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Background: Glioblastoma (GBM) prognosis remains extremely poor despite
standard treatment that includes temozolomide (TMZ) chemotherapy. To
discover new GBM drug targets and biomarkers, genes signatures associated
with survival and TMZ resistance in GBM patients treated with TMZwere identified.

Methods: GBM cases in The Cancer Genome Atlas who received TMZ (n = 221)
were stratified into subgroups that differed by median overall survival (mOS) using
network-based stratification to cluster patients whose somaticmutations affected
genes in similar modules of a gene interaction network. Gene signatures formed
from differentially mutated genes in the subgroup with the longest mOS were
used to confirm their association with survival and TMZ resistance in independent
datasets. Somatic mutations in these genes also were assessed for an association
with OS in an independent group of 37 GBM cases.

Results: Among the four subgroups identified, subgroup four (n = 71 subjects)
exhibited the longest mOS at 18.3 months (95% confidence interval: 16.2, 34.1; p =
0.0324). Subsets of the 86 genes that were differentially mutated in this subgroup
formed 20-gene and 8-gene signatures that predicted OS in two independent
datasets (Spearman’s rho of 0.64 and 0.58 between actual and predicted OS; p <
0.001). Patients with mutations in five of the 86 genes had longer OS in a small,
independent sample of 37 GBM cases, but this association did not reach statistical
significance (p = 0.07). Thirty-one of the 86 genes formed signatures that
distinguished TMZ-resistant GBM samples from controls in three independent
datasets (area under the curve ≥ 0.75). The prognostic and TMZ-resistance
signatures had eight genes in common (ANG, BACH1, CDKN2C, HMGA1, IFI16,
PADI4, SDF4, and TP53INP1). The latter three genes have not been associated with
GBM previously.

Conclusion: PADI4, SDF4, and TP53INP1 are novel therapy and biomarker
candidates for GBM. Further investigation of their oncologic functions may
provide new insight into GBM treatment resistance mechanisms.
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1 Introduction

Glioblastoma (GBM) has a lowmedian overall survival (mOS) of
approximately 15 months even with the standard first-line therapy
of surgery followed by radiotherapy and temozolomide (TMZ)
chemotherapy (Stupp et al., 2005). This treatment is not curative
as the tumor eventually reoccurs (Wen et al., 2020). TMZ’s
cytotoxicity is due to its modification of genomic DNA to
generate O6-methylguanine, which is mispaired with thymine
during DNA replication (Newlands et al., 1997). Repetitive futile
cycles of themismatch repair pathway to repair themismatched base
pair produce DNA strand breaks, inducing cell cycle arrest and
eventually leading to apoptosis (Karran et al., 1993; Newlands et al.,
1997). A DNA repair enzyme encoded by the O6-methylguanine-
DNA methyltransferase (MGMT) gene repairs O6-methylguanine
by removing the TMZ-added methyl group, counteracting the
cytotoxic effects of TMZ (Singh et al., 2021). The epigenetic
silencing of MGMT by the methylation of CpG sites in its
promoter is associated with longer OS in GBM patients treated
with TMZ (Hegi et al., 2005), and MGMT promoter methylation
status is both a known prognostic biomarker in GBM and a
predictive biomarker of response to TMZ treatment (Weller
et al., 2009). MGMT promoter methylation is present in more
than 90% of GBM patients who have longer-term survival
compared with approximately 30% of all GBM patients (Stupp
et al., 2014). However, the signaling pathways that control
MGMT activity in GBM are incompletely understood, and GBM
has a dismal prognosis irrespective of the MGMT promoter
methylation status (Wick et al., 2014). Sustained efforts have
been made to develop and test new drugs for GBM, but GBM
has remained refractory to most new therapies (Khasraw et al., 2022;
van Solinge et al., 2022).

The identification of new drug targets has the potential to
increase therapeutic options that improve outcomes in GBM.
GBM tumor progression is promoted by the genetically
heterogeneous nature of the tumor (Brennan et al., 2013), the
invasive growth of tumor cells (Venkataramani et al., 2022), the
low immunogenicity of the tumor (Pearson et al., 2020), and
mechanisms of treatment resistance (Singh et al., 2021). Taken
together, these characteristics draw attention to the biological
complexity of treatment response in GBM. To begin to identify
prospective drug targets for GBM, this hypothesis-generating study
aimed to uncover gene signatures associated with survival in GBM
patients who received TMZ because the genes that make up those
signatures have the potential to provide insight into the numerous
biological pathways that influence patient outcomes, facilitate the
discovery of targetable components within those pathways, and also
serve as prognostic biomarkers for GBM. The first step of the
approach was to stratify GBM patients into subgroups that
differed by mOS using network-based stratification (NBS)
(Hofree et al., 2013), an algorithm that clusters together patients
with genetic variants in similar regions of a gene interaction
network. Next, the genes that were differentially mutated in the
subgroup(s) with a mOS longer than that reported for standard
TMZ chemotherapy were used to determine biological pathways
associated with survival. Finally, the group of differentially mutated
genes was used to identify gene signatures associated with OS and
TMZ resistance in independent GBM datasets.

2 Materials and methods

2.1 Study subjects, samples, and datasets

To identify gene networks associated with mOS after TMZ
treatment, public data on simple somatic variants and clinical
characteristics from The Cancer Genome Atlas (TCGA) were
analyzed for the 221 GBM cases (out of a total of 606 TCGA
GBM cases) who had received concomitant and/or adjuvant TMZ
chemotherapy and had data available on OS and simple somatic
variants from primary tumor (the numbers of included and
excluded subjects are shown in Supplementary Figure S1). The
simple somatic variants included single nucleotide variants and
small insertions/deletions and multiple base substitutions ≤
200 base pairs. Datasets GSE108474 and GSE7696 from the Gene
Expression Omnibus data repository were used to confirm the
association between the mutated genes and OS. Tumor
microarray gene expression data were available for 81 GBM
patients who received TMZ in the GSE108474 dataset (Gusev
et al., 2018) and 43 GBM patients who received TMZ in the
GSE7696 dataset (Murat et al., 2008). To determine whether any
of the genes that were correlated with OS were also mutated in an
independent group of GBM cases treated with TMZ, somatic variant
data were generated from the treatment-naïve, primary tumors of
37 patients (out of a total of 118 patients) who were diagnosed with
GBM from 2004 to 2012 at Marshfield Clinic Health Systems
(MCHS) in Marshfield, Wisconsin, and had received concomitant
and/or adjuvant TMZ chemotherapy (Carter et al., 2018). Of the
118 patients, DNA could be extracted from the archived tumor
specimens of 74 patients. Exome sequencing could be performed
successfully on 37 of the 74 DNA samples. To determine whether the
genes correlated with OS could also discriminate between TMZ-
resistant and control GBM cell lines or tumors, gene expression data
in the GSE151680, GSE193957, and GSE145128 datasets were
analyzed. GSE151680 had RNA-seq data for three TMZ-resistant
and three control samples for each of two GBM cell lines (U87 and
U251); GSE193957 had microarray data for three TMZ-resistant
and three control samples from the U87 cell line (Choo et al., 2023);
GSE145128 had microarray data for treatment-naïve tumor and the
matched tumor that recurred after TMZ treatment in seven GBM
patients (Kebir et al., 2023).

2.2 Network-based stratification analysis

NBS, performed using pyNBS (Huang et al., 2018), was used to
generate somatic mutation profiles from TCGA GBM somatic
variant data and stratify those profiles into subgroups associated
with OS. The NBS algorithm uses network propagation to integrate
the somatic mutation profiles with a gene interaction network and
non-negative matrix factorization to cluster the integrated profiles
into a pre-determined number of groups from k = 2 up to k = 12. For
each pre-determined number of clusters, network propagation and
non-negative matrix factorization were applied to 1,000 different
subsets of the TCGA GBM somatic variant data, with each subset
containing 80% of the patients and 80% of the mutated genes
sampled at random without replacement, followed by consensus
clustering of the aggregated results of the 1,000 subsets into a single
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cluster result. The STRING database (version 11.5) (Szklarczyk et al.,
2023) of known and predicted protein-protein interactions was the
source of the human gene interaction network for NBS. Only
interactions having a confidence score > 0.7 (indicating high-
confidence interactions; 16,795 nodes and 252,013 edges out of
19,385 nodes and 5,969,249 edges) were input to NBS. The protein
nodes represented 16,127 genes. The alpha tuning parameter, which
controls the distance that a mutation signal can diffuse through the
gene network during propagation, was set to 0.7 for network
propagation using the STRING network, as recommended in the
original NBS report. Default settings were accepted for other NBS
parameters. Kaplan-Meier analysis and the log rank test (Schober
and Vetter, 2018) were implemented in pyNBS to generate survival
curves for each of the NBS subgroups within k consensus clusters
and determine whether NBS-assigned clusters are associated with
OS. Cox proportional hazards regression (Cox, 1972) was also
performed to assess whether NBS subgroups were associated with
OS independent of other clinical factors known to predict survival in
GBM, including age at diagnosis (years), type of surgery at initial
pathologic diagnosis (biopsy/tumor resection/other), and radiation
therapy (yes/no/unknown).

2.3 Identification of differentially mutated
genes in NBS subgroups

To identify the gene interaction network regions that contribute
the most to distinguishing the somatic mutation profiles of tumors
in different NBS subgroups (k = 4 clusters), the non-parametric
Significance Analysis of Microarrays (SAM) (Tusher et al., 2001)
method was applied to the integrated mutation profile (consisting of
16,127 genes) that was generated after network propagation, as
described in the original NBS report. Each subgroup, in turn, was
compared with all other subgroups to detect genes with significantly
different network-smoothed mutation states in that subgroup. SAM
(version 5.0) was run using the SAMR shiny app with data type
chosen as array - two class unpaired, median center the arrays as
“yes”, statistical test as Wilcoxon rank sum test, number of
permutations as 1,000, and random seed as the default value.
The threshold for statistical significance was determined by the
value of a tuning parameter, delta, which is user-selected based on
the false discovery rate. A fold-change ≥ 2 and false discovery rate <
0.05 were selected for this analysis.

2.4 Gene Ontology term enrichment

To determine the GeneOntology (GO) Biological Process categories
that were over- or under-represented among a set of genes compared to a
reference list of genes, enrichment analysis was performed directly from
the GO website (Gene Ontology, 2021), with the use of the PANTHER
over-representation test (Mi et al., 2019b) from the PANTHER gene
classification resource (Mi et al., 2019a). The GO database version used
was DOI: 10.5281/zenodo.6799722, released 1 July 2022, and the list of
background genes comprised the 16,127 genes that formed the human
gene interaction network for NBS analysis. The p-values were calculated
by Fisher’s exact test with false discovery rate correction, and a corrected
p-value < 0.05 was considered statistically significant.

2.5 Predicting survival and differentiating
between temozolomide-resistant and
control samples

We utilized the least absolute shrinkage and selection operator
(LASSO) (Tibshirani, 1996) technique to estimate the OS of GBM
patients. LASSO employs L1 regularization, a process that facilitates
the regularization of certain coefficients that contribute to the output
evaluation. This regularization technique effectively aids in the
feature selection process. For the determination of the tuning
parameter λ, we selected the minimum λ after conducting
100 iterations of 10-fold cross-validation (10-CV). In assessing
the performance of the model, we employed Spearman’s rank
correlation coefficient ρ) (Schober et al., 2018) and the mean
absolute error (Willmott and Matsuura, 2005) as measurement
metrics.

For the prediction of TMZ resistance in patients with GBM, we
employed several standard machine learning methods available in
Weka (Hall et al., 2009), including Naïve Bayes, simple logistic,
sequential minimal optimization, random forest, and J48. The
assessment of these methods was conducted based on evaluation
metrics such as accuracy, sensitivity, specificity, and area under the
receiver operating characteristic curve (AUC).

2.6 Tumor DNA extraction

For MCHS patients, GBM tumor DNA was extracted from
formalin-fixed and paraffin-embedded (FFPE) tissue for exome
sequencing. A matched germline DNA sample was not available.
Sections with a thickness of 10 µM were cut from each tissue block
and, after discarding the first three sections, three to four sections,
depending on tissue size, were sampled in triplicate and placed in
micro-centrifuge tubes for DNA extraction. Tissues were extracted
within 12 h of cutting. DNA extractions were performed using the
GeneRead™DNA FFPE kit (Qiagen, Valencia, CA) according to the
manufacturer’s recommendations. The quality (260/280 ratio) of
each DNA sample was assessed using a NanoDrop™
spectrophotometer (ThermoFisher Scientific, Waltham, MA).
Initial DNA quantity was determined using either a BR (broad
range) or HS (high sensitivity) kit on a Qubit 2 Fluorometer
(ThermoFisher Scientific). DNA integrity (fragmentation) and
final concentration were determined with Genomic DNA
ScreenTape on a TapeStation 2,200 (Agilent Technologies, Santa
Clara, CA) prior to sample pooling. DNA from triplicate samples
were pooled as necessary to obtain the appropriate concentration
and volume for downstream testing.

2.7 Exome sequencing

DNA library preparation and exome sequencing were
performed by Admera Health (South Plainfield, NJ). DNA
sample quality was assessed by Agilent DNA 6000 Nano Reagent
on an Agilent 2,100 Bioanalyzer (Agilent Technologies, Santa Clara,
CA) and quantified by Qubit DNA HS assay (ThermoFisher
Scientific). Library preparation for exome sequencing was
performed with KAPA HyperPrep kits (Roche) and IDT xGen
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indexes (Illumina Inc., San Diego, CA) following the manufacturer’s
instructions. Samples were pooled and sequenced on an Illumina
NovaSeq S4 sequencer for 150 base pairs read length in paired-end
mode, with an output of 260 million reads per sample.

2.8 Exome sequence data processing

The quality of sequencing reads were checked with FastQC
(version 0.11.2) before the reads were aligned to a human genome
reference sequence (GRCh38. d1. vd1) using the Burrows-Wheeler
Aligner (version 0.7.5a) (Li and Durbin, 2009). Duplicate reads
generated by polymerase chain reaction (PCR) were marked and
removed using MarkDuplicates in Picard (version 1.73), and local
realignment of reads followed by base quality recalibration were
performed using the Genome Analysis Toolkit (GATK version
4.1.4.1) (Van der Auwera et al., 2013). Variants were called from
recalibrated reads using the Mutect2 algorithm in GATK (McKenna
et al., 2010). To improve the quality of variant calls, variants derived
from normal tissue, known as a Panel of Normals, was employed as a
reference by Mutect2 to detect sequencing and alignment artifacts
(Cibulskis et al., 2013). The Panel of Normals for a tumor-only
variant calling pipeline, consisting of variants from approximately
5,000 TCGA exome sequencing samples of individuals without
cancer, was downloaded from the online Genomic Data
Commons data portal for input to Mutect2 (Zhang et al., 2021).
The CollectSequencingArtifactMetrics and FilterByOrientationBias
commands in GATK were used to filter called variants for sequence
artifacts that arise from the deamination of cytosines by
formaldehyde in FFPE tissue or the oxidation of guanine to 8-
oxoguanine (Costello et al., 2013). Next, PureCN (version 1.22.2)
was used to classify variants by somatic/germline status based on an
assessment of tumor purity, ploidy, loss of heterozygosity, and copy
number (Oh et al., 2020). Variants that were flagged as unreliable or
were assigned a somatic posterior probability of less than 0.8 by
PureCN were removed. Variants not located in the target region or
supported by fewer than five reads were also removed. Next, filtered
variants were annotated using Variant Effect Predictor (version 105)
(McLaren et al., 2016). Only rare variants, defined as having an
alternate allele frequency < 1% in the GnomAD database
(Karczewski et al., 2020), were considered as somatic variants.

2.9 MGMT promoter methylation

DNA methylation assays were performed by EpigenDx
(Hopkinton, MA) using their ASY470-FS2 protocol, which
involved bisulfite sequencing of eight CpG sites in the
differentially methylated region 2 (Malley et al., 2011) of the
MGMT promoter. DNA was available from 31 of the 37 MCHS
patients to perform the assays. For each patient, 300 ng of GBM
tumor DNA was bisulfite treated using the EZ DNA Methylation
kit (Zymo Research, Inc., Irvine, CA). Bisulfite-treated DNA was
purified according to the manufacturer’s protocol and eluted to a
final volume of 46 μL. PCRs were performed using 1 μL of
bisulfite treated DNA and 0.2 μM of each primer. One primer
was biotin-labeled and HPLC purified in order to purify the final
PCR product using sepharose beads. PCR product was bound to

Streptavidin Sepharose High Performance beads (GE Healthcare
Life Sciences), after which the immobilized PCR products were
purified, washed, denatured with a 0.2 μM NaOH solution, and
rewashed using the Pyrosequencing Vacuum Prep Tool
(Pyrosequencing, Qiagen), as per the manufacturer’s protocol.
Next, 0.5 μM of sequencing primer was annealed to the purified
single-stranded PCR products. 10 μL of the PCR products were
sequenced by pyrosequencing on the PSQ96 HS System
(Pyrosequencing, Qiagen), following the manufacturer’s
instructions. The methylation status of each CpG site was
determined individually as an artificial C/T single nucleotide
polymorphism using QCpG software (Pyrosequencing, Qiagen).
The methylation level at each CpG site was calculated as the
percentage of the methylated alleles divided by the sum of all
methylated and unmethylated alleles. The mean methylation
level was calculated using methylation levels of all measured
CpG sites within the targeted region. Each experiment included
non-CpG cytosines as internal controls to detect incomplete
bisulfite conversion of the input DNA. In addition, a series of
unmethylated and methylated DNA were included as controls in
each PCR. PCR bias testing was performed by mixing
unmethylated control DNA with in vitro methylated DNA at
different ratios (0%, 5%, 10%, 25%, 50%, 75%, and 100%),
followed by bisulfite modification, PCR, and pyrosequencing
analysis. A mean methylation level > 7% was used as the cutoff
for scoring samples as unmethylated or methylated (Kristensen
et al., 2016).

2.10 Statistical methods

The median and 95% confidence interval for OS and time to
progression were determined by Kaplan-Meier analysis, and
comparisons of OS or time to progression among subgroups
were performed using the log rank test, which generated p-values
for the comparisons (Schober and Vetter, 2018). Multivariate
analyses of OS were performed using Cox proportional hazard
regression (Cox, 1972). The correlation between OS and time to
progression and between actual and predicted OS was
determined by Spearman’s rank correlation coefficient
(Spearman’s ρ) (Schober et al., 2018). The test statistic for
Spearman’s rank correlation coefficient was calculated as:

t� r
�����

n − 2
√
�����

1 − r2
√

with r being the sample correlation coefficient and n being the
number of subjects with no missing data for the pair of variables
(Kendall and Gibbons, 1990). The two-tailed p-value is 2 x P (T >
t) where T follows a Student’s t distribution with n – 2 degrees of
freedom. The proportion of subjects with a methylated MGMT
promoter was compared among the subgroups in the TCGA
dataset using the Chi-squared test and between the two
subgroups in the smaller, independent dataset of 37 GBM
cases using Fisher’s exact test. Because this was a hypothesis-
generating study, p-values were not used for hypothesis testing
but for identifying genes that warrant further exploration as
GBM biomarkers or drug targets. The results and p-values are to
be considered explorative, and no threshold level of statistical
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significance should be fixed. Correction for multiple testing was
not performed. Survival analysis, Cox proportional hazards
regression, Spearman’s rank correlation, the Chi-squared test,
and Fisher’s exact test were performed using the R software
program (R-Core, 2021).

In LASSO models (Tibshirani, 1996) used for predicting OS
based on gene signatures, mean absolute error was used as a
measure of the average magnitude of the error produced by a
LASSO model. Mean absolute error (Willmott and Matsuura,
2005) was determined by calculating the magnitude of the
difference between predicted OS and observed OS for each
subject (absolute error for each subject) and taking the
average of the absolute errors for the entire group of subjects.
Therefore, the lower the value of mean absolute error for a
LASSO model, the smaller the differences between OS predicted
by the model and observed OS. To assess the performance of
machine learning methods to classify TMZ resistant and control
samples using gene signatures, values of accuracy, sensitivity,
specificity, and the AUC were determined for each machine
learning method (Kourou et al., 2015). Accuracy indicated the
proportion of correct predictions made by a machine learning
method and was calculated as the number of correct predictions/
total number of predictions. Sensitivity measured how well a
machine learning method could correctly identify TMZ resistant
samples and was calculated as True Positives/(True Positives +
False Negatives). Specificity measured how well a machine
learning method could correctly identify control samples and
was calculated as True Negatives/(True Negatives + False
Positives). The AUC measured the ability of a machine
learning method to distinguish between TMZ resistant and
control samples. True positives were TMZ resistant samples
that were correctly predicted to be TMZ resistant; false positives
were control samples that were falsely predicted to be TMZ

resistant; true negatives were control samples that were correctly
predicted to be controls; false negatives were TMZ resistant
samples that were falsely predicted to be controls.

3 Results

3.1 Glioblastoma stratification by somatic
mutation profiles and identification of genes
associated with survival

NBS analysis of somatic mutation data for the 221 TCGA GBM
tumors indicated that k = 4 or more clusters were associated with OS
based on the log rank test (Figure 1A), and further analyses to
identify the gene interaction subnetworks of relevance to OS in
TMZ-treated GBMwere conducted using the NBS subgroups within
k = 4 clusters. mOS, as determined by Kaplan-Meier analysis, was
highest in subgroup 4 and lowest in subgroup 1 (p = 0.0324; Table 1;
Figure 1B). Cox proportional hazards regression using data for all
221 subjects showed that subgroups 1 and 3 (compared with
subgroup 4 as a reference) were associated with an increased risk
of death, independent of other known clinical prognostic factors
(Table 2). When the regression was restricted to the 206 subjects
without IDH1/2 variants, similar results were observed (Table 2).
Time to progression after initial treatment, an important indicator of
GBM treatment efficacy, and thus, of TMZ resistance (Han et al.,
2014), was also compared among the four subgroups. Data were
available on time to progression for 215 subjects (17, 51, 78, and
68 in subgroups 1, 2, 3, and 4, respectively), and time to progression
was positively correlated with overall survival (Spearman’s rank
correlation = 0.60, p < 3.15 × 10−22; Supplementary Figure S2). The
median and 95% confidence interval for time to progression was 6.0
(3.5, 7.7) months for subgroup 1, 7.5 (6.0, 9.2) months for subgroup

FIGURE 1
Network Based Stratification analysis of TCGA GBM tumors. (A) p-values from the log rank test comparing overall survival time between assigned
subgroups for cluster sizes k = 2 to 12. The horizontal, dotted line represents a p-value of 0.05. (B) Kaplan-Meier curves of overall survival in each
subgroup for k = 4 clusters.
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2, 5.5 (4.9, 6.9) months for subgroup 3, and 7.1 (5.7, 9.3) months for
subgroup 4, as determined by Kaplan-Meier analysis. p = 0.0103 for
the comparison based on the log-rank test, indicating that time to
progression was significantly different among the four subgroups,
with subgroups 1 and 3 having a shorter median time to progression
(suggestive of greater TMZ resistance) than subgroup 4.

Fifty (22.6%) of the 221 subjects had missing data on MGMT
methylation status; therefore, this variable was not included as a
covariate in the regression model. Of the 171 subjects with MGMT
methylation status available, 7 (46.7%) of 15 in subgroup 1, 18
(43.9%) of 41 in subgroup 2, 24 (37.5%) of 64 in subgroup 3, and 34
(66.7%) of 51 in subgroup 4 had a methylatedMGMT promoter (p =
0.0169; Chi-squared test). Therefore, each subgroup had a mixture
of subjects with and withoutMGMT promoter methylation, and the
subgroup with the longest mOS had a greater proportion of subjects
with a methylated MGMT promoter. Differentially mutated genes
numbered 6,683, 447, 507, and 86 genes in subgroups 1, 2, 3, and 4,
respectively, and GO enrichment analyses of these genes identified
statistically significant biological process terms that varied by
subgroup (Supplementary Tables S1–4).

3.2 Gene Ontology analysis and validation of
association with overall survival using gene
signatures

Because subgroup 4 had a mOS > 15 months, which is the mOS
reported for TMZ-treated GBM patients, and also was significantly
longer than the mOS of subgroups 1 and 3, additional analyses
focused on subgroup 4. Statistically significant terms from GO
enrichment analysis (Supplementary Table S4) for the
86 differentially mutated genes of this subgroup (Supplementary
Table S5) were related to the regulation of intrinsic apoptotic
signaling by a TP53 mediator or in response to DNA damage, the
regulation of cyclin-dependent protein serine/threonine kinase
activity, DNA damage checkpoint signaling, the negative
regulation of transcription, cellular senescence, the regulation of
cysteine-type endopeptidase activity in apoptosis, and the positive
regulation of release of cytochrome c from mitochondria. To
determine whether gene signatures associated with OS in
independent groups of GBM patients could be identified from
among the 86 genes, microarray gene expression data from the

TABLE 1 Overall survival (months) based on Kaplan-Meier analysis of four TCGA GBM subgroups as assigned by NBS.

Subgroup N Number of deaths Median overall survival (95% confidence interval) Pa

1 17 12 12.8 (7.5, NA) 0.0324

2 54 39 16.3 (14.0, 21.3)

3 79 59 15.6 (14.1, 17.9)

4 71 47 18.3 (16.2, 34.1)

NA, not available.
aComparison among all four groups using the log-rank test.

TABLE 2 Cox proportional hazards regression of TCGA GBM.

Characteristic All subjects (N = 221) Subjects without IDH1/2 variants (N = 206)

Odds ratio (95% confidence interval) P Odds ratio (95% confidence interval) P

NBS subgroup

4 Reference 1.0000 Reference 1.0000

1 2.05 (1.07, 3.93) 0.0308 2.06 (1.04, 4.09) 0.0379

2 1.23 (0.80, 1.89) 0.3531 1.18 (0.76, 1.83) 0.4609

3 1.60 (1.07, 2.37) 0.0205 1.54 (1.02, 2.31) 0.0380

Age at diagnosis (years) 1.02 (1.01, 1.03) 0.0068 1.02 (1.00, 1.03) 0.0564

Type of surgery at initial diagnosis

Biopsy Reference 1.0000 Reference 1.0000

Resection 1.19 (0.78, 1.80) 0.4291 1.21 (0.79, 1.86) 0.3890

Other 12.06 (1.48, 98.12) 0.0200 13.83 (1.68, 114.09) 0.0147

Radiation therapy

Yes Reference 1.0000 Reference 1.0000

No 2.70 (0.81, 9.02) 0.1056 2.81 (0.84, 9.23) 0.0948

Unknown 0.35 (0.05, 2.54) 0.3003 0.33 (0.05, 2.37) 0.2686
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GSE108474 and GSE7696 datasets and exome sequence data from
the 37 GBM tumors of MCHS patients were analyzed. In the
GSE108474 dataset, 20 genes (represented by 24 probes) out of
86 were selected as features that could predict survival in the
81 TMZ-treated GBM patients (Supplementary Table S6). In the
GSE7696 dataset, 8 genes (represented by 10 probes) out of 86 were
selected as features that could predict survival in the 43 TMZ-
treated GBM patients (Supplementary Table S6). The gene
signatures from the two datasets had the HMGA1 gene in
common. Spearman’s rank correlation between actual and
predicted OS was 0.64 (p = 8.83 × 10−11) and 0.58 (p = 4.84 ×
10−5) in the GSE108474 and GSE7696 datasets, respectively
(Figures 2A, B).

3.3 Somatic mutations and overall survival in
an independent sample

The clinical characteristics of the 37 MCHS patients are shown
in Supplementary Table S7. All 37 patients started, and 34 of the
patients completed, concomitant TMZ and/or at least one cycle of
adjuvant TMZ. mOS (95% confidence interval), representing the
length of time between date of surgery for GBM and the date of
death or end of study follow-up (31 December 2015), was 15.7 (12.9,
19.1) months (Supplementary Table S3), as determined by Kaplan-
Meier analysis. Because the tumors were archived clinical specimens,
a matched specimen of normal DNA was unavailable, and a tumor-
only bioinformatics procedure was used to call somatic variants. The
mean sequencing depth was between 30 X and 103 X for 28 tumors
and between 14 X and 30 X for the other nine tumors. A total of
999 rare, somatic single nucleotide variants or small insertions/
deletions in 905 genes were called (Supplementary Table S8), with an
average of 27 (range of 1–64) variants detected per tumor. Three

hundred and thirty-four (33.4%) of the variants have been reported
previously in the COSMIC database of somatic mutations (version
96) (Tate et al., 2019) and, in 21 tumors, 30 variants were detected in
26 genes reported to be mutated recurrently in GBM (Brennan et al.,
2013; Frattini et al., 2013). Five patients had five variants in four
(FUBP1, L3MBTL1, LCOR, and USP42) of the 86 genes that were
differentially mutated in TCGA GBM subgroup 4. Three (FUBP1,
L3MBTL1, and USP42) of the four genes were among the 20 genes
predictive of OS in the GSE108474 dataset. Similar to TCGA GBM
subgroup 4, these five patients had a higher mOS than the other
32 patients (21.0 versus 15.3 months, respectively), but this

FIGURE 2
Correlation between actual survival and survival predicted from gene signatures. (A) A 20-gene signature was used to predict survival in data set
GSE108474 (N=81). p=8.83 × 10−11 for Spearman’s ρ. (B)An 8-gene signaturewas used to predict survival in data set GSE7696 (N=43). p=4.84 × 10−5 for
Spearman’s ρ. In each plot, the line through the points is the linear regression line, and the shading represents the 95% confidence region for the
regression line.

FIGURE 3
Comparison of survival according to subgroups defined by
somatically mutated genes in an independent group of GBM patients.
Kaplan-Meier analysis compared subjects who had somatic variants in
genes that were differentially mutated in TCGA subgroup 4 (N =
5) with all other subjects (N = 32). p = 0.0697 from the log-rank test.
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difference did not reach statistical significance (p = 0.0697; log-rank
test; Figure 3). No subjects had IDH1/2 variants. The MGMT
promoter was methylated in two (40.0%) of the five patients and
18 (56.3%) of the other 32 patients (p = 0.4174; Fisher’s exact test).
Overall, the results indicated that gene signatures selected from the
86 genes were associated with GBM survival in two of the three
independent datasets.

3.4 Identification of overlapping genes
between signatures of survival and of
temozolomide resistance

To identify gene signatures associated with TMZ resistance,
five prediction algorithms were applied to expression data for
the 86 genes from the GSE151680, GSE193957, and
GSE145128 datasets. For the GSE151680 and
GSE193957 data, the AUC was ≥ 0.75 for all five algorithms,
whereas, for GSE145128 data, the AUC was ≥ 0.75 only for the
Naïve Bayes and random forest algorithms (Table 3). Feature
selection identified signatures consisting of 11 genes in
GSE151680 data, 11 genes (represented by 12 probes) in
GSE193957 data, and 15 genes (represented by 15 probes) in
GSE145128 data that could distinguish between TMZ-resistant
and control GBM samples (Supplementary Table S9). Six genes
(DNAJC9, HIPK4, PCBP4, PPP1R13L, SCAF8, and USP11)
overlapped between pairs of the three gene signatures. To
determine whether the three gene signatures could also
predict GBM survival, each signature, separately and also
combined into one group of 31 unique genes, was used to
predict OS in the GSE108474 and GSE7696 datasets. The
66 unique probes that tagged the 31 genes in these two
datasets were used as features for prediction. Prediction with

each separate gene signature resulted in a moderate correlation
between actual and predicted OS for the two datasets, with
slightly higher correlation and lower mean absolute error
values for the GSE7696 dataset (Table 4). The correlation
increased to 0.85 (Figure 4A) and 1.00 (Figure 4B) for
datasets GSE108474 and GSE7696, respectively, when the
combined group of 31 genes was used for prediction. The
eight genes that overlapped between the set of 31 genes that
could distinguish TMZ-resistant from control GBM samples and
the set of 27 genes in the two gene signatures predictive of OS in
the GSE108474 and GSE7696 datasets were ANG, BACH1,
CDKN2C, HMGA1, IFI16, PADI4, SDF4, and TP53INP1.
Thus, these were genes in common between signatures of
prognosis and of TMZ resistance.

Of the eight genes, three (PADI4, SDF4, and TP53INP1) have
not been investigated previously for associations with GBM. Two
PADI4 variants were detected in subgroups 1 and one PADI4 variant
was detected in subgroup 4 (Supplementary Table S10). A SDF4
variant was detected in subgroup 1 and a TP53INP1 variant was
detected in subgroup 4. Each of the variants in the three genes was
present in a single tumor; therefore, the frequency of each variant in
the GBM sample was 0.45% (1/221). The frequency of PADI4
variants was 1.36% (3/221). Two of the PADI4 variants and the
TP53INP1 variant have been detected in other cancer types in the
COSMIC database (Supplementary Table S10). The PADI4
p. Ser496Phe variant was detected in one sample of skin
carcinoma, the PADI4 p. Phe602 synonymous variant in two
samples of endometrial cancer and one sample of malignant
melanoma, and the TP53INP1 p. Ile66Val variant in one sample
of carcinoma of the bile duct. Somatic variants in the three genes
have also been reported in several other cancer types in TCGA, with
the percentage of cases having a variant ranging from 0.20% to
7.87%, depending on the cancer type (Supplementary Table S11).

TABLE 3 Discrimination between TMZ-resistant and control GBM samples using gene signatures in three independent datasets.

Dataset Method Accuracy (%) Sensitivity Specificity Area under the curve

GSE151680 Naïve Bayes 83.3 0.75 1.00 0.97

Simple logistic 83.3 0.83 0.83 0.91

Sequential minimal optimization 100.0 1.00 1.00 1.00

Random forest 91.7 1.00 0.85 0.94

J48 75.0 080 0.74 0.75

GSE193957 Naïve Bayes 100.0 1.00 1.00 1.00

Simple logistic 100.0 1.00 1.00 1.00

Sequential minimal optimization 100.0 1.00 1.00 1.00

Random forest 100.0 1.00 1.00 1.00

J48 83.3 1.00 0.75 0.83

GSE145128 Naïve Bayes 78.6 0.83 0.75 0.79

Simple logistic 50.0 0.50 0.50 0.51

Sequential minimal optimization 71.4 0.71 0.71 0.71

Random forest 78.6 0.75 0.83 0.84

J48 35.7 0.37 0.33 0.33
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4 Discussion

Genes that were differentially mutated in the subgroup with the
longest mOS, compared with the other subgroups, were enriched in
pathways related to intrinsic apoptosis signaling, cell cycle signaling,
the DNA damage response, and cellular senescence, all mechanisms
that affect GBM tumor growth and TMZ resistance. Intrinsic
apoptosis signaling is initiated by the tumor suppressor p53
(TP53) in response to an intracellular stress signal such as DNA
damage, with subsequent activation of a caspase cascade leading to
apoptotic cell death (Li et al., 1997; Tomita et al., 2006). TP53 also
regulates the expression of genes, including cyclins and cyclin-
dependent kinases, necessary for progression through the cell
cycle (Engeland, 2018). Somatic variants in TP53 are frequently
detected in GBM (Brennan et al., 2013), and TMZ induces cell cycle
arrest and senescence in GBM in a TP53-dependent manner (Hirose

et al., 2001). The PI3K/AKT/mTOR pathway, which also regulates
the cell cycle and promotes cell proliferation and survival (Porta
et al., 2014), has a mutation in at least one pathway gene in > 80% of
GBM patients, causing constitutive activation and aberrant function
of the pathway (Cancer Genome Atlas Research, 2008).
Furthermore, AKT activation protects against the cytotoxic effects
of TMZ in a GBM cell line (Hirose et al., 2005). The activation of
DNA damage response upstream regulators, the serine/threonine
kinases ATR and ATM, is associated with a reduced load of TMZ-
induced DNA double strand breaks and increased TMZ resistance in
GBM (Eich et al., 2013), as are mutations in MSH6, a mismatch
repair gene (Yip et al., 2009). Cellular senescence, characterized by
stable cell cycle arrest triggered by damaging stress signals, can exert
context-dependent anti- or pro-tumorigenic effects on GBM
(Beltzig et al., 2022; Salam et al., 2023). The GBM tumor growth
arrest associated with cellular senescence induced by TMZ can be

TABLE 4 Performance of TMZ-resistance gene signatures in predicting GBM overall survival.

Dataset for survival prediction Dataset used to select gene signature Spearman’s rank
correlation between
actual and predicted

survival

Mean absolute error

ρ P

GSE108474 GSE151680 0.45 2.82 x 10-5 10.7

GSE108474 GSE193957 0.52 7.92 x 10-7 11.1

GSE108474 GSE145128 0.46 1.22 x 10-5 10.4

GSE7696 GSE151680 0.53 0.00027 7.9

GSE7696 GSE193957 0.74 1.35 x 10-8 4.6

GSE7696 GSE145128 0.67 8.06 x 10-7 5.9

FIGURE 4
Correlation between actual and predicted survival using a combination of genes in signatures that could distinguish TMZ-resistant and control
samples. Survival was predicted for datasets (A) GSE108474 (N = 81) and (B) GSE7696 (N = 43). p < 0.0001 for Spearman’s ρ in each dataset. In each plot,
the line through the points is the linear regression line, and the shading represents the 95% confidence region for the regression line.
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considered anti-tumorigenic (Hirose et al., 2001). In a report
describing a pro-tumorigenic effect, tumor microvascular
endothelial cells that had been irradiated after removal from
GBM tumors were shown to be senescent and TMZ-resistant
while also being able to support the proliferation of GBM stem
cells (Borovski et al., 2013).

Therapeutic agents that target these pathways are the subject of
recently completed and ongoing GBM clinical trials (Wen et al.,
2020). Drugs that target the interaction of p53 protein with the
E3 ubiquitin ligase, MDM2, seek to relieve the inhibition of p53 by
MDM2 and rescue p53 transcriptional activation of pro-apoptotic
factors such as BAX and BBC3 (Puca et al., 2009). GBM showed no
response to everolimus (Chinnaiyan et al., 2018), which targets
mTOR, but other drugs that target mTORC1/2 and cyclin-
dependent kinases in the cell cycle machinery are under
evaluation (Wen et al., 2020). Inhibitors of the DNA damage
response are also being evaluated because DNA repair is partly
responsible for TMZ resistance in GBM (Wen et al., 2020). Anti-
senescence agents are of interest in GBM because senescent cells are
therapy-resistant and can be the precursors of a relapsed tumor
(Beltzig et al., 2022). A suggested, two-step strategy involves the use
of a chemotherapy drug to induce tumor cell senescence followed by
the use of a senolytic to ablate the senescent cells before the tumor
progresses and reoccurs (Chojak et al., 2023). TMZ is a potent
inducer of senescence (Hirose et al., 2001), and pre-clinical studies of
glioma cells have identified other inducers to be nutlin-3a
(Villalonga-Planells et al., 2011) and resveratrol (Filippi-Chiela
et al., 2013), among others, and senolytics to include
BH3 mimetics that target pro-survival BCL2 family members,
which are regulators of apoptosis (Schwarzenbach et al., 2021).
The failure of most experimental drugs to extend GBM survival
emphasizes the therapeutic challenges in GBM, among which are the
genetic heterogeneity within and between tumors, redundant
signaling pathways, and gaps in knowledge regarding the
contributions of genetic mutations to tumor growth and
treatment resistance (Wen et al., 2020).

The identification of gene signatures predictive of OS in
independent datasets in this study confirmed the association of
GBM survival with the 86 differentially mutated genes in subgroup
4. Subsets of the 86 genes also formed gene signatures that could
distinguish TMZ-resistant from control GBM samples, and the pool
of 31 genes in these signatures were also predictive of OS, suggesting
that some of the genes potentially can function as biomarkers of both
prognosis and response to TMZ treatment. To minimize reliance on
findings specific to individual datasets, the overlap between
signatures of prognosis and TMZ resistance was determined,
resulting in eight overlapping genes being identified.

Five (ANG, BACH1, CDKN2C, HMGA1, IFI16) of the eight
genes have shown associations with GBM in other reports. The
expression of angiogenin (ANG), a potent stimulator of
angiogenesis, was inversely correlated with survival in GBM
patients, and Ang deficiency prolonged the survival of mice with
platelet derived growth factor-induced GBM (Yang et al., 2022). The
GBM tumor in these mice showed lower proliferation, less
invasiveness, reduced angiogenesis, and higher apoptosis
compared with control mice. ANG knockdown also decreased
cell proliferation and increased apoptosis in GBM cell lines
(Yang et al., 2022). The inhibition of ANG with neomycin, a

small molecule that prevents binding of ANG to its receptor,
PLXNB2, decreased GBM growth in mice with platelet derived
growth factor-induced GBM and a xenograft mouse model,
demonstrating the potential of ANG inhibitors in GBM therapy
(Yang et al., 2022). High expression of BACH1, a transcription
factor, has been detected in GBM (Yuan et al., 2022). BACH1
overexpression enhanced the expression of MGMT leading to
TMZ resistance in a GBM cell line with a hypomethylated
MGMT promoter and a xenograft mouse model, whereas BACH1
depletion sensitized TMZ-resistant cells to TMZ (Nie et al., 2016).
These effects were blocked by TP53, which inhibits MGMT by
preventing the binding of SP1 to the MGMT promoter, but the
antagonistic effects of TP53 could be overcome by BACH1
overexpression (Nie et al., 2016). The low expression of BACH1
in combination with wild-type TP53 was associated with longer
survival in patients who received TMZ, suggesting that the targeting
of this pathway holds potential for regulating TMZ resistance (Nie
et al., 2016). Co-deletion of CDKN2C, a cyclin-dependent kinase
inhibitor and tumor suppressor, and CDKN2A in GBM cells
predicted sensitivity to palbociclib (PD0332991), a selective
CDK4/6 inhibitor that is being evaluated in an ongoing GBM
clinical trial (NCT03158389) (Wiedemeyer et al., 2010; Cen et al.,
2012).HMGA1, a gene that alters chromatin architecture to regulate
transcription, is highly expressed in some GBM stem cell lines and
its silencing reduces the self-renewal and sphere-forming efficiency
of these cells and sensitizes them to TMZ (Colamaio et al., 2016).
Moreover, decreased HMGA1 expression in a xenograft mouse
model, resulting from knockdown of an upstream long non-
coding RNA regulator, correlated with delayed GBM tumor
growth and increased survival (Mineo et al., 2016). The binding
of IFI16, a sensor of DNA in the innate immune response, to
ARPC1B, a subunit of the actin-related protein-2/3 complex,
resulted in activation of the NF-kappa-B pathway that
contributed to promotion of a mesenchymal phenotype
transformation and radiotherapy resistance in GBM stem cells
and a xenograft mouse model (Gao et al., 2022). This study
further showed that GBM cell lines with high expression of
ARPC1B and IFI16 were more sensitive to ceralasertib
(AZD6738), an inhibitor of ATR. IFI16 was also upregulated in
GBM cells treated with both Y15 (a small molecule inhibitor of
activated focal adhesion kinase) and TMZ (Huang et al., 2014), a
combination that decreases viability and tumor growth in GBM cells
(Golubovskaya et al., 2013).

The functions of three (PADI4, SDF4, TP53INP1) of the eight
genes in GBM remain to be explored. PADI4, an enzyme that converts
arginine residues to citrulline resulting in recognition of the
citrullinated proteins by the immune system, is highly expressed in
GBM (Sase et al., 2017; Neira et al., 2022). However, reports regarding
the role ofPADI4 in cancer are conflicting. Some studies reported high
PADI4 expression in other cancers (Liu et al., 2019) and showed that
PADI4 overexpression is associated with pro-tumorigenic properties
such as increased tumor cell proliferation, migration, clone forming
ability, and metastasis, and reduced apoptosis (Chang et al., 2022).
Other studies observed low PADI4 expression in cancer (Indeglia
et al., 2023) and found that PADI4 can suppress tumor cell growth
(Tanikawa et al., 2009). PADI4 is also suggested to function as a tumor
suppressor that interacts with p53 to regulate the transcription of
p53 target genes (Indeglia et al., 2023). The potential of PADI4 to serve
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as a drug target in cancer was demonstrated by the finding that a small
molecule inhibitor of PADI4 activated SESN2 and other p53 target
genes leading to mTORC1 signaling pathway inhibition, perturbation
of autophagy, and suppression of tumor cell growth (Wang et al.,
2012). In addition, the use of citrullinated proteins as epitopes in
cancer immunotherapy is an area of active research (Brentville et al.,
2020). The role of SDF4, a calcium-binding protein that regulates
calcium-dependent cellular activities, in GBM has not been described,
but in other cancers, SDF4 is highly expressed and promotes tumor
growth, migration, and distant metastasis (Luo et al., 2016). SDF4
expression was elevated in a colorectal cancer cell line (Ji et al., 2009)
and in pancreatic cancer cells compared with non-neoplastic
pancreatic ductal cells (Gronborg et al., 2006). A long non-coding
RNA, LINC00173, that is upregulated in nasopharyngeal cancer cells,
could promote the growth, migration and metastasis of
nasopharyngeal cancer cells by interacting with RAB1B to facilitate
SDF4 secretion in a RAB1B-dependent manner (He et al., 2023). The
reversal of LINC00173-mediated cancer cell progression by SDF4
knockdown suggested the potential of the LINC00173-RAB1B-SDF4
pathway to be a drug target for nasopharyngeal cancer. The
overexpression of TP53INP1, a tumor suppressor that promotes
the transcriptional activity of TP53 on its target genes, induces
G1 cell cycle arrest and enhances TP53-mediated apoptosis in
cancer cells (Tomasini et al., 2003). TP53INP1 also interacts
directly with components of the autophagy pathway to induce
autophagy-dependent cell death (Seillier et al., 2012). In pediatric
ependymoma, a malignant glial cell tumor, high expression of the
microRNA,miR-124-3p, and low expression of one of its target genes,
TP53INP1, correlated with shorter progression-free survival,
suggesting the potential to target miR-124-3p and TP53INP1 in
new therapeutic approaches for this cancer (Margolin-Miller et al.,
2017). The involvement of TP53INP1 in GBM tumor growth and
therapy resistance needs further study.

A study limitation was the small sample sizes of the GEO
independent datasets, which lessened the statistical power for
detecting correlations between actual and predicted OS and
distinguishing TMZ-resistant from control samples. The small size of
the MCHS sample also diminished power to detect a significant
difference in mOS between study groups. No matched germline
DNA sample was available for this dataset, prompting the use of a
PureCN tumor-only bioinformatics workflow that can accurately classify
variants as somatic versus germline. However, the low depth of exome
sequencing coverage of some of the MCHS samples likely hampered the
detection of somatic variants in these samples. Another limitation was
uncertainty about whether time to progression in TCGAGBM data was
based on true disease progression that was documented by imaging
according to RANO criteria (Wen et al., 2010).

5 Conclusion

In conclusion, targeting the molecular events at the basis of GBM
holds potential for the development of new therapeutic strategies in
GBM. Somatically mutated genes associated with mOS after TMZ
treatment function in the known oncogenic pathways of apoptosis,
cell cycle control, the DNA damage response, and cellular senescence.
Subsets of these genes form signatures of GBM prognosis or TMZ
resistance, and the overlap of these subsets has identified genes that may

influence both TMZ resistance and patient survival in GBM. PADI4,
SDF4, andTP53INP1 have been little studied in relation to GBM and are
new GBM gene candidates. Further investigation is needed to evaluate
whether these genes are useful for developing interventions to improve
the anticancer activity of TMZ and can serve as drug targets or predictive
biomarkers of response to GBM treatment. Additional studies should
also explore the molecular mechanisms through which somatic
mutations in these genes have an impact on the transition of initially
chemotherapy-sensitive tumors to TMZ-resistant tumors.
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