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Introduction: Translation is a crucial stage of gene expression. It may also act as an
additional layer of regulation that plays an important role in gene expression and
function. Highly expressed genes are believed to be codon-biased to support
increased protein production, in which quickly translated codons correspond to
highly abundant tRNAs. Synonymous SNPs, considered to be silent due to the
degeneracy of the genetic code, may shift protein abundance and function
through alterations in translational efficiency and suboptimal pairing to lowly
abundant tRNAs.

Methods: Here, we applied Quantitative Mature tRNA sequencing (QuantM-
tRNAseq) and ribosome profiling across bovine tissues in order to investigate
the relationship between tRNA expression and slowed translation.

Results: Moreover, we have identified genes modulated at transcriptional and/or
translational levels underlying tissue-specific biological processes. We have also
successfully defined pausing sites that depict the regulatory information encoded
within the open reading frame of transcripts, which could be related to translation
rate and facilitate proper protein folding. This work offers an atlas of distinctive
pausing sites across three bovine tissues, which provides an opportunity to predict
codon optimality and understand tissue-specific mechanisms of regulating
protein synthesis.
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Introduction

A major goal in animal genomics is to understand how changes in gene expression
underlie a phenotype. Gene transcription and mRNA translation are core events in the
process of gene expression. Previous research on the regulation of gene expression in
livestock largely focuses on events prior to translation, including epigenetic regulation,
transcription, and RNA processing. The development of strategies to quantify the
transcriptome, such as RNAseq, has allowed the study of genome-wide changes in
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transcript abundance triggered by diverse conditions. The
transcriptome gives a snapshot of transcripts expressed in a cell
and is typically used as an estimate for protein abundance. However,
this assumption overlooks the events that occur between
transcription and translation, which may suggest a
nonsynchronous relationship among transcript and protein
expression. Although transcriptional control has a significant
impact on the proteome, studies propose that only 40% of
protein abundance can be explained by mRNA expression (de
Sou et al., 2009; Maier et al., 2009; Vogel and Marcotte, 2012).
One study found that certain classes of genes display high
correlations between mRNA and protein expression, whereas
other reports have noted discordance with a wide range of
correlation coefficients (r = 0.08–0.8) (Vogel et al., 2011; Ponnala
et al., 2014; Koussounadis et al., 2015; Moritz et al., 2019). This
implies that mRNAmeasurements alone cannot account for protein
level. Several studies have described the regulation that occurs
during translation. During early embryogenesis in C. elegans,
translation regulation allows the increased production of GLP-1
protein independently of transcriptional changes (Curtis et al.,
1995). Valgepea et al. observed that E. Coli are able to achieve a
higher growth rate by increasing both catalytic and translation rates
of proteins (Valgepea et al., 2013). Manfrini et al. provided evidence
for specific metabolic enzymes in T cells to have unchanged mRNA
levels, yet increased protein abundance due to translational control
(Manfrini et al., 2020). Translational control of pre-existing mRNAs
facilitates a quick response to increase protein production compared
to a delayed response in transcriptional regulation.

The most extensively studied factor in determining translation
fidelity and efficiency is codon usage bias. Codon usage bias describes
the distribution of codons across the genome, in which synonymous
codons are not used in equal frequencies (Plotkin and Kudla, 2011).
Sources of sequence variation, like codon usage, often drive differences
in elongation rate and gene expression (Sharp and Li, 1987). Highly
expressed genes are thought to be codon-biased to support efficient
translation, in which the codons correspond to highly abundant tRNAs
(Plotkin and Kudla, 2011; Torrent et al., 2018). Consequently,
synonymous codons are under selective pressure and hybridize with
tRNAs to control gene expression (Chamary et al., 2005). Although
tRNAs were once thought to be ubiquitously expressed similar to
housekeeping genes, dynamic differences in tRNA abundance have
been observed across several tissues and diseases (Birch et al., 2016;
Kirchner et al., 2017; Pinkard et al., 2020; Goldkamp et al., 2022a).
Despite challenges in tRNA quantification due to tRNA redundancy
and tRNA modification, recent advances in tRNA sequencing
techniques have allowed improvements in detecting tRNA
expression compared to tedious hybridization methods (e.g., array
and Northern blotting) that cannot easily detect differences in nearly
identical isoacceptors or isodecoders (Dittmar et al., 2006; Goodenbour
and Pan, 2006; Fujishima and Kanai, 2014; Pinkard et al., 2020). For
example, Hydro-tRNA-seq uses alkaline hydrolysis to fragment tRNAs
followed by small RNA sequencing in order to avoid issues with
modified tRNA bases (Gogakos et al., 2017). However, alignment of
short reads can introduce difficulty in mapping. Another technique
called YAMAT-seq uses a specialized Y-shaped adapter to efficiently
ligate to mature tRNAs, but does not account for tRNA modifications
(Shigematsu et al., 2017). A recently published protocol, Quantitative
Mature tRNA sequencing (QuantM-tRNAseq), combines the use of a

specialized Y-shaped and the incorporation of a demethylation
treatment to survey the mature tRNA transcriptome (Pinkard et al.,
2020). Our previous work investigated differential expression of tRNA
genes in the skeletal muscle and liver tissue of bovine fetuses with an
overgrowth syndrome (Goldkamp et al., 2022a). Through this study, we
observed tissue-specific tRNA expression with dramatic changes in
anticodon availability across tissues. Because a synonymous mutation
could introduce a rare codon and slow translation, these findings
suggest alterations in tRNA abundance could be associated with
varying translation rates across tissue types. Further investigation is
necessary to evaluate tRNA abundance as a source of genetic variation
and the role of tRNA expression in regulating protein synthesis based
on codon: anticodon interactions.

Thus far, expression studies have been directed to measure the level
of all transcripts expressed in a cell, yet more work should be done to
investigate the field of post-transcriptional gene regulation and its
implications in livestock. In addition to their role in translation,
tRNAs seem to also act as a key factor in controlling the amount of
protein expressed through codon optimality. Buschauer et al. revealed
instances of co-translational mRNA decay in budding yeast, in which
non-optimal codons pairing to lowly abundant tRNAs triggered
recruitment of the CCr4-NOT complex and resulted in decay from
the 3′ end of the transcript (Buschauer et al., 2020). Indeed, Coller et al.
also found that codon optimality could be inferred by mRNA half-life
and was concordant with tRNA expression data (Presnyak et al., 2015;
Carneiro et al., 2019). Therefore, it is thought that transcript stability
increases with codon optimality, where optimality is defined by the
levels of a particular tRNA.

Although the contribution of translational regulation has been
understudied in bovine, recent advancements to monitor translation
has offered an opportunity to examine the impacts of the tRNA
transcriptome on the regulation of protein synthesis and fine tuning
of proteome composition (Ingolia et al., 2011; van Heesch et al.,
2019). Notably, ribosome profiling allows the isolation of mRNA
fragments bound by the ribosome, revealing codon specific
ribosome occupancies and actively translated regions. Similar to
transcriptome analysis, translatome profiling captures all mRNAs
associated with ribosomes during protein synthesis. However, read
counting for translatome profiling data reflects transcript
translatability instead of mRNA abundance. Prior to the
development of current ribosome profiling methods, two
techniques were commonly used for isolation of RNA bound by
ribosomes: affinity purification and sucrose gradient centrifugation,
which includes immunoprecipitation of ribosome bound RNA to
release associated RNAs and the use of a sucrose gradient to separate
translational components of cellular lysate (e.g., free RNA,
monosomes, polysomes), respectively (Ingolia, 2010; Ingolia et al.,
2012; King and Gerber, 2016). As methods for ribosome profiling
have advanced, recent techniques incorporate nuclease digestion
treatment to reveal positional information of the ribosome after
either a pull-down or sucrose gradient approach (Ingolia et al., 2014;
Clamer et al., 2018). These techniques as well as improvements in
quantifying the tRNA transcriptome has enhanced the feasibility of
characterizing the profiles of core elements of translational
machinery in bovine and allowed the detection of translationally
regulated genes.

In this study, we utilized QuantM-tRNAseq, ribosome profiling,
and RNAseq across bovine muscle, kidney, and liver tissues (3 bulls
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in total resulting in 3 replicates per tissue type) to establish a
genome-wide, high-resolution view of the translatome. The
QuantM-tRNAseq and ribosome profiling protocols yielded an
average of approximately 6.4 and 2.1 million mapped reads,
respectively. We must address constraints and limitations of the
present study. For example, there are still challenges in tRNA
sequencing in the context of redundancy of tRNA genes,
modifications, and aminoacylation levels (charged vs. uncharged),
which may impact our results. The use of spike-in material in future
studies may also enhance sensitivity in assessing tRNA load. In
addition, inhibition of translation via flash freezing and
cycloheximide may not provide accurate snapshots of translation.
Future work should include experiments that implement other
translational inhibitors, such as Tigecycline, emetine, or
anisomycin, as well as an inhibitor-free approach to verify
conclusions of ribosome pausing and codon usage (Xiong et al.,
2018; Sinha et al., 2020; Stoneley et al., 2022). Furthermore, it is not
well understood if higher ribosome density would indicate higher
translation levels of a transcript or in fact indicate slower translation
speed. However, the translational control underlying specific tissues
is poorly understood and to our knowledge, an integrative analysis
of tRNA expression and ribosome profiling in bovine tissues has not
yet been performed. Overall, we observed tissue-specific variations
in tRNA expression at isoacceptor and isodecoder level, identified
mRNAs associated with ribosomes, and surveyed codon-specific
ribosome occupancy in the presented tissue types.

Materials and methods

Tissue collection and RNA extraction

All processing for subsequent tissue collection was done at the
abattoir (OSU Robert M. Kerr Food and Agricultural Products
Center). Muscle, kidney, and liver tissue samples were collected
from 3 adult bulls (2 red angus and 1 shorthorn) after slaughter and
immediately flash frozen in liquid nitrogen. Tissue samples were
stored at −80°C until RNA extraction. Total RNAwas extracted from
tissues using RNAzol (Sigma-Aldrich) combined with the Direct-zol
kit (Zymo Research). Quality and concentration of the RNA samples
was assessed using the Agilent Tapestation RNA ScreenTape
(Agilent).

RNA-seq processing and alignment

Total RNA samples were sent to Beijing Genomics Institute
(BGI). All libraries were constructed following the DNBSEQ
eukaryotic stranded mRNA library protocol. Libraries were
sequenced in paired end mode (2 × 150 bp) on the DNBSEQ
platform. Quality of raw reads was assessed using FastQC version
0.11.7 and SolexaQA++ version 3.1.7 dynamictrim function was
used to trim low quality raw reads (Phred <20) (Andrews, 2010; Cox
et al., 2010). SolexaQA++ lengthsort function was used to remove
trimmed reads less than 60 bases in length. An index of the ARS-
UCD1.2 genome (GCF_002263795.1_ARS-UCD1.2_genomic) was
generated with hisat2-build and hisat2 version 2.1.0 was used to
align paired end reads to the genome with the -dta-cufflinks option

and the parameter adjustment (--mp 6,6 –score-min L,0,-0.2) to
increase specificity (Kim et al., 2019). Featurecounts was used for
read count estimation with the -s 2 parameter for reversely stranded
data, -p to indicate paired end data as input, -T 12 parameter to
specify thread number, and -M to allow multi-mapped reads (Liao
et al., 2014). Read counting was performed at a feature level with
parameter -t gene for read count estimation.

QuantM-tRNAseq library preparation

Mature tRNA library preparation frommuscle, kidney, and liver
was performed according to the QuantM-tRNAseq protocol
(Pinkard et al., 2020). In order to deacylate mature tRNAs and
remove 3′ amino acids, total RNA samples were incubated at 37°C
for 45 min in deacylation buffer (final concentration of 20 mM Tris-
HCl pH 9.0). To remove methyl modifications from the mature
tRNAs, the deacylated total RNA was treated with demethylase
using the rtStarTM tRNA-optimized First-Strand cDNA Synthesis
Kit (ArrayStar) and purified with the RNA Clean & Concentrator-5
kit (Zymo Research). A 3′ adapter and DNA/RNA hybrid 5′
adapters were used to hybridize the different discriminator bases
preceding the 3′ CCA tail of the tRNA: 5′-TGrGrA-3′, 5′-TGrGrT-
3′, 5′-TGrGrG-3′, and 5′-TGrGrC-3′. In a 200 μL PCR tube, 1 μg of
deacylated total RNA was mixed with 10 pmol of 3′ adapter and
10 pmol of 5′ adapter (2.5 pmol of each DNA/RNA 5′ adapter) and
then incubated in a 9 μL reaction at 95°C for 2 min 1 μL of 10x
annealing buffer (final concentration of 5 mM Tris-HCl pH 8.0,
0.5 mM EDTA, and 10 mM MgCl2) was added to the 9 μL reaction
and incubated at 37°C for 15 min to hybridize the double stranded
adapters. 10 μL of 1x reaction buffer (2 μL 10x reaction buffer, 7 μL
nuclease free water, 1 μL T4 RNA ligase 2 (10 U/μL)) was added to
the adapter/RNAmixture and incubated at 37°C for 60 min then 4°C
for 90 min. All reactions were isopropanol precipitated with
glycoblue (Thermo Fisher) and suspended in 10 μL of nuclease
free water. For cDNA synthesis, 1 μL of 10 μMRT primer was added
to the 10 μL of adapter ligated RNA and samples were incubated at
70°C for 2 min. Following annealing of the RT primer, cDNA
synthesis was done by adding 9 μL of RT reaction (final
concentration of 1x RT Buffer, 0.5 mM dNTP mix, 5 mM DTT,
2 U/μL Superase-In Rnase inhibitor, and 10 U/μL of SuperScript IV
Reverse Transcriptase) to the 11 μL RT primer/ligated RNA reaction
for a total volume of 20 μL. The 20 μL reaction was then incubated at
55°C for 60 min. DNA-RNA dimers were removed using 2.2 μL of
1 N NaOH and samples were incubated at 98°C for 20 min. All
reactions were isopropanol precipitated with glycoblue (Thermo
Fisher) and suspended in 10 μL of nuclease free water. The cDNA
libraries were size separated using a 6% Novex TBE-Urea PAGE gel
(Thermo Fisher) and stained with ×1 SYBR gold (Thermo Fisher)
in ×1 TBE Buffer for 15 min. A size selection of 100–300 bp was
performed on the gel via a UV transilluminator. The gel slices were
sheared, suspended in 400 μL of DNA elution buffer (final
concentration of 300 mM NaCl, 10 mM Tris pH 8.0, 1 mM
EDTA), incubated at −80°C for 60 min and then incubated at
room temperature on a standing rotator overnight. The cDNA
was isopropanol precipitated with glycoblue and resuspended in
15 μL of nuclease free water. The 15 μL of cDNA was circularized
with CircLigase (Epicentre) in a 20 μL reaction (final concentration
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of 1x reaction buffer, 50 μM ATP, 2.5 mM MnCl2, and 5 U/μL
CircLigase ssDNA Ligase) using the manufacturer’s suggested
conditions at 60°C for 60 min and heat-inactivated at 80°C for
20 min. The circularized cDNA was isopropanol precipitated
with glycoblue and resuspended in 12.5 μL of nuclease free water.
PCR amplification of the circularized cDNA was done using the
NEBnext Ultra Q5 next-generation master mix (NEB) with the
manufacturer’s suggested conditions and were amplified for 7 cycles.
A unique index primer was used for each library sample. The
amplified libraries were run on a 2% agarose gel and stained with
0.05 mg/mL ethidium bromide. A size selection of 100–250 bp was
performed and the gel slices were purified using the Qiaquck gel
extraction kit (Qiagen). All libraries were isopropanol precipitated,
suspended in 11 μL of nuclease free water, and assessed using the
high-sensitivity DNA chip on the bioanalyzer (Agilent). Libraries
were pooled in equal concentrations and sequenced in single-end
mode (1 × 150 bp) using the Illumina NextSeq 500 System Mid
Output Kit (Illumina) by the OSU Genomics and Proteomics
Center.

Ribosome profiling sample preparation and
library preparation

Ribosome footprint purification and subsequent sequencing of
ribosome footprints was performed with RiboLace Module 1 and
LACEseq (IMMAGINA Biotechnology). Active ribosomes were
isolated using the RiboLace kit according to the manufacturer’s
instructions. Flash frozen tissue samples were ground with a
mortar and pestle in liquid nitrogen. The resulting powder was
resuspended in 800 μL of lysis buffer (final concentration of
20 mM Tris-HCl pH 7.4, 150 mM NaCl, 5 mM MgCl2, 1 mM
DTT, 100 μg/μL cycloheximide, 1% Triton X-100, and 25 U/mL
DNase I). After centrifugation at 20,000 g for 5 min, the
supernatant was transferred to a new tube and kept on ice for
20 min. Ribosome footprints were generated using a nuclease
digestion and ribosome footprints were captured using
functionalized Ribolace beads, which were then purified using
acid phenol: chloroform according to the manufacturer’s
instructions. Purified samples were run on a 15% TBE-Urea
polyacrylamide gel, stained using SYBR Gold, and regions
corresponding to 25 to 35 nt were size selected. The gel slices
were sheared, suspended in elution buffer, incubated at −80°C for
60 min and then incubated at room temperature on a standing
rotator overnight. Samples were isopropanol precipitated with
glycoblue and suspended in 11 μL of TR buffer. Concentration
of the RPFs was assessed using the Qubit microRNA Assay Kit
(Thermo Fisher).

Library preparation of purified ribosome footprints was
performed using LACEseq. 5′ phosphorylation, linker ligation,
circularization, reverse transcription and PCR amplification were
all done according to the manufacturer’s instructions. LACEseq
library preparation involves 2 rounds of PCR amplification, in which
the second round incorporates a unique dual index (UDI)
(IMMAGINA) for each sample. Libraries were run on a 6% TBE
polyacrylamide gel, stained with SYBR Gold, and regions
approximately 200 nt in size were selected. The quality and
quantity of the libraries was assessed using the high-sensitivity

DNA chip on the Bioanalyzer (Agilent). Libraries were pooled
and sequenced in single end mode on the Illumina NextSeq
500 System High Output kit (Illumina) by the OSU Genomics
and Proteomics Center and also on the Illumina NovaSeq
6000 System S1 flow cell by the Michigan State University
Genomics core lab.

tRNA-seq processing and alignment

Quality of raw reads was assessed using FastQC version 0.11.7
(Andrews, 2010). Sequencing adaptors were trimmed using the
Cutadapt version 2.10 (Martin, 2011). First, 5′ adapter sequences
were removed using cutadapt -u 2 and cutadapt -g
TCCAACTGGATACTGGN -e 0.2, In order to remove the 3′
CCA and adapter sequences, this was then followed by cutadapt
-a CCAGTATCCAGTTGGAATT -e 0.2. The adapter trimmed
reads were quality trimmed using the SolexaQA++ version 3.1.7
dynamictrim utility with a Phred cut off score of 20 (Cox et al.,
2010). In an effort to include truncated reads resulting from stalling
during reverse transcription, quality trimmed reads with a length of
at least 15 bp were kept and were sorted using the SolexaQA++
lengthsort utility (Cox et al., 2010). High confidence mature
cytoplasmic tRNA sequences in the bovine reference genome
(ARS-UCD1.2) were retrieved from gtRNAdb (http://gtrnadb.
ucsc.edu; bosTau9-mature-tRNAs.fa) and mitochondrial tRNA
sequences were retrieved from mitotRNAdb (http://mttrna.bioinf.
uni-leipzig.de). A custom tRNA reference was generated by
combining cytoplasmic and mitochondrial tRNA sequences into
one fasta file and collapsing identical tRNA sequences. Reads were
then mapped to the reference with bowtie2 version 2.3.4.1 with the
following parameters: end-to-end -D 20 -R 3 -N 0 -L 15 -I S,1,0.5
–score-min C,0,0 and only exact matches were allowed (Langme et
al., 2012). Samtools version 1.6 was also used to filters reads by their
mapping quality score (MAPQ ≥10) over reference tRNAs.
Isodecoder-level read count tables were generated using salmon
version 0.11.1 and anticodon-level read tables were generated by
summing the read counts of isodecoders with identical anticodons
(Patro et al., 2017).

Ribo-seq processing and alignment

Raw sequence reads from NextSeq and NovaSeq platforms for
each sample were combined. Quality of raw reads was assessed using
FastQC version 0.11.7 (Andrews, 2010). The LACE-seq linker (TCT
CCTTGCATAATCACCAACC) was trimmed from the 3′ end with
Cutadapt version 2.10 (Martin, 2011). Only reads that contained the
linker and had a minimum length of 29 nt were kept (20 nt + 9 nt
from 5′ and 3′ UDI). Cutadapt was used to trim the T following the
5′ UDI and proceeding the RPF. To remove ribosomal RNAs
(rRNA) and tRNAs, the reads were aligned to representative
rRNA sequences from NCBI and the custom tRNA reference
consisting of cytoplasmic and mitochondrial sequences (described
previously) using bowtie2 version 2.3.4.1. The unmapped reads were
then aligned to the ARS-UCD1.2 reference transcriptome,
downloaded from the UCSC genome browser (refMrna.fa;
https://hgdownload.soe.ucsc.edu) using bowtie2 with adjusted
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parameters (--mp 3,1 –-score-min L, −0.6, −0.6, -N 1 -L 19). Reads
were also mapped to the reference genome (GCF_002263795.1_
ARS-UCD1.2_genomic) using hisat2 with parameters--mp 3,1
–score-min L, −0.6, −0.6. Featurecounts was used on genome
mapped reads for read count estimation with the adjusted
parameters (-s 1, -T 12, -M, -t gene) (Liao et al., 2014).

tRNA differential expression analysis

Differential expression analysis was performed using
DESeq2 v1.30.1 for amino acid, isoacceptor and isodecoder
comparisons. The median of ratios method of normalization was
used with the estimateSizeFactors function of DESeq2 and the
normalization factors were assigned back to the count matrix.
Pairwise comparisons between each tissue type (Kidney vs. Liver,
Muscle vs. Liver, Kidney vs. Muscle) were performed. Genes with a
p-value and Benjamini–Hochberg adjusted Wald-test
p-value ≤0.05 were classified as significant. PCA plots were
generated using the plotPCA function of DESeq2. Data was CPM
normalized and ggplot2 was used for bar graph visualization. Rmisc
was used to calculate descriptive statistics of the data (mean,
standard deviation, standard error, and 95% confidence intervals).

Ribosome footprint analysis

To assess the consistency between replicates, Principal
Component analysis (PCA) was used on genome mapped reads
and generated using an unbiased rlog transformation of the
normalized gene counts via DESeq2 (rlog (dds, blind = TRUE)
and the plotPCA function. In order to integrate quality control of
the ribosome profiling data and examine positional information
(A-site, P-site, E-site), we used an R package called riboWaltz
(v1.1.0.) to generate plots of average read length distribution as
well as P-site enrichment in CDS and untranslated regions.
Average read length distribution, P-site enrichment in CDS,
and trinucleotide periodicity were computed using the rlength_
distr, region_psite, and frame_psite_length functions of Ribowaltz,
respectively. Count tables of codon occupancy for all sites were
generated using the codon_usage_psite function with frequency
normalization and altering the site parameter to specify the desired
site (“asite”, “psite”, “esite”).

Differentially expressed (DEG) and differentially translated
genes (DTG) were identified using the deltaTE method and read
counts generated by featurecounts from RNA-seq and Ribo-seq
were used as input (Chothani et al., 2019). Both DEGs and DTGS
were classified as significant with a false discovery rate (FDR) ≤
0.05. DTGs were analyzed using the database for annotation,
visualization, and integrated discovery (DAVID; https://david.
ncifcrf.gov) and enriched biological processes with a p-value ≤0.
05 were considered significant (Huang et al., 2008). Translational
efficiency (TE) was calculated by taking the ratio of RPKM
normalized RPF counts and RPKM normalized RNA counts
for each gene in each sample. Hierarchical clustering
heatmaps of A, P, and E sites were created using log2, mean
centered data and the pheatmap function. Codon usage analysis
was performed on DTGs that were upregulated in each tissue.

The CDSs of each gene in the bovine reference genome (ARS-
UCD1.2) were retrieved from Ensembl Biomart version 104.
Frequency and relative synonymous codon uses (RSCUs) were
calculated using the “Bio:Tools:CodonOptTable” BioPerl module
and custom PERL scripts were used to average frequency and
RSCU values.

Results

QuantM-tRNAseq allows high-throughput
sequencing of mature tRNAs

We used a previously published protocol, QuantM-tRNAseq, in
order to accurately quantify changes in tRNA expression levels
among bovine muscle, kidney, and liver tissue (n = 3 per tissue).
QuantM-tRNAseq provides an improved representation of the
tRNA transcriptome through increased adapter ligation efficiency
and removal of reverse transcription (RT) blocking modifications
via demethylation treatment (Pinkard et al., 2020). Adapters and 3′
CCA tails were removed from raw sequenced reads followed by
quality trimming (Phred ≥20), which yielded an average of
11,660,791 clean reads across all samples (Supplementary Table
S1). The trimmed reads were aligned to a custom reference set of
high-confidence mature tRNA sequences (ARS-UCD1.2) obtained
from gtRNAdb and mitotRNAdb, where confidence was based on
functional score thresholds via tRNA-ScanSE (Supplementary Table
S1) (Rosen et al., 2020). Although the bovine reference genome
(ARS-UCD1.2) has 1,659 annotated tRNA genes, many of these
genes have identical or nearly identical sequences. Due to the
limitations introduced by the genetic redundancy of tRNAs,
identical tRNA sequences were collapsed into a single
representative in our reference set. Therefore, our tRNA
reference set included a total of 565 unique tRNA transcript
sequences, representing 21 amino acids (including selenocysteine)
and 54 anticodons. Only 54 out of 62 anticodons were present
because 8 tRNAs (Ala-GGC, Arg-GCG, Asn-ATT, Gly-ACC, His-
ATG, Leu-GAG, Pro-GGG, Tyr-ATA) were not a part of the high
confidence tRNA list due to low feature scores. In other words, these
tRNAs are likely non-functional in translation due to critical
sequence variations or represent tRNA-derived short interspersed
repeated elements (SINEs) (Chan et al., 2019). A previous report
illustrates missing tRNA genes by identifying absent tRNA
isoacceptors across 100 species of Bacteria, 50 species of Archaea,
and 60 species of Eukarya (Ehrlich et al., 2021). In this report, Asn-
ATT, Gly-ACC, His-ATG, and Tyr-ATA were absent from all
species analyzed (Bacteria, Archaea, and Eukarya). Alternatively,
Ala-GGC, Leu-GAG, and Pro-GGG were missing from all species of
Eukarya, while Arg-GCG was absent from all Eukarya and Bacteria
species. The lack of specific tRNA genes could suggest that
deleterious tRNA species are removed by negative selection and
wobble base pairing is sufficient for all codons to be decoded, but
perhaps at an altered speed.

Out of the 565 tRNA sequences in our gene set, 543 were
classified as cytoplasmic and 22 represented mitochondrial tRNAs
(Supplementary Table S2). Overall, the majority of reads aligned to
cytoplasmic (Cyto) tRNAs and a smaller portion to mitochondrial
(Mito) tRNAs in the liver (average of 94.1% Cyto and 5.9% Mito)
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and muscle (average of 84.9% Cyto and 15.1% Mito)
(Supplementary Figure S1). Contrastingly, mitochondrial tRNA
expression contributed to over 1/3 of all expressed tRNAs in
kidney (63% Cyto and 37% Mito). Among the list of organs
that have the highest oxygen consumption and mitochondrial
density, the kidney is only second to the heart (Bhargava and
Schnellmann, 2017; O’Connor, 2006). Therefore, an increase in the
proportion of mitochondrial-derived tRNAs could likely be related
to the high energy demands of the kidney compared to liver and
muscle.

Tissue-specific expression of tRNAs across
bovine tissues

In the present study, we applied the QuantM-tRNAseq protocol
for tRNA sequencing in an effort to increase sensitivity and capture
more tRNA species (Pinkard et al., 2020). In order to reduce
dimensionality and investigate the reproducibility of replicates,
principal component analysis (PCA) was used on the tRNA
expression data. PC1 and PC2 captured 51% and 22% of the
variance respectively (Figure 1A). Biological replicates for each

FIGURE 1
Variation in tRNA expression across bovine tissues. (A) Principal component analysis (PCA) reveals the similarity of expression between muscle,
kidney, and liver tissues. (B) Bar plots displaying tRNA expression for each amino acid. Expression for each codon for all forms of isodecoder tRNAs were
summed at the level of the amino acid and categorized based on tissue type. The y-axis represents the log10 CPM-normalized values by each amino acid
and tissue type. Pooled standard error bars are shown for all anticodons within each amino acid family and were computed using the SummarySE
function of the Rmisc package. (C) Stacked bar charts of tissue-specific variation in anticodon expression within Arginine (Arg) and Leucine (Leu). All
replicates are shown for all tissue types and the y-axis represents the percentage of each anticodon contributing to the abundance of the amino acid. (D)
Stacked bar charts of tissue-specific variation in isodecoder expression within Arginine-TCG and Leu-TAA. Bar charts represent the proportion of distinct
isodecoders making up the pool of Arg-TCG (left) and Leu-TAA (right). Stacked bar charts represent data that was CPM-normalized and percentage of
each isoacceptor/isodecoder was calculated. All isodecoders are plotted in these graphs regardless of very low (Arg-TCG-6-1 and Arg-TCG-7-1) or high
(Arg-TCG-1-1) expression levels.
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tissue clustered together with kidney replicates having the strongest
degree of separation from muscle and liver replicates, which could
perhaps be due to differences in Mito tRNA expression as previously
discussed. This suggests that there is enough variation in tRNA
expression to allow us to differentiate diverse tissue types.
DESeq2 was used to perform a differential expression (DEG)
analysis between any two tissues at the level of the amino acid,
anticodon, and isodecoder. A DEG significance threshold of false
discovery rate (FDR) ≤ 0.05 was used. The full DEG output for each
comparison at all levels can be found in Supplementary Table S3.

Amino acid level DEG analysis

At the amino acid level, 14 of the amino acids (Ala, Cys, Gln,
Glu, Gly, His, Met, Phe, Pro, Ser, Thr, Trp, Tyr, Val) were
differentially abundant in at least one of the pairwise
comparisons (Figure 1B; Supplementary Table S3). In a pairwise
comparison between kidney and liver, 13 amino acids (Ala, Cys, Gln,
Glu, Gly, His, Phe, Pro, Ser, Thr, Trp, Tyr, and Val) were
differentially expressed. In a comparison between kidney and
muscle, 7 amino acids (Ala, Cys, Glu, Gly, His, Phe, Pro) were
differentially abundant. Between muscle and liver, Met was
significantly upregulated in the muscle.

Anticodon and isodecoder level DEG
analysis

In order to connect alterations in amino acid levels to changes in
anticodon expression, we performed a DEG analysis at the level of
the anticodon and found that 28 tRNA anticodons were
differentially expressed in at least one comparison
(Supplementary Table S3). For example, Arg-ACG was
upregulated in liver and muscle compared to kidney (Figure 1C,
left). In addition, Leu-CAG was downregulated in muscle compared
to kidney (Figure 1C, right). We also observe clear biases in the
proportion of anticodons contributing to Arg and Leu decoding. For
example, the majority (average of 66%) of Arg anticodons are
derived from Arg-TCG in kidney, yet there is an average
contribution of 36.26% and 42.27% in muscle and liver, respectively.

While isoacceptors are groups of anticodons that encode the
same amino acid, isodecoders are defined as tRNAs bearing the same
anticodon with sequence differences in the body of the tRNA
(outside of the anticodon loop). In our data set, 108 isodecoders
were differentially expressed in at least one comparison. For
instance, Arg-TCG-3-1 were downregulated in muscle and
kidney compared to liver while Leu-TAA-4-1 was downregulated
in kidney compared to muscle and liver (Figure 1D; Supplementary
Table S3). Although isodecoders have the same anticodon and are
therefore functionally equivalent in terms of translational capacity,
variations in isodecoder levels have been linked to biogenesis of
tRNA-derived fragments (Torres et al., 2019; Goldkamp et al.,
2022b). Through processing of mature tRNAs, tissue-specific
tRNA-derived fragments could be produced in order to regulate
gene expression and control homeostasis. This means that tRNAs
could control protein production through their availability for
translation elongation and/or through their regulatory by-

products that inhibit translation initiation. The gene expression
heatmap of isodecoder DEGs (Supplementary Figure S2) showed
clustering of the 3 replicates for each tissue and suggests that tRNAs
are dynamically regulated across tissues.

Ribosome profiling reveals mRNAs
associated with ribosomes

Given the importance of tRNA availability in efficient protein
synthesis and the significant diversity in their expression across
tissues, we performed ribosome profiling on the same tissue samples
to further characterize translational regulation. Ribowaltz was used
to assess quality of the ribosome profiling data and to identify the
location of the polypeptide site (P-site) within the ribosome
footprints (RPFs) by calculating P-site offset (Lauria et al., 2018).
The P-site is the position within the ribosome, which is bound by the
tRNA holding the growing polypeptide chain during translation
(Ahmed et al., 2019). The P-site offset for all samples was either 12 or
13 nt from the 5′ end of the read. In eukaryotes, RPFs are typically
~25 to 35 nucleotides long and we found that the majority of the
reads fell within this range across all three tissue types
(Supplementary Figure S3A) (Ingolia, 2010; Ingolia et al., 2012).
Another important characteristic in ribosome profiling data is that
the majority of reads should map to the coding sequence (CDS),
which is consistent with our data as the RPFs were strongly enriched
in the coding sequence compared to the 5′ and 3′ untranslated
region (UTR) (Figure 2A; Supplementary Figure S3B). The average
percent of mapped reads falling within the CDS ranged from 85.9%
to 88.6% across all tissues (Supplementary Table S6). Furthermore,
the RPFs exhibited trinucleotide periodicity in the CDS, where an
increased enrichment in the first frame of translation arises due to
the translocation of ribosomes along each codon in an mRNA
transcript (Figure 2B; Supplementary Figure S3C; Supplementary
Table S7) (Ingolia et al., 2009). This is demonstrated by the high
P-site signal in Frame 1 for each tissue type compared to the other
two frames of translation along the CDS (Figure 2B). PCA analysis
implied there were consistent measurements between biological
replicates and similar ribosome density on specific transcripts,
which allowed tight clustering within each tissue (Figure 2C). We
must acknowledge that muscle samples often had a reduced RPF
yield during library preparation and we observed a decreased
number of mapped reads in this tissue, which likely impacted the
number of ribosome-bound transcripts detected (Supplementary
Table S4).

Integration of RiboSeq and RNAseq reveals
tissue-specific translational regulation

Because muscle, kidney, and liver tissues underlie economically
important traits in livestock, such as feed efficiency and growth, we
were particularly interested in tissue-specific translational
regulation. In an effort to determine translationally regulated and
transcriptionally regulated genes, we implemented DeltaTE analysis
(Chothani et al., 2019). DeltaTE integrates matched RiboSeq and
RNAseq datasets in order to detect genes with differential
translational efficiency through an interaction term that models
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change in translational efficiency (TE). First, DeltaTE was used to
predict genes with significant changes in TE (Supplementary Table
S10). Another method of estimating TE is accomplished by taking
the ratio of normalized RPFs over normalized mRNA counts within
a particular gene, which represents the ribosome density per
transcript standardized to mRNA abundance (Ingolia et al., 2009;
Cottrell et al., 2017). In an effort to equate the DeltaTE model to
standard TE calculation, we calculated TE (RPKM normalized RPF
counts/RPKM normalized RNA counts) and compared it to the fold
change of genes with differential TE. In general, genes with a high
fold change had higher translational efficiency (Supplementary
Figure S4), suggesting the DeltaTE model accurately predicts
genes with differential TE.

In addition, the DeltaTE method was used to calculate
significant changes in RPF and mRNA counts in order to assign
genes to three different regulatory classes: transcriptionally
regulated genes (RNA), translationally regulated genes (Ribo),
and genes regulated at both transcriptional and translational
levels (Ribo & RNA). On average, we found that 81.63% of the
overall regulatory changes were due to transcriptional regulation,

4.29% were due to translational regulation, and 14.07% were due to
both transcriptional and translational regulation. When comparing
kidney to liver, a total of 72 genes were translationally regulated
(Ribo), whereas a total of 160 genes were regulated by transcription
and translation (Ribo & RNA) (Figure 3A, left). Furthermore, we
detected a total of 85 genes regulated by translation and 247 genes
regulated by both transcription and translation in kidney compared
to muscle (Figure 3A, middle). Finally, there were 63 translationally
regulated genes, and 300 genes regulated by transcription and
translation in liver compared to muscle (Figure 3A, right). The
full DeltaTE output for all genes in each regulatory class can be
found in Supplementary Tables S11, S12.

Although all cell types share some core biological processes for
basic cellular function, we identified differentially translated genes
that describe regulatory programs underlying tissue specificity. For
example, IGF2 and TGFA were transcriptionally and translationally
upregulated in liver compared to kidney as well as IGFBP2 and
AKR1C3 compared to muscle (Figures 3A, C). IGF2 and IGFBP2
play an important role in energy metabolism and maintenance of
liver homeostasis (Wheatcroft and Kearney, 2009; Gui et al., 2021).

FIGURE 2
Overview of ribosome profiling data. (A) Representative figures for each tissue showing the percentage of P-sites in the 5′ UTR, CDS, and 3′ UTR
computed with the region_psite function in the Ribowaltz package. The control RNA figure represents the expected distribution from random
fragmentation of RNA. Figures for all samples can be found in Supplementary Figure S3. (B) Representative figures for each tissue showing the percentage
of P-sites in the three frames along the CDS computed with the frame_psite_length function in the Ribowaltz package. RPFs with lengths ranging
from 25 to 35 are shown. Figures for all samples can be found in Supplementary Figure S3. (C) Principal component analysis (PCA) of genome mapped
RPFs shows tight clustering among tissue replicates and high separation across muscle, kidney, and liver.
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In addition, the liver is an organ central to steroid hormone
metabolism and AKR1C3 is an isoform in the aldo-keto
reductase superfamily that modulates levels of androgens,
oestrogens, and progestins (Penning et al., 2000). Moreover,
TGFA is a mitogenic factor for hepatocytes and has a role in
liver regeneration (Tomiya et al., 1998). In the kidney, we
identified two solute carriers (SLC16A12 and SLC47A1) that were
solely upregulated via translation relative to liver or muscle, and one
solute carrier (SLC17A3) upregulated at both transcriptional and
translational levels compared to liver (Figures 3A, B). Solute carriers
(SLC) are a family of proteins that are responsible for the majority of
absorption, distribution, and clearance of ions/organic molecules
within the renal tubule (Jutabha et al., 2010; Lewis et al., 2021;
Verouti et al., 2021). Furthermore, SDHB was translationally

upregulated in the kidney compared to muscle and knockout of
SDBH has been shown to inhibit the TCA cycle (Fang et al., 2021).
As mentioned previously, the kidneys are highly reliant on
mitochondrial function due to their energy demands, suggesting
a connection between the TCA cycle and proper kidney function
(Jimenez-Uribe et al., 2021). Translationally upregulated genes in
themuscle compared to kidney (ASB11 andVTN) and liver (GRB10)
participate in skeletal muscle contraction and/or muscle growth
(Figures 3B, C) (Dahm and Bowers, 1998; Holt et al., 2018; Ehrlich
et al., 2020). Finally, three members of the myosin family of motor
proteins (MYH1, MYH2, and MYH3) responsible for muscle
contraction were upregulated at transcriptional and translational
levels in muscle compared to kidney (MYH1 and MYH2) and liver
(MYH3) (Figures 3B, C) (Schiaffino et al., 2015).

FIGURE 3
Translational regulation in bovine tissues. Differentially translated genes identified in pairwise comparisons by DeltaTE method: (A) Kidney vs. Liver,
(B) Kidney vs. Muscle, and (C) Liver vs. Muscle. The x and y-axis are the log2FoldChange of the RNAseq and Ribosome profiling data respectively. Blue dots
represent transcriptionally regulated genes and red dots indicate translationally regulated genes. Purple dots display genes regulated at both
transcriptional and translational levels. Select genes underlying tissue-specific biological processes are labeled.
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In an attempt to investigate the regulated genes and the
processes they are involved in, GO enrichment analysis was
performed for each pairwise comparison and each regulatory
class (RNA, Ribo, RNA/Ribo) (Figure 4). For kidney vs. liver,
differentially translated genes (Ribo; Ribo & RNA) were enriched
in biological processes related to ion/metabolite transport and
metabolic processes, whereas transcriptionally regulated genes
were enriched in blood coagulation and cholesterol homeostasis
(Figure 4A). In a pairwise comparison between kidney and muscle,
genes regulated by translation were related to the TCA cycle or
protein polymerization yet genes enriched in the other regulatory
classes (RNA; Ribo & RNA) were enriched in muscle contraction
and sarcomere organization (Figure 4B). Furthermore,
transcriptionally regulated genes in liver vs. muscle were related
to muscle function, while translationally regulated genes were
involved in RNA splicing and translation (Ribo), and metabolism
or homeostasis (Ribo & RNA) (Figure 4C). These results can help
illustrate the complexities of translational regulation across diverse

tissues. The full DAVID output for GO enrichment can be found in
Supplementary Tables S13, S14.

Increased ribosome pausing at specific
codons within the A-site

After observing that tRNAs were dynamically regulated and
showed high tissue specificity, we hypothesized that there could be
conservation of ribosome pausing at certain aminoacyl site (A-site)
codons across tissues due to variations in codon optimality. While
the P-site represents the location where the tRNA is associated with
the growing polypeptide chain, the A-site awaits the incoming tRNA
charged with an amino acid and the exit site (E-site) holds an
uncharged tRNA before its leaving during translocation (Frank et al.,
2007). Ribowaltz was utilized to identify codons positioned in the
A-site, P-site, and E site of RPFs, which allowed us to calculate the
respective occupancy profiles for each site within the ribosome

FIGURE 4
GO enrichment analysis of the different regulatory classes in each pairwise comparison: (A) Kidney vs. Liver, (B) Kidney vs. Muscle, and (C)
Liver vs. Muscle. Graphs are colored based on class: transcriptionally regulated; RNA (blue), translationally regulated; Ribo (red), and
transcriptionally and translationally regulated; Ribo & RNA (purple). Enrichment analysis was performed using DAVID and enriched pathways are
ranked by p-value.
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(Lauria et al., 2018). Because recruitment of the tRNA to the A-site
acts as the rate limiting step during translation, we were particularly
interested in A-site occupancy among tissues. The highest amount of
ribosome pausing occurred at A-site codons encoding aspartic acid
(Asp-D) and glutamic acid (Glu-E) (Figure 5A). Both aspartic acid
and glutamic acid are negatively charged amino acids, which have
previously been determined as conserved mechanisms of slowed
translation across several eukaryotic species (yeast, fruit fly,
zebrafish, mouse, and human) (Chyzynska et al., 2021). In

addition to codons in negatively charged amino acid families, we
observed specific codons with high A-site enrichment (Lys-AAG
and Gly-GGA) (Figure 5B). Consecutive Lys-AAG codons within
open reading frames have been observed to reduce protein
production in zebrafish embryos and are suggested to trigger
codon-mediated decay (Mishima et al., 2022). Although Glycine
rich motifs (GGA-GGA) have been connected to translational
pausing in bacteria, few reports have indicated them in
eukaryotes (Rodnina, , 2016).

Given the fluctuations in A-site pausing among tissues, pausing
events should be conserved among biological replicates and tissues
should separate from one another based off of differences in A-site
codon occupancy. We found clustering among replicates for kidney
and liver tissues, yet Muscle #3 was an outlier (Figure 5B).
Furthermore, hierarchical clustering among A, P, and E sites for
each tissue revealed that sites clustered together in kidney and liver
(Supplementary Figures S5B, C). However, the A- and E-sites of
Muscle #3 did not cluster with corresponding replicates
(Supplementary Figure S5A). We must acknowledge that Muscle
#3 had a lower yield during library preparation which resulted in a
reduced number of mapped reads compared to Muscle #1 and #2,
which likely resulted in it clustering away from respective replicates.
Based on the first and second replicates frommuscle, we observe the
highest pausing at codons for Aspartic Acid (D-GAU), Glutamic
Acid (E-GAA/GAG), Glycine (G-GGA), and Lysine (K-AAG) and
the lowest pausing at codons for Proline (P-CCA/CCC/CCG/CCU)
and Leucine (L-CUC). In the kidney and liver, we find codons can be
grouped by amino acid in the P-site (Glycine (G), Leucine (L),
Proline (P)), suggesting the amino acid could influence the rate of
peptide bond formation. Despite variation within the muscle tissue,
these findings suggest robust pausing events with tissue and amino
acid specificity. To further compare changes in A-site codon
occupancy, we calculated relative codon enrichment based on the
average ratio of logCPM A-site occupancy counts between all tissue
replicates (i.e., Kidney #1/Liver #1, Kidney #1/Liver #2, Kidney #1/
Liver #3, Kidney #2/Liver #1, etc.) for each codon in all pairwise
comparisons (Figure 6). Consistent with decreased levels of Arg-
ACG in kidney, the A-site occupancy for Arg-CGU was increased in
kidney compared to muscle (Figure 6B). This indicates distinctions
in pausing events across tissues, which could contribute to altered
levels of protein synthesis. Moreover, synonymous codons within
certain amino acid families, such as Leucine, appear to have mixed
effects on translation pausing (Figure 6C). These results imply that
some synonymous mutations may be more or less tolerated in a
given tissue. Overall, this data suggests regulatory information is
encoded within the CDS through pausing mechanisms founded on
codon identity, which could influence protein abundance on a tissue
to tissue basis. Moreover, this data could be used as a resource for
future research on the translatome and codon optimization.

Mature tRNA expression and codon usage in
differentially translated genes

After observing a distinct A-site occupancy profile in each tissue,
we postulated that increased pausing at A-site codons correlated to
decreased tRNA availability, and vice versa. Therefore, we compared
A-site occupancy to tRNA expression levels in each tissue

FIGURE 5
Profiles of A-site occupancy at amino acid and codon levels. (A)
Percentage of A-sites categorized by tissue and amino acid. A-site
occupancies for codons were summed based on their respective
amino acid family. Standard error bars are shown for each amino
acid family and were computed using the SummarySE function of
Rmisc. This represents a per-molecule percentage, where A-site
counts for each RPF at each codon in the transcriptome were
retrieved using Ribowaltz software, normalized with the transcript
frequency parameter in Ribowaltz and summed by amino acid. (B)
Heatmap and hierarchical clustering of A-site occupancy across
tissues. A-site occupancies were log2, mean centered and codons
ordered by amino acid. Quickly and slowly translated codons are
shown in dark blue and dark red, respectively. Asterisks indicate
statistical significance after performing a Welch’s t-test
(p-value ≤0.05) between Muscle and Liver (*), Kidney and Muscle (**)
and Kidney and Liver (***).
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(Supplementary Figure S6). However, we did not observe a
significant linear correlation in any of the tissues (p-value ≥0.05).
Despite this, we found instances of inverse relationships between
A-site codon occupancy and tRNA expression. For instance, the
tRNA Asp-ATC was lowly expressed across all tissues and paired to
a codon with the most A-site pausing (Supplementary Figure S6).

Similarly, a Phe tRNA (Phe-GAA) was highly abundant in all tissues
and coincided with a codon that was quickly translated
(Supplementary Figure S6). While no clear correlation was found
and the relationship between A-site occupancy and tRNA
expression is quite complex, these examples illustrate a
mechanism where ribosomes pause or have slowed translation at

FIGURE 6
Changes in relative A-site codon enrichment depending on tissue type. (A) Kidney A-site enrichment relative to Liver, (B) Kidney A-site enrichment
relative to Muscle, (C) Liver A-site enrichment relative to Muscle. Codons are grouped and colored by amino acid family. The average ratio of logCPM
counts was calculated for each pairwise comparison by taking the logCPM ratio of all combinations of replicates between any two given tissues (Kidney
#1/Liver #1, Kidney #1/Liver #2, Kidney #1/Liver #3, Kidney #2/Liver #1, etc.). Standard error bars were computed with the SummarySE function.
Red dashed lines symbolize equal A-site enrichment for a particular codon between the two tissues compared. Codons above the red dashed line have
higher enrichment in (A,B) Kidney and (C) Liver compared to other tissues. Asterisks indicate statistical significance after performing a Welch’s t-test
(p-value ≤0.05).
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a particular codon in the A-site due to reduced availability of the
cognate tRNA. We must consider that computational prediction of
A-site occupancy could have introduced noise during analysis and
quantification of all tRNA transcripts (charged and uncharged with
an amino acid) may have presented bias. We should also
acknowledge that ribosomes spend more time rejecting tRNAs
than accepting them. Given that the pace of decoding during
translation can be affected by the ribosome’s capacity to
distinguish between perfect (cognate) and imperfect (near-
cognate or noncognate) codon: tRNA pairing, the occupancy of
the A-site on the ribosome might be influenced by either low levels
of cognate tRNAs or an abundance of near-cognate tRNAs
(Blanchet et al., 2018).

We next asked if alterations in tRNA abundance could be
connected to differentially translated genes. Thus, we obtained
the CDS of differentially translated genes in each tissue and

calculated the relative synonymous codon use (RSCU) for each
gene. We then performed a Pearson correlation analysis between
tRNA expression and RSCU weighted by amino acid family for each
tissue (Figure 7; Supplementary Table S15). Significant (p < 0.05)
and moderately positive correlations were observed for muscle (R =
0.51), kidney (R = 0.53), and liver (R = 0.55) tissue. This observation
indicates that there is some linear relationship between tRNA
expression and slowed translation, and measurement of tRNA
levels in bovine tissues can at least partly describe differences in
translational regulation.

Discussion

Although the redundancy of the genetic code enables multiple
codons to encode the same amino acid, tRNA isoacceptors can

FIGURE 7
Correlation of tRNA expression and codon usage in DTGs. All isoacceptors within each amino acid family total to 100% for relative synonymous
codon usage (RSCU) and tRNA expression datasets in each pairwise comparison. Test based on Pearson’s product moment correlation coefficient and
regression lines were added using the geom_smooth (method = lm) function of ggplot2 to specify the linear argument method.
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fluctuate in their abundance across diverse cell types. While
variations in tRNA expression have been described, their
complexity and contribution to modulations in protein synthesis
has been overlooked. In the present study, we provide a
comprehensive investigation of all components of the
translational machinery using QuantM-tRNAseq, ribosome
profiling and RNA-seq in the first integrative analysis of
translatome data in bovine tissues.

Anticodon-sparing is an interesting phenomenon that is
related to decoding activity, where genomes that contain a
tRNA with an A in the wobble position of the anticodon
(position 34) will not also contain an isoacceptor with a G in
the wobble position (Maraia and Arimbasseri, 2017). However, our
dataset revealed an exception to anticodon-sparing in the cattle
genome, which has a large set of tRNA genes. For example, we
detected the expression of both Ile-AAT and MT-Ile-GAT
with ≥50 bp reads uniquely mapping to either species with no
mismatches allowed. We also observed dramatic changes in tRNA
availability at amino acid, anticodon, and isodecoder levels across
muscle, kidney, and liver tissue (Figure 1). Variations in the
abundance of isoacceptor tRNAs could be adaptations in
response to changes in transcriptome codon usage, while
differential expression of isodecoder tRNAs (unique tRNAs
bearing the same anticodon) could be important for the
biogenesis of tRNA-derived fragments and contribute to gene
regulation. Through quality control analysis with Ribowaltz, we
found that our samples had characteristics of ribosome profiling
data including a high enrichment of p-sites in the CDS and tri-
nucleotide periodicity along the CDS (Figures 2A, B;
Supplementary Figure S3).

We integrated ribosome profiling (RiboSeq) and RNA-seq
datasets in order to identify both translationally and
transcriptionally regulated genes via DeltaTE (Chothani et al.,
2019). GO enrichment analysis revealed these translationally
regulated genes were enriched in pathways related to
metabolism in kidney and liver, and contraction or growth in
muscle (Figure 4). These findings elucidate the contributions of
both transcriptional and translational regulation in tissue-
specificity. Although we observed that approximately 4.29% of
regulatory changes were due to translational regulation across
steady state tissues, we must recognize that there may be higher
levels of translational regulation in experiments investigating
alterations in cellular environment or changes in developmental
state. Positional analysis via Ribowaltz allowed us to characterize
codons and amino acids associated with quick and slow
translation across each tissue (Figure 5; Supplementary Figure
S5). Specifically, codons for glutamic acid and aspartic acid often
acted as major sources of pausing across tissues, corresponding to
a report that implies negatively charged amino acids act as
conserved mechanisms of pausing (Chyzynska et al., 2021).
Further, we find codons that are associated with quick and
slow translation depending on tissue type. For example,
arginine and serine codons displayed considerable variation in
A-site translation rate across tissues. This indicates that
translation of transcripts is discretely regulated in a given
tissue due to codon composition. Some of these pause sites
may contribute to proper protein folding during protein
synthesis. Adjustments in pausing could also underlie quality

control and trigger degradation of abnormal transcripts or
peptides. These ribosome pausing profiles provide a reference
to gauge codon optimality, predict translational efficiency, and
estimate protein abundance in bovine.

Although translation rate and its association with tRNA
expression has been well studied in unicellular organisms,
these mechanisms are unclear in higher eukaryotes (Varenne
et al., 1984; Dana and Tuller, 2014). Overall, we found that there
was a moderately positive correlation (R = 0.51 to 0.55, p ≤ 0.05)
between codon usage of translationally regulated genes and
corresponding tRNAs among tissues (Figure 7). This
implicates a role for tRNAs in fine tuning translation speed
and potential for slow translated codons to be partly rescued
by increased tRNA concentration. It is important to note that
other factors aside from tRNA abundance could influence protein
synthesis efficiency, such as tRNA modifications, amino acid
sequence, mRNA sequence, and/or mRNA structure (Cannarozzi
et al., 2010; Arthur et al., 2015; Boel et al., 2016; Gamble et al.,
2016; Neelagandan et al., 2020). Some studies even suggest that
the codon composition at the N-terminus plays an important
part in stalling during elongation (Cannarozzi et al., 2010; Tuller
et al., 2010; Chu et al., 2014; Verma et al., 2019). While we were
able to partly connect tRNA expression to translational
efficiency, we can suggest that tRNA characteristics, such as
aminoacylation (charged with an amino acid), could further
differentiate the availability of tRNAs for translation in a
tissue specific manner. Because our study measured the
expression of all tRNAs whether they were charged with an
amino acid or not, this could have also introduced noise in
our dataset. This work not only provides a comparative
translatome analysis yielding insights into tissue-specific
translational regulation, but also begins to address the
correspondence between tRNA availability and translational
elongation rate in diverse bovine tissues.
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The contribution of cytoplasmic (cyto) and mitochondrial (mito) tRNAs
to the total tRNA pool. Stacked bar graphs represent the percentage
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level of the isodecoder.
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distribution across tissues. (B) Percentage of P-sites in the 5′ UTR, CDS, and
3′ UTR across all replicates. (C) Percentage of P-sites in the three frames
along the CDS in all replicates.

SUPPLEMENTARY FIGURE S4
Scatterplot illustrating the relationship between TE calculation and fold
change of genes with differential translational efficiency (TE) predicted by
the DeltaTE model. Red and blue dots indicate genes predicted to have
high and low translational efficiency respectively.

SUPPLEMENTARY FIGURE S5
Heatmap and hierarchical clustering of A, P, and E sites within (A)muscle, (B)
kidney, and (C) liver tissues. A-site occupancies were log2, mean centered
and codons ordered by amino acid. Quickly and slowly translated codons
are shown in dark blue and dark red, respectively.

SUPPLEMENTARY FIGURE S6
Relationship betweenA-site occupancy andMature tRNAexpression. Scatterplot
showing the correlation between A-site (log2) and tRNA expression (log2) using
the Pearson product moment correlation coefficient.

References

Ahmed, N., Sormanni, P., Ciryam, P., Vendruscolo, M., Dobson, C. M., and O’Brien,
E. P. (2019). Identifying A- and P-site locations on ribosome-protected mRNA
fragments using Integer Programming. Sci. Rep. 9 (6256), 6256. doi:10.1038/s41598-
019-42348-x

Andrews, S. (2010). FastQC: a quality control tool for high throughput sequence data.

Arthur, L., Pavlovic-Djuranovic, S., Smith-Koutmou, K., Green, R., Szczesny, P., and
Djuranovic, S. (2015). Translational control by lysine-encoding A-rich sequences. Sci.
Adv. 1 (6), e1500154. doi:10.1126/sciadv.1500154

Bhargava, P., and Schnellmann, R. G. (2017). Mitochondrial energetics in the kidney.
Nat. Rev. Nephrol. 13 (10), 629–646. doi:10.1038/nrneph.2017.107

Birch, J., Clarke, C. J., Campbell, A. D., Campbell, K., Mitchell, L., Liko, D., et al.
(2016). The initiator methionine tRNA drives cell migration and invasion leading to
increased metastatic potential in melanoma. Biol. Open 5 (10), 1371–1379. doi:10.1242/
bio.019075

Blanchet, S., Cornu, D., Hatin, I., Grosjean, H., Bertin, P., and Namy, O. (2018).
Deciphering the reading of the genetic code by near-cognate tRNA. Proc. Natl. Acad. Sci.
U. S. A. 115 (12), 3018–3023. doi:10.1073/pnas.1715578115

Boel, G., Letso, R., Neely, H., Price, W. N., Wong, K. H., Su, M., et al. (2016). Codon
influence on protein expression in E. coli correlates with mRNA levels. Nature 529
(7586), 358–363. doi:10.1038/nature16509

Buschauer, R., Matsuo, Y., Sugiyama, T., Chen, Y. H., Alhusaini, N., Sweet, T., et al.
(2020). The Ccr4-Not complex monitors the translating ribosome for codon optimality.
Science 368 (6488), 368. doi:10.1126/science.aay6912

Cannarozzi, G., Cannarrozzi, G., Schraudolph, N. N., Faty, M., von Rohr, P., Friberg,
M. T., et al. (2010). A role for codon order in translation dynamics. Cell 141 (2),
355–367. doi:10.1016/j.cell.2010.02.036

Carneiro, R. L., Requião, R. D., Rossetto, S., Domitrovic, T., and Palhano, F. L. (2019).
Codon stabilization coefficient as a metric to gain insights into mRNA stability and
codon bias and their relationships with translation. Nucleic Acids Res. 47 (5),
2216–2228. doi:10.1093/nar/gkz033

Chamary, J. V., and Hurst, L. D. (2005). Evidence for selection on synonymous
mutations affecting stability of mRNA secondary structure in mammals. Genome Biol. 6
(9), R75. doi:10.1186/gb-2005-6-9-r75

Chan, P. P., Lowe, T. M., and tRNAscan-, S. E. (2019). tRNAscan-SE: searching for
tRNA genes in genomic sequences. Methods Mol. Biol. 1962, 1–14. doi:10.1007/978-1-
4939-9173-0_1

Chothani, S., Adami, E., Ouyang, J. F., Viswanathan, S., Hubner, N., Cook, S. A., et al.
(2019). deltaTE: detection of translationally regulated genes by integrative analysis of
ribo-seq and RNA-seq data. Curr. Protoc. Mol. Biol. 129 (1), e108. doi:10.1002/
cpmb.108

Chu, D., Kazana, E., Bellanger, N., Singh, T., Tuite, M. F., and von der Haar, T. (2014).
Translation elongation can control translation initiation on eukaryotic mRNAs. EMBO
J. 33 (1), 21–34. doi:10.1002/embj.201385651

Chyzynska, K., Labun, K., Jones, C., Grellscheid, S. N., and Valen, E. (2021). Deep
conservation of ribosome stall sites across RNA processing genes. Nar. Genom
Bioinform 3 (2), lqab038. doi:10.1093/nargab/lqab038

Clamer, M., Tebaldi, T., Lauria, F., Bernabò, P., Gómez-Biagi, R. F., Marchioretto, M.,
et al. (2018). Active ribosome profiling with RiboLace. Cell Rep. 25 (4), 1097–1108.
doi:10.1016/j.celrep.2018.09.084

Cottrell, K. A., Szczesny, P., and Djuranovic, S. (2017). Translation efficiency is a
determinant of the magnitude of miRNA-mediated repression. Sci. Rep. 7, 14884.
doi:10.1038/s41598-017-13851-w

Cox, M. P., Peterson, D. A., and Biggs, P. J. (2010). SolexaQA: at-a-glance quality
assessment of Illumina second-generation sequencing data. BMC Bioinforma. 11, 485.
doi:10.1186/1471-2105-11-485

Curtis, D., Lehmann, R., and Zamore, P. D. (1995). Translational regulation in
development. Cell 81 (2), 171–178. doi:10.1016/0092-8674(95)90325-9

Dahm, L. M., and Bowers, C. W. (1998). Vitronectin regulates smooth muscle
contractility via alphav and beta1 integrin. J. Cell Sci. 111 (9), 1175–1183. doi:10.
1242/jcs.111.9.1175

Frontiers in Genetics frontiersin.org15

Goldkamp and Hagen 10.3389/fgene.2023.1308048

https://www.frontiersin.org/articles/10.3389/fgene.2023.1308048/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2023.1308048/full#supplementary-material
https://doi.org/10.1038/s41598-019-42348-x
https://doi.org/10.1038/s41598-019-42348-x
https://doi.org/10.1126/sciadv.1500154
https://doi.org/10.1038/nrneph.2017.107
https://doi.org/10.1242/bio.019075
https://doi.org/10.1242/bio.019075
https://doi.org/10.1073/pnas.1715578115
https://doi.org/10.1038/nature16509
https://doi.org/10.1126/science.aay6912
https://doi.org/10.1016/j.cell.2010.02.036
https://doi.org/10.1093/nar/gkz033
https://doi.org/10.1186/gb-2005-6-9-r75
https://doi.org/10.1007/978-1-4939-9173-0_1
https://doi.org/10.1007/978-1-4939-9173-0_1
https://doi.org/10.1002/cpmb.108
https://doi.org/10.1002/cpmb.108
https://doi.org/10.1002/embj.201385651
https://doi.org/10.1093/nargab/lqab038
https://doi.org/10.1016/j.celrep.2018.09.084
https://doi.org/10.1038/s41598-017-13851-w
https://doi.org/10.1186/1471-2105-11-485
https://doi.org/10.1016/0092-8674(95)90325-9
https://doi.org/10.1242/jcs.111.9.1175
https://doi.org/10.1242/jcs.111.9.1175
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1308048


Dana, A., and Tuller, T. (2014). The effect of tRNA levels on decoding times of mRNA
codons. Nucleic Acids Res. 42, 9171–9181. doi:10.1093/nar/gku646

de Sousa Abreu, R., Penalva, L. O., Marcotte, E. M., and Vogel, C. (2009). Global
signatures of protein and mRNA expression levels. Mol. Biosyst. 5 (12), 1512–1526.
doi:10.1039/b908315d

Dittmar, K. A., Goodenbour, J. M., and Pan, T. (2006). Tissue-specific differences in
human transfer RNA expression. PLoS Genet. 2 (12), e221. doi:10.1371/journal.pgen.
0020221

Ehrlich, K. C., Lacey, M., and Ehrlich, M. (2020). Epigenetics of skeletal muscle-
associated genes in the ASB, LRRC, TMEM, and OSBPL gene families. Epigenomes 4 (1),
1. doi:10.3390/epigenomes4010001

Ehrlich, R., Davyt, M., López, I., Chalar, C., and Marín, M. (2021). On the track of the
missing tRNA genes: a source of non-canonical functions? Front. Mol. Biosci. 8, 643701.
doi:10.3389/fmolb.2021.643701

Fang, Z., Sun, Q., Yang, H., and Zheng, J. (2021). SDHB suppresses the tumorigenesis
and development of ccRCC by inhibiting glycolysis. Front. Oncol. 11, 639408. doi:10.
3389/fonc.2021.639408

Frank, J., Gao, H., Sengupta, J., Gao, N., and Taylor, D. J. (2007). The process of
mRNA-tRNA translocation. Proc. Natl. Acad. Sci. U. S. A. 104 (50), 19671–19678.
doi:10.1073/pnas.0708517104

Fujishima, K., and Kanai, A. (2014). tRNA gene diversity in the three domains of life.
Front. Genet. 5, 142. doi:10.3389/fgene.2014.00142

Gamble, C. E., Brule, C. E., Dean, K. M., Fields, S., and Grayhack, E. J. (2016).
Adjacent codons act in concert to modulate translation efficiency in yeast. Cell 166 (3),
679–690. doi:10.1016/j.cell.2016.05.070

Gogakos, T., Brown, M., Garzia, A., Meyer, C., Hafner, M., and Tuschl, T. (2017).
Characterizing expression and processing of precursor and mature human tRNAs by
hydro-tRNAseq and PAR-CLIP. Cell Rep. 20 (6), 1463–1475. doi:10.1016/j.celrep.2017.
07.029

Goldkamp, A., Li, Y., Rivera, R. M., and Hagen, D. E. (2022a). Characterization of
tRNA expression profiles in large offspring syndrome. BMC Genomics 23, 273. doi:10.
1186/s12864-022-08496-7

Goldkamp, A. K., Li, Y., Rivera, R. M., and Hagen, D. E. (2022b). Differentially
expressed tRNA-derived fragments in bovine fetuses with assisted reproduction
induced congenital overgrowth syndrome. Front. Genet. 13, 1055343. doi:10.3389/
fgene.2022.1055343

Goodenbour, J. M., and Pan, T. (2006). Diversity of tRNA genes in eukaryotes.Nucleic
Acids Res. 34 (21), 6137–6146. doi:10.1093/nar/gkl725

Gui, W., Zhu, Y., Sun, S., Zhu, W., Tan, B., Zhao, H., et al. (2021). Knockdown of
insulin-like growth factor 2 gene disrupts mitochondrial functions in the liver. J. Mol.
Cell Biol. 13, 543–555. doi:10.1093/jmcb/mjab030

Holt, L. J., Brandon, A. E., Small, L., Suryana, E., Preston, E., Wilks, D., et al. (2018).
Ablation of Grb10 specifically in muscle impacts muscle size and glucose metabolism in
mice. Endocrinology 159 (3), 1339–1351. doi:10.1210/en.2017-00851

Huang, D., Sherman, B. T., and Lempicki, R. A. (2008). Systematic and integrative
analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4 (44),
44–57. doi:10.1038/nprot.2008.211

Ingolia, N. T., Brar, G. A., Stern-Ginossar, N., Harris, M. S., Talhouarne, G. J. S.,
Jackson, S. E., et al. (2014). Ribosome profiling reveals pervasive translation outside of
annotated protein-coding genes. Cell Rep. 8 (5), 1365–1379. doi:10.1016/j.celrep.2014.
07.045

Ingolia, N. T. (2010). Genome-wide translational profiling by ribosome footprinting.
Methods Enzymol. 470, 119–142. doi:10.1016/S0076-6879(10)70006-9

Ingolia, N. T., Brar, G. A., Rouskin, S., McGeachy, A. M., and Weissman, J. S. (2012).
The ribosome profiling strategy for monitoring translation in vivo by deep sequencing
of ribosome-protected mRNA fragments. Nat. Protoc. 7 (8), 1534–1550. doi:10.1038/
nprot.2012.086

Ingolia, N. T., Ghaemmaghami, S., Newman, J. R., and Weissman, J. S. (2009).
Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome
profiling. Science 324 (5924), 218–223. doi:10.1126/science.1168978

Ingolia, N. T., Lareau, L. F., and Weissman, J. S. (2011). Ribosome profiling of mouse
embryonic stem cells reveals the complexity and dynamics of mammalian proteomes.
Cell 147 (4), 789–802. doi:10.1016/j.cell.2011.10.002

Jimenez-Uribe, A. P., Hernandez-Cruz, E. Y., Ramirez-Magana, K. J., and Pedraza-
Chaverri, J. (2021). Involvement of tricarboxylic acid cycle metabolites in kidney
diseases. Biomolecules 11 (9), 1259. doi:10.3390/biom11091259

Jutabha, P., Anzai, N., Kitamura, K., Taniguchi, A., Kaneko, S., Yan, K., et al. (2010).
Human sodium phosphate transporter 4 (hNPT4/SLC17A3) as a common renal
secretory pathway for drugs and urate. J. Biol. Chem. 285 (45), 35123–35132. doi:10.
1074/jbc.M110.121301

Kim, D., Paggi, J. M., Park, C., Bennett, C., and Salzberg, S. L. (2019). Graph-based
genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat.
Biotechnol. 37 (8), 907–915. doi:10.1038/s41587-019-0201-4

King, H. A., and Gerber, A. P. (2016). Translatome profiling: methods for genome-
scale analysis of mRNA translation. Brief. Funct. Genomics 15 (1), 22–31. doi:10.1093/
bfgp/elu045

Kirchner, S., Cai, Z., Rauscher, R., Kastelic, N., Anding, M., Czech, A., et al. (2017).
Alteration of protein function by a silent polymorphism linked to tRNA abundance.
PLoS Biol. 15 (5), e2000779. doi:10.1371/journal.pbio.2000779

Koussounadis, A., Langdon, S. P., Um, I. H., Harrison, D. J., and Smith, V. A. (2015).
Relationship between differentially expressed mRNA and mRNA-protein correlations
in a xenograft model system. Sci. Rep. 5, 10775. doi:10.1038/srep10775

Langmead, B., and Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2.
Nat. Methods 9 (4), 357–359. doi:10.1038/nmeth.1923

Lauria, F., Tebaldi, T., Bernabò, P., Groen, E. J. N., Gillingwater, T. H., and Viero, G.
(2018). riboWaltz: optimization of ribosome P-site positioning in ribosome profiling
data. PLoS Comput. Biol. 14 (8), e1006169. doi:10.1371/journal.pcbi.1006169

Lewis, S., Chen, L., Raghuram, V., Khundmiri, S. J., Chou, C. L., Yang, C. R., et al.
(2021). SLC-omics" of the kidney: solute transporters along the nephron. Am. J. Physiol.
Cell Physiol. 321 (3), C507–C518. doi:10.1152/ajpcell.00197.2021

Liao, Y., Smyth, G. K., and Shi, W. (2014). featureCounts: an efficient general purpose
program for assigning sequence reads to genomic features. Bioinformatics 30 (7),
923–930. doi:10.1093/bioinformatics/btt656

Maier, T., Guell, M., and Serrano, L. (2009). Correlation of mRNA and protein in
complex biological samples. FEBS Lett. 583 (24), 3966–3973. doi:10.1016/j.febslet.2009.
10.036

Manfrini, N., Ricciardi, S., Alfieri, R., Ventura, G., Calamita, P., Favalli, A., et al.
(2020). Ribosome profiling unveils translational regulation of metabolic enzymes in
primary CD4(+) Th1 cells. Dev. Comp. Immunol. 109, 103697. doi:10.1016/j.dci.2020.
103697

Maraia, R. J., and Arimbasseri, A. G. (2017). Factors that shape eukaryotic tRNAomes:
processing, modification and anticodon-codon use. Biomolecules 7 (1), 26. doi:10.3390/
biom7010026

Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput
sequencing reads. EMBnetjournal 17 (2), 10. doi:10.14806/ej.17.1.200

Mishima, Y., Han, P., Ishibashi, K., Kimura, S., and Iwasaki, S. (2022). Ribosome
slowdown triggers codon-mediated mRNA decay independently of ribosome quality
control. EMBO J. 41 (5), e109256. doi:10.15252/embj.2021109256

Moritz, C. P., Mühlhaus, T., Tenzer, S., Schulenborg, T., and Friauf, E. (2019). Poor
transcript-protein correlation in the brain: negatively correlating gene products reveal
neuronal polarity as a potential cause. J. Neurochem. 149 (5), 582–604. doi:10.1111/jnc.
14664

Neelagandan, N., Lamberti, I., Carvalho, H. J. F., Gobet, C., and Naef, F. (2020).
What determines eukaryotic translation elongation: recent molecular and
quantitative analyses of protein synthesis. Open Biol. 10 (12), 200292. doi:10.
1098/rsob.200292

O’Connor, P. M. (2006). Renal oxygen delivery: matching delivery to metabolic
demand. Clin. Exp. Pharmacol. Physiol. 33 (10), 961–967. doi:10.1111/j.1440-1681.2006.
04475.x

Patro, R., Duggal, G., Love, M. I., Irizarry, R. A., and Kingsford, C. (2017). Salmon
provides fast and bias-aware quantification of transcript expression. Nat. Methods 14
(4), 417–419. doi:10.1038/nmeth.4197

Penning, T. M., Burczynski, M. E., Jez, J. M., Hung, C. F., Lin, H. K., et al. (2000).
Human 3alpha-hydroxysteroid dehydrogenase isoforms (AKR1C1-AKR1C4) of the
aldo-keto reductase superfamily: functional plasticity and tissue distribution reveals
roles in the inactivation and formation of male and female sex hormones. Biochem. J.
351 (1), 67–77. doi:10.1042/0264-6021:3510067

Pinkard, O., McFarland, S., Sweet, T., and Coller, J. (2020). Quantitative tRNA-
sequencing uncovers metazoan tissue-specific tRNA regulation. Nat. Commun. 11 (1),
4104. doi:10.1038/s41467-020-17879-x

Plotkin, J. B., and Kudla, G. (2011). Synonymous but not the same: the causes and
consequences of codon bias. Nat. Rev. Genet. 12 (1), 32–42. doi:10.1038/nrg2899

Ponnala, L., Wang, Y., Sun, Q., and van Wijk, K. J. (2014). Correlation of mRNA and
protein abundance in the developing maize leaf. Plant J. 78 (3), 424–440. doi:10.1111/
tpj.12482

Presnyak, V., Alhusaini, N., Chen, Y. H., Martin, S., Morris, N., Kline, N., et al. (2015).
Codon optimality is a major determinant of mRNA stability. Cell 160 (6), 1111–1124.
doi:10.1016/j.cell.2015.02.029

Rodnina, M. V. (2016). The ribosome in action: tuning of translational efficiency and
protein folding. Protein Sci. 25 (8), 1390–1406. doi:10.1002/pro.2950

Rosen, B. D., Bickhart, D. M., Schnabel, R. D., Koren, S., Elsik, C. G., Tseng, E., et al.
(2020). De novo assembly of the cattle reference genome with single-molecule
sequencing. Gigascience 9 (3), giaa021. doi:10.1093/gigascience/giaa021

Schiaffino, S., Rossi, A. C., Smerdu, V., Leinwand, L. A., and Reggiani, C. (2015).
Developmental myosins: expression patterns and functional significance. Skelet. Muscle
5, 22. doi:10.1186/s13395-015-0046-6

Frontiers in Genetics frontiersin.org16

Goldkamp and Hagen 10.3389/fgene.2023.1308048

https://doi.org/10.1093/nar/gku646
https://doi.org/10.1039/b908315d
https://doi.org/10.1371/journal.pgen.0020221
https://doi.org/10.1371/journal.pgen.0020221
https://doi.org/10.3390/epigenomes4010001
https://doi.org/10.3389/fmolb.2021.643701
https://doi.org/10.3389/fonc.2021.639408
https://doi.org/10.3389/fonc.2021.639408
https://doi.org/10.1073/pnas.0708517104
https://doi.org/10.3389/fgene.2014.00142
https://doi.org/10.1016/j.cell.2016.05.070
https://doi.org/10.1016/j.celrep.2017.07.029
https://doi.org/10.1016/j.celrep.2017.07.029
https://doi.org/10.1186/s12864-022-08496-7
https://doi.org/10.1186/s12864-022-08496-7
https://doi.org/10.3389/fgene.2022.1055343
https://doi.org/10.3389/fgene.2022.1055343
https://doi.org/10.1093/nar/gkl725
https://doi.org/10.1093/jmcb/mjab030
https://doi.org/10.1210/en.2017-00851
https://doi.org/10.1038/nprot.2008.211
https://doi.org/10.1016/j.celrep.2014.07.045
https://doi.org/10.1016/j.celrep.2014.07.045
https://doi.org/10.1016/S0076-6879(10)70006-9
https://doi.org/10.1038/nprot.2012.086
https://doi.org/10.1038/nprot.2012.086
https://doi.org/10.1126/science.1168978
https://doi.org/10.1016/j.cell.2011.10.002
https://doi.org/10.3390/biom11091259
https://doi.org/10.1074/jbc.M110.121301
https://doi.org/10.1074/jbc.M110.121301
https://doi.org/10.1038/s41587-019-0201-4
https://doi.org/10.1093/bfgp/elu045
https://doi.org/10.1093/bfgp/elu045
https://doi.org/10.1371/journal.pbio.2000779
https://doi.org/10.1038/srep10775
https://doi.org/10.1038/nmeth.1923
https://doi.org/10.1371/journal.pcbi.1006169
https://doi.org/10.1152/ajpcell.00197.2021
https://doi.org/10.1093/bioinformatics/btt656
https://doi.org/10.1016/j.febslet.2009.10.036
https://doi.org/10.1016/j.febslet.2009.10.036
https://doi.org/10.1016/j.dci.2020.103697
https://doi.org/10.1016/j.dci.2020.103697
https://doi.org/10.3390/biom7010026
https://doi.org/10.3390/biom7010026
https://doi.org/10.14806/ej.17.1.200
https://doi.org/10.15252/embj.2021109256
https://doi.org/10.1111/jnc.14664
https://doi.org/10.1111/jnc.14664
https://doi.org/10.1098/rsob.200292
https://doi.org/10.1098/rsob.200292
https://doi.org/10.1111/j.1440-1681.2006.04475.x
https://doi.org/10.1111/j.1440-1681.2006.04475.x
https://doi.org/10.1038/nmeth.4197
https://doi.org/10.1042/0264-6021:3510067
https://doi.org/10.1038/s41467-020-17879-x
https://doi.org/10.1038/nrg2899
https://doi.org/10.1111/tpj.12482
https://doi.org/10.1111/tpj.12482
https://doi.org/10.1016/j.cell.2015.02.029
https://doi.org/10.1002/pro.2950
https://doi.org/10.1093/gigascience/giaa021
https://doi.org/10.1186/s13395-015-0046-6
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1308048


Sharp, P. M., and Li, W. H. (1987). The codon Adaptation Index--a measure of
directional synonymous codon usage bias, and its potential applications. Nucleic Acids
Res. 15 (3), 1281–1295. doi:10.1093/nar/15.3.1281

Shigematsu, M., Honda, S., Loher, P., Telonis, A. G., Rigoutsos, I., and Kirino, Y.
(2017). YAMAT-seq: an efficient method for high-throughput sequencing of mature
transfer RNAs. Nucleic Acids Res. 45 (9), e70. doi:10.1093/nar/gkx005

Sinha, N. K., Ordureau, A., Best, K., Saba, J. A., Zinshteyn, B., Sundaramoorthy, E.,
et al. (2020). EDF1 coordinates cellular responses to ribosome collisions. Elife 9, e58828.
doi:10.7554/eLife.58828

Stoneley, M., Harvey, R. F., Mulroney, T. E., Mordue, R., Jukes-Jones, R., Cain, K.,
et al. (2022). Unresolved stalled ribosome complexes restrict cell-cycle progression after
genotoxic stress. Mol. Cell 82 (8), 1557–1572 e7. doi:10.1016/j.molcel.2022.01.019

Tomiya, T., Ogata, I., and Fujiwara, K. (1998). Transforming growth factor alpha levels in
liver and blood correlate better than hepatocyte growth factor with hepatocyte proliferation
during liver regeneration. Am. J. Pathol. 153 (3), 955–961. doi:10.1016/s0002-9440(10)65637-4

Torrent, M., Chalancon, G., de Groot, N. S., Wuster, A., and Madan Babu, M. (2018).
Cells alter their tRNA abundance to selectively regulate protein synthesis during stress
conditions. Sci. Signal 11 (546), eaat6409. doi:10.1126/scisignal.aat6409

Torres, A. G., Reina, O., Stephan-Otto Attolini, C., and Ribas de Pouplana, L. (2019).
Differential expression of human tRNA genes drives the abundance of tRNA-derived
fragments. Proc. Natl. Acad. Sci. U. S. A. 116 (17), 8451–8456. doi:10.1073/pnas.1821120116

Tuller, T., Carmi, A., Vestsigian, K., Navon, S., Dorfan, Y., Zaborske, J., et al. (2010).
An evolutionarily conserved mechanism for controlling the efficiency of protein
translation. Cell 141 (2), 344–354. doi:10.1016/j.cell.2010.03.031

Valgepea, K., Adamberg, K., Seiman, A., and Vilu, R. (2013). Escherichia coli achieves
faster growth by increasing catalytic and translation rates of proteins.Mol. Biosyst. 9 (9),
2344–2358. doi:10.1039/c3mb70119k

van Heesch, S., Witte, F., Schneider-Lunitz, V., Schulz, J. F., Adami, E., Faber, A. B.,
et al. (2019). The translational landscape of the human heart. Cell 178 (1), 242–260.
doi:10.1016/j.cell.2019.05.010

Varenne, S., Buc, J., Lloubes, R., and Lazdunski, C. (1984). Translation is a non-
uniform process. Effect of tRNA availability on the rate of elongation of nascent
polypeptide chains. J. Mol. Biol. 180, 549–576. doi:10.1016/0022-2836(84)90027-5

Verma, M., Choi, J., Cottrell, K. A., Lavagnino, Z., Thomas, E. N., Pavlovic-
Djuranovic, S., et al. (2019). A short translational ramp determines the efficiency
of protein synthesis. Nat. Commun. 10 (1), 5774. doi:10.1038/s41467-019-
13810-1

Verouti, S. N., Lambert, D., Mathis, D., Pathare, G., Escher, G., Vogt, B., et al. (2021).
Solute carrier SLC16A12 is critical for creatine and guanidinoacetate handling in the
kidney. Am. J. Physiol. Ren. Physiol. 320 (3), F351–F358. doi:10.1152/ajprenal.00475.
2020

Vogel, C., and Marcotte, E. M. (2012). Insights into the regulation of protein
abundance from proteomic and transcriptomic analyses. Nat. Rev. Genet. 13 (4),
227–232. doi:10.1038/nrg3185

Vogel, C., Silva, G. M., and Marcotte, E. M. (2011). Protein expression regulation
under oxidative stress. Mol. Cell Proteomics 10 (12), M111.009217. doi:10.1074/mcp.
M111.009217

Wheatcroft, S. B., and Kearney, M. T. (2009). IGF-dependent and IGF-independent
actions of IGF-binding protein-1 and -2: implications for metabolic homeostasis.
Trends Endocrinol. Metab. 20 (4), 153–162. doi:10.1016/j.tem.2009.01.002

Xiong, Y., Liu, W., Huang, Q., Wang, J., Wang, Y., Li, H., et al. (2018). Tigecycline as a
dual inhibitor of retinoblastoma and angiogenesis via inducing mitochondrial
dysfunctions and oxidative damage. Sci. Rep. 8 (1), 11747. doi:10.1038/s41598-018-
29938-x

Frontiers in Genetics frontiersin.org17

Goldkamp and Hagen 10.3389/fgene.2023.1308048

https://doi.org/10.1093/nar/15.3.1281
https://doi.org/10.1093/nar/gkx005
https://doi.org/10.7554/eLife.58828
https://doi.org/10.1016/j.molcel.2022.01.019
https://doi.org/10.1016/s0002-9440(10)65637-4
https://doi.org/10.1126/scisignal.aat6409
https://doi.org/10.1073/pnas.1821120116
https://doi.org/10.1016/j.cell.2010.03.031
https://doi.org/10.1039/c3mb70119k
https://doi.org/10.1016/j.cell.2019.05.010
https://doi.org/10.1016/0022-2836(84)90027-5
https://doi.org/10.1038/s41467-019-13810-1
https://doi.org/10.1038/s41467-019-13810-1
https://doi.org/10.1152/ajprenal.00475.2020
https://doi.org/10.1152/ajprenal.00475.2020
https://doi.org/10.1038/nrg3185
https://doi.org/10.1074/mcp.M111.009217
https://doi.org/10.1074/mcp.M111.009217
https://doi.org/10.1016/j.tem.2009.01.002
https://doi.org/10.1038/s41598-018-29938-x
https://doi.org/10.1038/s41598-018-29938-x
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1308048

	Implications of tRNA abundance on translation elongation across bovine tissues
	Introduction
	Materials and methods
	Tissue collection and RNA extraction
	RNA-seq processing and alignment
	QuantM-tRNAseq library preparation
	Ribosome profiling sample preparation and library preparation
	tRNA-seq processing and alignment
	Ribo-seq processing and alignment
	tRNA differential expression analysis
	Ribosome footprint analysis

	Results
	QuantM-tRNAseq allows high-throughput sequencing of mature tRNAs
	Tissue-specific expression of tRNAs across bovine tissues
	Amino acid level DEG analysis
	Anticodon and isodecoder level DEG analysis
	Ribosome profiling reveals mRNAs associated with ribosomes
	Integration of RiboSeq and RNAseq reveals tissue-specific translational regulation
	Increased ribosome pausing at specific codons within the A-site
	Mature tRNA expression and codon usage in differentially translated genes

	Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


