUPRC scores of 0.905 and 0.917, respectively. For E. coli
prediction, the optimal model can achieve an AUROC score of
0.946 and an AUPRC score of 0.938, when C and γ settings were 2^
(−2) and 2^(−9), respectively. For the S. cerevisiae D site prediction,
when C is 2^ (−2) and γ is 2^ (−7), the predictor achieved the best
performance with AUROC 0.955 and AUPRC 0.962.

Cross-species prediction and data
interpretation

To estimate the consistence of D among the different species, the
performances of cross-species prediction were used (see Figure 5).
The prediction between S. pombe and E. coli is higher than that
between S. pombe and S. cerevisiae, which is from the same genus.
Considering the D sites identified on S. pombe and E. coli by Rho-

FIGURE 3
Performance evaluation of different machine learning algorithms. The optimal features were used in different ML algorithms, and the performance
was evaluated by the independent test. GLM, generalized linear model; RF, random forest; NB, Naive Bayes.
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seq, the lower performance may be limited by technique preferences,
which is a common issue in the RNA modification sequencing field.
Additionally, the optimal features of each species were identified,
and these specific features may only help for prediction in same
species rather than cross-species prediction.

Furthermore, the motifs of positive data were analyzed by the
MEME suits (Bailey et al., 2015) website (see Figure 6). The results
showed the motif of each species is quite different. The motif of S.
cerevisiae is enriched in the high G contact region, whereas S. pombe
and E. coli are enriched in the ‘GA’ region.

Discussion

The importance of RNAmodifications has been illustrated in the
past 10 years, which participates in many biological processes,
including stem cell/embryo development, immunity of infection,
and carcinogenesis. Additionally, multiple RNA modifications have
been proven to be conserved in the evolution. D, as the second

FIGURE 4
Optimized parameters in SVM. AUROC and AUPRC were used to evaluate the performance of SVM with different parameters. We used different
colors to present the number of AUROC; the high value is represented in red, and the low value is represented in green.

FIGURE 5
Cross-species prediction. The names of x-axis are the species of
training data in prediction, and the names of y-axis are the species for
testing.
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abundant tRNA modification, has many molecular functions due to
its unique structure and participates in different biological processes.
Recent studies have suggested the D modification also appears
in mRNA.

With accumulated sequencing results, bioinformatics research
studies become an important part of epitranscriptome analysis,
which included the peak calling method (Meng et al., 2013;
Meng et al., 2014), databases (Liu et al., 2018; Tang et al., 2021;
Ma et al., 2022), annotation (Zheng et al., 2018; Chen et al., 2021a),
and prediction tools (Chen et al., 2016; Yang et al., 2018; Chen et al.,
2019b; Chen et al., 2019c; Feng and Chen, 2022; Jiang et al., 2022;
Zhang et al., 2022); all of these provide a convenient way to
understand epitranscriptome regulation. In this study, we
provided a bioinformatics framework named “DPred_3S″ to
predict D sites in S. cerevisiae, S. pombe, and E. coli.

Compared with previous studies (Table 3), we used a new
dataset using high-throughput sequencing techniques Rho-seq
and D-seq, which provide more D sites in more RNA types
rather than tRNA only. After system evaluation, the optimal
features and parameter were identified in our work. The high
performances of our model suggest the D sites can be
distinguished based on their surrounding sequence.

The current study only considered the sequence-derived
features, and more advanced encoding methods (Chen et al.,
2019a; Huang et al., 2022) could be used to improve the
performance in further study. Moreover, deep learning-based
algorithms should be integrated to illustrate sequence
characteristics by data interpretation.
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FIGURE 6
Top two motifs of positive sites by MEME.

TABLE 3 Comparison with other tools.

Tool Species RNA type Technique Reference

DPred_3S 3 Epitranscriptome Rho-seq and D-seq

iRNAD 5 tRNA Mass spectrum Xu et al. (2019)

DPred 1 tRNA Rho-seq Wang et al. (2023b)
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