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Cultivated potato (Solanum tuberosum) is known to be highly susceptible to
drought. With climate change and its frequent episodes of drought, potato
growers will face increased challenges to achieving their yield goals.
Currently, a high proportion of untapped potato germplasm remains within
the diploid potato relatives, and the genetic architecture of the drought
tolerance and maturity traits of diploid potatoes is still unknown. As such, a
panel of 384 ethyl methanesulfonate-mutagenized diploid potato clones were
evaluated for drought tolerance and plant maturity under field conditions.
Genome-wide association studies (GWAS) were conducted to dissect the
genetic architecture of the traits. The results obtained from the genetic
structure analysis of the panel showed five main groups and seven subgroups.
Using the Genome Association and Prediction Integrated Tool–mixed linear
model GWAS statistical model, 34 and 17 significant quantitative trait
nucleotides (QTNs) were found associated with maturity and drought traits,
respectively. Chromosome 5 carried most of the QTNs, some of which were
also detected by using the restricted two-stage multi-locus multi-allele-GWAS
haploblock-based model, and two QTNs were found to be pleiotropic for both
maturity and drought traits. Using the non-parametric U-test, one and three
QTNs, with 5.13%–7.4% phenotypic variations explained, showed favorable allelic
effects that increase the maturity and drought trait values. The quantitaive trait
loci (QTLs)/QTNs associated with maturity and drought trait were found co-
located in narrow (0.5–1 kb) genomic regions with 56 candidate genes playing
roles in plant development and senescence and in abiotic stress responses. A total
of 127 potato clones were found to be late maturing and tolerant to drought,
while nine were early to moderate–late maturing and tolerant to drought. Taken
together, the data show that the studied germplasm panel and the identified
candidate genes are prime genetic resources for breeders and biologists in
conventional breeding and targeted gene editing as climate adaptation tools.
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1 Introduction

Climate is changing and growing seasons are predicted to
become hotter and drier, and crop productivity will be drastically
reduced (Dietz et al., 2021; Hill et al., 2021). Cultivated potato
(Solanum tuberosum) has a shallow root system and is well known to
be highly susceptible to drought (Gervais et al., 2021; Nasir and
Toth, 2022). The driving forces that determine the direction of water
movement from the soil to the plant, throughout the plant, and from
the plant to the atmosphere are the water potential gradients (Xiong
and Nadal, 2020; Dietz et al., 2021). When the water potential of the
soil is more negative than that of the roots as a result of water
shortage, the root loses water to the soil, shoot, and atmosphere,
leading to loss of cell turgidity and plant tissues wilt, following a
decrease in water potential in the entire plant (Martinez-Vilalta
et al., 2017). Water stress affects all phenological stages of plant
growth and development, affecting vegetative and generative growth
and yield (Dietz et al., 2021), and its effects are correlated with its
intensity, duration, and timing for each crop (Patrick and Stoddard,
2010;Waser and Price, 2016; Hu et al., 2019; Aliche et al., 2020; Dietz
et al., 2021).

Modern potato cultivars are known to be extremely susceptible
to drought, and the potato crop yields are anticipated to be
drastically impacted in many areas of the world under the
predicted hotter and drier changing climate (Dietz et al., 2021;
Hill et al., 2021). Indeed, although cultivated potato has a higher
water use efficiency (105 L/kg potato produced) compared to many
other major crops such as corn (710 L/kg), rice (1048 L/kg), and
wheat (1159 L/kg) (Nasir and Toth, 2022), its shallow root system
(Van Loon, 1981) prevents water absorption from deeper soil layers
during water shortage. Hence, root length and volume, plant stem-
type canopy, and leaf-type canopy characteristics have been reported
as key water stress coping traits (Lahlou and Ledent, 2005;
Schittenhelm et al., 2006; Aliche et al., 2018). Nonetheless, up
until recently, breeding for drought resistance had not been a hot
spot breeding objective per se, and potato varieties that are resistant
to drought are currently limited (Sprenger et al., 2016; Martinez
et al., 2021). Thus, with climate change and its predicted frequent
episodes of high temperature (Dietz et, al., 2021) and drought
(Sreeparvathy and Srinivas, 2022), potato growers will face
increased challenges to achieving their predicted yield goals if
new climate-adapted potato cultivars are not developed.

Currently, a high proportion of untapped potato germplasm
remains within the diploid potato relatives, not yet fully explored for
their abiotic stress resistance potentials. While, drought resistance genes
have been reported in other crops (Shinozaki and Yamaguchi, 2007;
Joshi et al., 2016; Soto-Cerda et al., 2020), to our knowledge, only very
few studies have been reported on mapping genes conferring drought
tolerance in potatoes (Anithakumari et al., 2012; Khan et al., 2015;
Schumacher et al., 2021), all focused on bi-parental populations. Of the
previous studies, only Schumacher et al. (2021) performed in controlled
and field settings and, using an indirect yield trait (the deviation of the
relative starch yield median—DRYM) in cultivated tetraploid potato,
identified candidate genes located in very large (1.3 Mb–36.76 Mb)
genomic regions associated with the DRYM drought-tolerance trait. To
date, no candidate genes associated with drought tolerance or maturity,
two key traits for potato crop adaptation to changing climate, have been
identified in diploid potatoes.

Based on the current knowledge, cultivated tetraploid potato
landraces belonging to S. tuberosum, group Andigena, have been
shown to have tolerance to drought (Nasir and Toth, 2022).
However, their use in breeding programs has been limited. It is
also known that wild diploid potato relatives to cultivated tetraploid
potatoes have co-evolved in their natural habitats while coping with
biotic and abiotic stress (Berdugo-Cely et al., 2017; Bashir et al.,
2021; Tiwari et al., 2022). We have previously developed an ethyl
methanesulfonate (EMS)-mutagenized diploid potato germplasm
collection derived from seven crosses involving one female and
seven pollen donors in bi-parental crosses, resulting in a higher
genetic diversity and novel phenotypic variants (Somalraju et al.,
2018; Somalraju et al., 2020).

Recent breakthrough with next-generation sequencing
technologies, genomics, and bioinformatics tools has led to a
molecular marker, namely, single-nucleotide polymorphisms
(SNPs), that has become popular in marker-assisted breeding in
crops (Moose and Mumm, 2008; Kumar et al., 2012; Chung et al.,
2017). Genotyping by sequencing (GBS) and whole-genome
sequencing have become the common ways for SNP detection
(Poland et al., 2012; He et al., 2014). Although whole-genome
sequencing ensures higher genome coverage (Wang et al., 2020),
it can be expensive for a large number of samples despite the drastic
reduction in the sequencing cost (Schwarze et al., 2020). Since most
applications do not require sequencing of each base in the genome
(Pootakham, 2023), reduced-genome representation GBS (Elshire
et al., 2011) has been proven as an efficient method for SNP
genotyping (Poland et al., 2012; He et al., 2014; Berthouly-Salazar
et al., 2016; D’Agostino et al., 2018; Favre et al., 2021), albeit some
associated technical limitations such as read depth variations
(Beissinger et al., 2013; Wang et al., 2020). Because of their
genome-wide distribution, ubiquitous nature, abundance,
reliability, and low cost (Rafalski, 2002; Ganal et al., 2009;
Mammadov et al., 2012; Goodwin et al., 2016), SNPs are now
the most widespread genetic markers used in genome-wide
association studies (GWAS) for QTL/quantitative trait nucleotide
(QTN) mapping and candidate gene identification in the diverse
germplasm panel of crops (Buntjer et al., 2005; Tibbs Cortes et al.,
2021; You et al., 2022). Currently, to our knowledge, no study has
been reported on the genetic architecture of the drought-tolerance
and maturity traits of diploid potatoes in a field condition. We
hypothesize that the EMS-mutagenized diploid panel will show a
genomic architecture associated with drought-tolerance and
maturity traits.

The objectives of this study were 1) to increase our knowledge of
the genetic architecture of drought tolerance and maturity in a
germplasm panel of EMS-mutagenized diploid potatoes grown
under field conditions and 2) to identify candidate genes
associated with each of the two traits. Using two GWAS
statistical models and a non-parametric test, QTNs/QTLs
associated with the traits were identified, and we showed that
two SNP loci (Schr05_3842784 and Schr05_4617251) located on
chromosome 5 are pleiotropic for maturity and drought. A total of
38 and 18 candidate genes were found co-located with the QTLs/
QTNs associated with the maturity and drought traits, respectively.
Most of these genes (53% and 50%) were located at a close (0.5–1 kb)
distance to the significant SNP. The data show that the studied
germplasm panel and the identified genes are prime genetic
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resources for breeders and biologists in conventional breeding and
targeted gene editing in the context of climate change.

2 Materials and methods

2.1 Plant materials

The plant material consisted a 384 diploid potato germplasm
panel including 47 wild types refreed to as control (CTL) and
337 EMS-mutagenized (EMS) clones (Supplementary Table S1)
selected from an 814 germplasm collection, each corresponding
to a clone, and previously developed and described by our group
(Somalraju et al., 2018). The original 814 germplasm collection
(Somalraju et al., 2018) has consistently been propagated in field
each year since 2014 as a 5–6-hill plot without replication and
phenotypic data collected for traits including germination, plant
characteristics, maturity, and sensitivity to drought. Since 2017
(except 2020; due to the COVID-19 pandemic), a manageable
size of clones (35–100 clones) have gone through a commercial-
scale yield trial as a 25-hill plot each year, with three replications per
clone/year and phenotyped, and tubers were graded following the
Canadian Food Inspection Agency (CFIA) commercial standard.
Antinutritional factors including glycoalkaloid and asparagine
contents were also determined in a subset of the collection
(Somalraju et al., 2020). All plants were grown under
conventional agronomic practices at the Agriculture and Agri-
Food Canada, Harrington Farm (PE, Canada). In 2021, the core
384 germplasm panel was formally established and tested in a
separate trial for scab resistance as a 5–6-hill small plot without
replication. The clones in the panel were selected in such a way that
selections from a particular bi-parental cross were not
overrepresented, both for the wild types and EMS-mutagenized

clones (Table 1; Supplementary Table S1) and based on prior
phenotypic data (unpublished), using a combination of tuber
traits such as yield potential, tuber appearance, and
antinutritional factors including the glycoalkaloid and
asparagine contents.

In general, the 384 clones in the panel were planted in at least
one to three trial sites each year since 2021, and phenotypic data
were collected. For each trial site per year, five to six plants per clone
were planted. The plot length varied from 1.5 m (for 814 clones in
the germplasm collection and 384 core panel) to 7.5 m (yield trial),
with the spacing between plants in each plot and between plots of
25 cm and 1 m, respectively. Plots were arranged in a complete
randomized design with one replication in the germplasm collection
and 384 core panel and three replications in the yield trial. For each
trial, fertility (100 kg of 15-15-15-2 NPK and Mg) and pesticide
(Admire, Capture/Cimegra, Bravo/Orondis/Reason, Superior oil)
treatments were applied as performed following the standard
procedures as for conventional commercial potato production.
No irrigation was performed in the experiment, and climate data
were recorded for 2020–2022 growth seasons (Supplementary
Figure S1). For each trait evaluated in the study, data were
collected on the 384 clones at least from one to three trial sites.

2.2 Maturity and drought-tolerance trait
phenotyping

From 2016 to 2022, the germplasm collection was planted each
year between May 25th and June 15th, and the plant emergence and
senescence dates were recorded. Plant maturity data were
systematically recorded and rated for all the 384 clones in years
2021 and 2022, at different time points during the growing season in
mid-August, late August, and mid to late September. Year 2020 was

TABLE 1 Frequency distribution of diploid potato clones used in the study.

Type Cross # Number of clones Proportion of clones (%)a

48 CTL 1 6 12.5

2 8 16.7

3 5 10.4

4 6 12.5

5 7 14.6

6 9 18.8

7 7 14.5

336 EMS 1 43 12.8

2 61 18.0

3 40 12.0

4 37 11.0

5 48 14.3

6 44 13.1

7 63 18.8

aProportion determined within each type.
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an extreme dry growth season (Supplementary Figure S1), with
severe and long drought episodes during all plant phenological
stages (21 days from June 11 to July 1, 0 mm of average
precipitation and 18.2°C average temperature; 16 days from July
12 to July 27, 0.23 mm of average precipitation and 19.6°C; and
25 days from July 31 to August 24, 0.07 mm of average precipitation
and 20.64°C). Year 2021 was considered a normal growing season
with normal rain fall throughout the growing season, whereas
2022 was considered a mild dry season, with two short drought
episodes of 8 days each (July 20 to July 28 and July 31 to August 7) at
tuber initiation and bulking stages and a long episode of 19 days later
in the season (August 28 to September 15).

Plant maturity was systematically monitored for each clone
grown at 1–3 sites during the 2021 normal and the 2022 fairly
normal growing seasons. Clones were rated 1 (early) when 60%–80%
of plants per plot have senesced or are senescing, 2 as moderate to
late when 40%–60% of plants per plot have senesced or are
senescing, and 3 (late) when less than 40% of plants per plot
have senesced or are senescing.

Drought phenotypic data were collected only in years 2020 and
2022 after the drought episodes (Supplementary Table S2). Plants
were rated after 8–25 days of drought episodes over the 2 years. In
2020, plant rating was performed after 21 (June 11–July 1; 0 mm
average precipitation and 18.2°C average temperature), 16 (July
12–July 27; 0.23 mm average precipitation and 19.6°C average
temperature), and 25 (July 25–August 25; 0.07 mm average
precipitation and 20.64°C average temperature) days of drought
episodes. In 2022, plant rating was performed after 8 (July 20–July
28; 0.04 mm of average precipitation and 22.3°C average
temperature), 8 (July 31–August 7; 0.41 mm of average
precipitation and 22.05°C average temperature), and 19 (August
28–September 15; 0.24 mm of average precipitation and 17.8°C
average temperature) days of drought episodes. Plants were rated
as 1 for susceptibility when 60%–80% of the plants per plot have
dried or wilted and as 2 for tolerance when less than 10% of the
plants per plot have wilted.

Statistical analyses were performed on the maturity and drought
stress data collected from the 384 clones over 2 years (2021 and
2022) in 1–3 trial sites. Descriptive statistical analyses were
performed in GeneStat (version 12.1 for Windows) to test
differences between factors clones and years, using a mixed
model, with no random effects and fixed effects of clone and
year, focusing on clone differences as main effects. The
significance for fixed terms was evaluated using a Wald statistic
test (p < 0.05). Thereafter, the data were log-transformed for
normalization as required in R, version 4.2.0, and the means and
best linear unbiased predictors (BLUPs) of the lines for each trait
were calculated for the 2 years using R library “Phenotype” version
0.1.0 (https://rdrr.io/cran/Phenotype/man/blup.html; Piepho et al.,
2008; Zhao, 2020). Whenever possible, phenotype diagnostics
through distribution plots were generated using Genome
Association and Prediction Integrated Tool (GAPIT) version 2
(Tang et al., 2016). A principal component analysis was
performed for population structure and kinship, and the
covariates were used for QTL/QTN mapping using the Genome
Association and Prediction Integrated Tool–mixed linear model
(GAPIT–MLM) GWAS, version 3 (Yu et al., 2006; Lipka et al., 2012;
Tang et al., 2016; Wang and Zhang, 2021) and the restricted two-

stage multi-locus multi-allele genome-wide association study
(RTM-GWAS) statistical models (He et al., 2017). Means and
BLUP values were used for GWAS analyses.

2.3 Genotyping

2.3.1 DNA extraction
Young leaf tissue (50–75 mg) samples were collected from each

clone, immediately frozen in liquid nitrogen, and lyophilized in a
freeze-dryer (for 48–72 h). Genomic DNA was extracted using a
Qiagen DNeasy 96 Plant Kit (Qiagen, Germantown, MD,
United States), following the manufacturer’s instructions. DNA
quality was assessed on an agarose gel, and then, the DNA was
quantified by fluorometry using the Quant-iT™ PicoGreen™
dsDNA Assay Kit (Thermo Fisher, Waltham, Massachusetts,
United States) as recommended by the supplier and finally
normalized to 5ng/uL. As DNA quality and quantity varied
widely, and for some samples it was not possible to achieve a
concentration of 5ng/uL, these samples were included with
minimal dilution in an attempt to derive as many sequencing
reads as possible. All samples were used for library construction.

2.3.2 Genotyping by sequencing
GBS reduced-representation sequencing libraries were

constructed following Elshire et al.’s (2011) protocol by Platform
Genetics (Vineland Station, ON, Canada). In brief, three restriction
enzymes (PstI, NsiI, and ApeKI) were tested, and adaptor
concentrations were empirically titrated. PstI was chosen, and
DNA digestion was performed with PstI. The ligation was
performed using 0.6 ng/uL adaptors that produced an acceptable
size distribution. One GBS library was constructed for each of the
384 clones, and a total of 384 GBS libraries were produced. These
384 libraries were arranged in batches of four full 96-well plates, and
samples from each plate were subsequently pooled in equimolar
ratios for a total of four pooled libraries. Each of these four pooled
libraries were further diluted and normalized to 30 nM, and 20 µL
from each normalized library was pooled to form a final pooled
library that was sequenced as paired-end (PE150) through the
240 Gb SP flow cell by Novogene (Genome Quebec, Montreal,
QC, Canada) using the Illumina NovaSeq 6,000 sequencing
platform (Illumina, San Diego, CA). Only the forward reads were
used for downstream GBS analyses. The raw data can be found
under SRA accession PRJNA1032882 in the NCBI database.

2.3.3 SNP variant data analyses
The raw FASTQ read files were de-multiplexed into multiple

files by barcode, and a custom Perl script was used to extract usable
reads from each BAM file. The reads were then aligned and mapped
against the potato (S. tuberosum) reference genome (http://spuddb.
uga.edu/dm_v6_1_download.shtml) (Pham et al., 2020) using the
Burrows–Wheeler Alignment (BWA), BWA MEM algorithm
version 0.7.13r1126 (Li and Durbin, 2010; Li, 2013). SNP marker
variants were identified using the GATK SNP calling pipeline (Van
der Auwera and O’Connor, 2020; https://software.broadinstitute.
org/gatk/) and the high contiguity of the potato reference genome
(http://spuddb.uga.edu/dm_v6_1_download.shtml) for calling
SNPs. A GQ > 20 and read depth >5 were set as the threshold
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to retain a genotype call. SNPs with call rate <50%, SNPs for
which >95% of the genotype calls were identical, and SNPs
where a minor allele frequency (MAF) is <5% were filtered out.
This ‘cleaned high-quality dataset’ was used to estimate the decay of
linkage disequilibrium (LD), within a sliding window size distance of
10,000 kb for the average LD plot and the whole chromosome as a
sliding window size for LD by chromosome (https://www.cog-
genomics.org/plink/1.9/ld), and the SNP coordinates were
converted to the chromosome scale of the potato reference
genome using GATK (Van der Auwera and OConnor, 2020).
Using Plink 1.9 (Chang et al., 2015; (https://www.cog-genomics.
org/plink/1.9/ld), the cleaned dataset was further pruned to produce
uncorrelated ‘pruned markers’ so that no pair of markers on the
same chromosome had a square correlation coefficient r2 > 0.2.

2.3.4 Population genetic structure and genome-
wide association mapping

The genetic structure among the 384 accessions was computed
using cleaned SNPs distributed across the 12 potato chromosomes
using the GAPIT in R (Yu et al., 2006; Lipka et al., 2012; Tang et al.,
2016; Wang and Zhang, 2021), TASSEL v 5.2.31 (Bradbury et al.,
2007), and phangorn version 2.5.5 (Schliep, 2011). Using the cleaned
SNPS, principal component (PC) and kinship analyses were
performed in TASSEL v 5.2.31 (Bradbury et al., 2007), and a
neighbor-joining (NJ) phylogenetic tree was built as previously
described (Felsenstein, 1981; Felsenstein, 1985; Saitou and Nei,
1987) based on the uncorrelated pruned SNPs using phangorn,
version 2.5.5 (Schliep, 2011). The number of subgroups was
determined and presented as 2D and 3D PCs and kinship
heatmap using the GAPIT (Lipka et al., 2012; Tang et al., 2016).

Genome-wide trait-to-genotype association mapping was
conducted by using the GAPIT–mixed linear model (GAPIT-MLM)
ofGAPIT version 3 (Yu and Buckler, 2006; Lipka et al., 2012; Tang et al.,
2016; Wang and Zhang, 2021) and the haplotype block-based RTM-
GWAS (He et al., 2017) statistical models. The “cleaned” SNP dataset
and three independent trait datasets (trait means, trait BLUPs, and traits
separated by years) were used as inputs for association mapping using
the GAPIT–MLM (Lipka et al., 2012) algorithm, with three principal
components, as indicated by Scree plots drawn in theGAPITR package.
A significant trait-to-marker association threshold was set as the false
discover rate (FDR)/Benjamini–Hochberg (B&H)-adjusted p-value <
0.05. GWAS outcomes were summarized and displayed using
Manhattan plots, and the ability of GWAS statistical models to
assess accuracy and to minimize false positive associations was
tested with quantile–quantile (Q–Q) plots using the GAPIT as
described and reported by Garcia et al. (2019). Using the
GAPIT–MLM, for each individual and for each trait, the number of
alleles at QTL, which increase the trait value, was counted, and the
correlation between the number of trait-increasing alleles and trait value
was determined. The correlation between the proportion of alleles at
QTL (pQTN) that are trait-increasing and the trait value was also
determined, excluding the missing genotype calls from the calculation.

RTM-GWAS QTL/QTN mapping was also performed using the
three independent trait datasets (trait means, trait BLUPs, and traits
separate), with each analysis reporting significant SNP loci at
FDR <0.05. Manhattan plots and significant QTLs/QTNs were
generated at the FDR adjusted p-value <0.05. Similar to the
pQTN analysis using the GAPIT–MLM, the RTM-GWAS model

was also used for pQTN analysis. Here, for each individual and each
trait, the number of genotypes at QTL that increase or decrease the
trait value was determined. The correlation between the number of
trait-increasing genotypes and trait value and the correlation
between the proportion of genotypes at QTL (pQTN) that are
trait-increasing and trait value were determined, excluding
missing genotype calls from the calculation. Significant QTNs
obtained from the GAPIT–MLM GWAS analyses were further
tested and retained if the mean for the two alleles (QTN effect)
significantly affected the trait in all accessions. Mann–Whitney non-
parametric U-tests (p < 0.05) were performed to remove the
potential false positive QTNs using BlueSky Statistics (https://
www.blueskystatistics.com/).

2.4 Candidate gene identification

Candidate genes co-located within a window of
500 bp–10000 bp on either side of the significant QTNs were
scanned as previously described (You et al., 2022) and annotated
based on the most recent release of the potato reference genome
(Pham et al., 2020).

3 Results

3.1 Trait phenotypic distribution

Maturity phenotype distribution was found to be skewed toward
late maturity, with 44% (171) of the clones rating as late maturing
(3.0 ± 0) (Figures 1A–E). The early (mean of 1.0 ± 0) and moderate-
to-late (1.5 ± 0.70–2.5 ± 0.70) maturing potato clones accounted for
12% (45) and 44% (168), respectively. The observed grandmean was
2.34 ± 0.02. While 70% (268/384) of the clones showed no variations
over the 2 years in the early- or late-maturity classes, a significant
variation (p < 0.001) was observed for 30% of the clones in the
moderate-to-late-maturity class. Overall, significant differences (p <
0.001) were observed between clones and between years for the traits
(Supplementary Table S3).

The drought trait, scored as a binary trait, showed a bimodal
distribution (Figures 2A–E). Using both the mean and BLUP values,
58% (223/384) of the potato clones were susceptible (mean of 1.0 ±
0) to drought, while 2% (7 clones) and 40% (154 clones) appeared to
be moderate (mean of 1.5 ± 0.70) to tolerant (mean of 2.0 ± 0),
respectively. Rating in 98% of the clones was very consistent over the
2 years, with no significant difference (p = 0.06) observed between
the 2 years. Significant differences (p < 0.001) were observed
between potato clones for the drought trait (Supplementary Table
S3). Overall, nine clones were rated as being early-to-moderate
maturing and tolerant to drought, whereas 127 clones were
found to be late maturing and tolerant to drought.

3.2 SNP discovery and the genetic structure
of the population

The GBS sequencing produced clean mapped reads ranging
from 3,635 to 2,703,393, with an average of 1,310,930 reads and an

Frontiers in Genetics frontiersin.org05

Fofana et al. 10.3389/fgene.2023.1306519

https://www.cog-genomics.org/plink/1.9/ld
https://www.cog-genomics.org/plink/1.9/ld
https://www.cog-genomics.org/plink/1.9/ld
https://www.cog-genomics.org/plink/1.9/ld
https://www.blueskystatistics.com/
https://www.blueskystatistics.com/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1306519


average depth coverage of 0.27X (range of 0.00074X–0.55X) among
the 384 potato clones on the portion of the genome sampled through
GBS. By aligning the clean reads to the reference genome, a total of
12,075 cleaned SNPs were detected. These SNPs were found well
distributed across all 12 chromosomes of the potato genome, with an
average of 1,006 SNPs per chromosome. A higher density was found
on chromosome 1 (1,378 SNPs) and a lower density (722 SNPs) on
chromosome 7 (Figure 3; Supplementary Figure S2). Here, the GBS
depth coverage generated enough SNPs for an efficient genotyping
as previously reported (Pootakham, 2023). After removing the
monomorphic SNPs and those with segregation distortion >0.05,
11,605 SNPs were used for GWAS through the GAPIT–MLM
GWAS and RTM-GWAS. These cleaned SNPs were further
pruned to 455 SNPs (Figure 3) and used for phylogenetic tree
construction, principal component, and kinship analyses, and the
results showed five main groups and seven subgroups in the
population (Figures 4A–C).

3.3 GWAS identification of QTL/QTN
associated with maturity and drought traits

3.3.1 Maturity
Using the 11,605 SNPs and the three independent datasets of the

maturity trait, 34 significant SNPs (FDR <0.05) were associated with
the trait on chromosomes 5 and 6 in each dataset. The Q–Q plot
indicates a fairly well-fit GWAS model and minimal artifact bias

from -log10P) values >2.5 (Figure 5). Chromosome 5 carried
33 significant SNPs, and chromosome 6 carried one
(Supplementary Table S4; Figure 5). The mapped significant
SNPs showed large effects on maturity, varying from −0.75 to
0.87. Mann–Whitney non-parametric U-tests were conducted on
the 34 significant SNPs. As expected, markers with higher p-values
(>0.05) did not show significant allelic effects, while SNP Schr05_
3842784 (p = 2.3e-05) that had 5.41% of phenotypic variation
explained (PVE) exhibited significant positive effects for
accessions harboring the AA allele (p = 0.047), displaying an
SNP effect of 0.53 in increasing maturity rating, and
consequently was retained for further analysis (Supplementary
Table S4a; Figure 6B). Moreover, the SNP Schr05_4617251,
although not found significant from the non-parametric U-test,
showed 42% of PVE on maturity (Supplementary Table S4a).

Similarly, by performing a haploblock-based RTM-GWAS
analysis using the same SNPs and phenotypic datasets, a total of
13 QTNs and 17 haploblock QTL loci were detected (Supplementary
Table S4). Contrary to the GAPIT–MLM GWAS, the 30 QTNs/
QTLs found in the RTM-GWASmodel were distributed on 11 of the
12 potato chromosomes but not chromosome 4. Of these 30 QTNs/
QTLs, nine (Block_chr05_4616945_4617251, chr05_11334011,
chr01_9365386, chr03_47482310, Block_chr06_47240108_
47240257, chr03_54033577, Block_chr07_10830500_10830536,
Block_chr11_44780136_44780198, and Block_chr01_76299176_
76299247) were found in at least three datasets (Supplementary
Table S4b). The haploblock (block_chr05_4616945_4617251) and

FIGURE 1
Maturity phenotype distribution among the 384 germplasm panel. (A) Visual distribution of individuals in maturity rating classes, (B) scatter plot of
average distribution, (C) frequency distribution of individuals across maturity classes, (D) density plot of individuals across maturity classes, and (E)
accumulation density distribution across maturity classes.
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the QTN (chr05_7284066) detected on chromosome 5 were also
identified by using the GAPIT-MLMGWASmodel. By applying the
second FDR<0.05 threshold, one significant QTN (chr05_
11334011) and one haploblock (Chr05_4616945–4617251) were
detected on chromosome 5 as highly significant (Supplementary
Figure S3). Taken together, the marker Schr05_3842784 and the
SNP Schr05_4617251, its haploblock loci (Block_chr05_4616945_
4617251) were detected using two complementary statistical models
as strongly associated with the maturity trait on chromosome 5.

3.3.2 Drought
Similar to the maturity trait, by associating the 11,605 SNPs and

the three independent drought phenotypic datasets, 17 significant
SNPs (p-value <0.05) were associated with the drought trait in each
dataset using the GAPIT–MLM. All significant SNPs were located on
chromosome 5, and the Q–Q plot indicates a fairly well-fitted GWAS
model (Figure 7). The mapped SNPs showed effects on the trait
ranging from −0.56 to 0.48. Mann–Whitney non-parametric U-tests
conducted on the 17 significant SNPs indicated that the markers
Schr05_3842784 (p = 0.020), Schr05_5630468 (p = 0.048), and
Schr05_7891044 (p = 0.036), which showed 7.4%, 7.24%, and
5.13% of PVE, respectively, had significant allelic effects, ranging
from 0.26 to 0.32 in increasing the drought-tolerance index
(Figure 6A). Noteworthy, the SNP Schr05_3842784 that showed a
significant allelic effect (0.53) and 5.41% of PVE on maturity also
showed a significant allele effect (0.32) and 7.4% of PVE on drought,
suggesting a positive pleiotropic QTL effect on both traits (Figure 6).
Again, the SNP Schr05_4617251, although not significant

from the non-parametric U-test, showed 75% of PVE
(Supplementary Table S4c).

A haploblock-based RTM-GWAS analysis was also conducted
using the same SNP and drought phenotypic datasets. A total of five
QTNs and three haploblock QTL loci were detected and found
distributed on chromosomes 1, 2, 4, 5, 6, and 8. (Supplementary
Table S4d). The two QTNs (chr06_11837397 and chr02_28184804)
and three haploblock QTLs (chr05_4616945_4617251, chr05_
4795074_4795187, and chr01_63508333_63508365) were detected
in at last three datasets. By applying the second FDR<0.05 threshold,
the haploblock Chr05_4616945_4617251 was detected on
chromosome 5 as highly significant (Supplementary Figure S4).

Altogether, the GAPIT–MLM and RTM-GWAS models
identified the SNPs Schr05_3842784, Schr05_5630468, Schr05_
7891044, and Schr05_4617251, its haploblock QTL Chr05_
4616945_4617251, respectively, as associated to drought, with
Schr05_3842784 being pleiotropic for the maturity and drought
traits with significant allelic affects (Supplementary Tables S4a–d).

3.4 Favorable alleles affecting the traits

The phenotypic differences between early (rated as 1) and late
maturity (rated as 3) were notable, as were those between drought-
susceptible (rated as 1) and -tolerant (rated as 2) clones. For
maturity trait, Mann–Whitney non-parametric U-tests showed
that 65% of accessions carried the AA genotype at Schr05_
3842874 QTL, with an average maturity rate of 2.71, whereas

FIGURE 2
Drought phenotype distribution among the 384 germplasm panel. (A) Visual distribution of individuals in drought rating classes, (B) scatter plot of
average distribution, (C) frequency distribution of individuals across drought ratings, (D) density plot of individuals across drought ratings, and (E)
accumulation density distribution across drought ratings.
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35% of accessions had the GG genotype, with an average maturity
rate of 2.18.

In the current study, tolerance to drought was rated as 2 and
susceptibility rated as 1. The G/A transition at the SNP site Schr05_
3842874 was found to significantly impact the drought trait, and
accessions carrying the AA genotype showed a drought-tolerance
index of 1.5, while accessions harboring the alternative allele had a
drought-tolerance index of 1.18. A positive linear trend was
observed between the number of favorable QTLs and the
drought-tolerance index (Figure 8), and no significant (p > 0.05)
difference was observed between genotypes carrying 0 and 1 positive
QTL, whereas accessions carrying 2 or 3 positive QTL alleles showed
a statistically higher drought-tolerance index compared to those
carrying 0 or 1 positive QTL (Figure 8).

3.5 Candidate genes associated with
maturity and drought-tolerance traits

By scanning the 0.5 kb–10 kb genomic regions carrying of the
34 QTNs associated with the maturity trait, 38 candidate genes were

detected. Similarly, 18 candidate genes were found associated with
the drought trait (Supplementary Table S5). A total of 53% (20/38)
and 50% (9/18) of the detected candidate genes were located within
the 0.5–1 kb window screen surrounding the detected SNPs for
maturity and drought traits, respectively. For the maturity trait,
genes involved in auxin response (Soltu.DM.05G019140), anatomic
structure development (Soltu.DM.06G019750), gibberellic acid
signaling, leaf development, vegetative phase changes
(Soltu.DM.05G012120), sucrose transport (Soltu.DM.05G006180),
life span regulation (Soltu.DM.05G001990), transcription regulation
(Soltu.DM.05G004540), and various cellular processes
(Soltu.DM.05G020600, Soltu. DM.05G020610) were among
others those found co-located with the 34 QTNs associated with
maturity. Interestingly, the 0.5 kb−10 kb genomic region carrying
the QTN Schr05_3842784 that showed favorable allele effects on the
maturity trait harbored three candidate genes, including genes
involved in apoptosis (Soltu.DM.05G004500), abscisic acid
responses, and osmotic stress tolerance (Soltu.DM.05G004510)
(Supplementary Table S5).

The 18 candidate genes co-located with QTNs associated with
drought stress include genes involved in abscisic acid responses and

FIGURE 3
Distribution of SNP markers in the Solanum tuberosum genome. The outer ring of the diagram represents the chromosomes of Solanum
tuberosum. The middle green ring shows the location of the cleaned SNPs on each chromosome, used for LD analysis. The inner red ring illustrates the
chromosomal location of the pruned markers used for phylogenetic tree construction.
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osmotic stress tolerance (Soltu.DM.05G004510), response to
endogenous stimulus (Soltu.DM.05G004530), transcription
regulators for response to environmental stress and cues
(Soltu.DM.05G004540), signal transduction and response to
abiotic stress (Soltu.DM.05G005240 and Soltu. DM.05G008000),
metabolic process and stress response (Soltu.DM.05G005260),
chloroplast cellular component functions
(Soltu.DM.05G005430 and Soltu. DM.05G008010), cellular and
cell wall functions (Soltu.DM.05G006170, Soltu. DM.05G007510,
Soltu. DM.05G020600, Soltu. DM.05G020590, and Soltu.
DM.05G020610), and sucrose transport (Soltu.DM.05G006180)
(Supplementary Table S5). The three QTNs with significant allele
effects on the drought trait were associated with genes involved in
sucrose transport (Soltu.DM.05G006180), gametogenesis,
chloroplast and plant development (Soltu.DM.05G008010), signal
transduction, and response to abiotic stress (Soltu.DM.05G008000)
(Supplementary Table S5).

4 Discussion

Climate change is predicted to drastically impact crop
productivity in the next decades (Dietz et al., 2021; Gervais et al.,

2021; Hill et al., 2021; Nasir and Toth, 2022). Until recently,
breeding for potato drought resistance has not been a priority
objective in potato breeding, and only a limited number of
drought-resistant potato varieties have been available (Sprenger
et al., 2016; Martinez et al., 2021). By taking advantage of a
mutagenized diploid potato collection we had previously
developed (Somalraju et al., 2018), a germplasm panel of
384 clones was phenotyped for maturity and drought-tolerance
traits in the field conditions, and GWAS were conducted. Here, a
wide range of field maturity times, tolerance to drought, significant
QTNs, and pleiotropic QTNs having favorable allelic effects on both
maturity and drought traits and explaining 5.41% and 5.13%–7.4%
of phenotypic variations, respectively, and candidate genes with
potential known impacts on the two traits are reported. To our
knowledge, this study is the first to report candidate genes associated
with drought tolerance and/or maturity in narrow genomic regions
of diploid potatoes.

Large genetic variations for maturity and drought traits were
found in the population. Field testing for phenotypic traits is usually
associated with GxE interactions (Allard and Bradshaw, 1964; Happ
et al., 2021). In the current study, consistent maturity was observed
over years for a large proportion (~70%) of germplasm in the early-
and late-maturing classes, while 30% in the moderate-to-late-

FIGURE 4
Genetic structure within the 384 germplasm panel. (A) Neighbor-joining phylogenetic tree, (B) kinship heatmap, and (C) 3D representation of the
relationships between the clones depicted using the GAPIT in R. Seven subgroups can be observed.
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maturity classes showed large variations. This observation suggests
that early- and late-maturity phenotypes are less likely influenced by
environmental factors but more genetically controlled. These two
physiological states being life span strategies appear to be highly
coordinately regulated by many senescence-associated genes (Lim
et al., 2007; Guo et al., 2021), while the moderate-to-late-maturity
clones may be more prone to both plant internal and external
factors. Drought tolerance in crops has been extensively studied in
controlled environments (Lahlou and Ledent, 2005; Schittenhelm
et al., 2006; Aliche et al., 2018), with root length and volume, plant
stem-type canopy, and leaf-type canopy characteristics being the
most investigated traits following induced water shortage (Lahlou
and Ledent, 2005; Schittenhelm et al., 2006; Aliche et al., 2018). In
the current study, plant wilt was used as a drought-tolerance
criterion under naturally weather-driven drought conditions in
fields. Stable drought responses were observed for clones in the
collection. Similar observations have been previously reported in
rice (Ciu et al., 2018). Overall, nine clones rated as early to moderate
maturing and tolerant to drought and 127 late-maturing and
drought-tolerant potato clones were identified. These data suggest
that some of the 136 clones can be climate-resilient to a short or long
growing season while coping with drought stress.

Two advanced GWAS statistical models, the GAPIT–MLM and
RTM-GWAS, were used in the current study to dissect the genetic
architecture of maturity and drought-tolerance traits. In fact, it is well
known that statistical models used in GWAS analyses can have a major
impact on the output data (Yu et al., 2006; Tamba et al., 2017;Wen et al.,
2018; Lo et al., 2019). Linkage QTL mapping and single-locus GWAS

statistical models such as the GLM and MLM, GAPIT–MLM, and
GAPIT–cMLM can detect large effect QTNs, whereas multi-locus
models including mrMLM and RTM-GWAS increase the QTN
detection power (Wang et al., 2016; Ren et al., 2018; Su et al., 2020;
Wang and Zhang, 2021; Li et al., 2022a; 2022b; You et al., 2022). The
MLMs are known for best fitting the kinship as a random effect that
controls the genetic background caused by the genetic relatedness
among individuals in the population. They theoretically correct the
inflation from small polygenic effects, efficiently control the population
stratification bias (Wen et al., 2018), reduce false positives (Liu et al.,
2016), and generate QTLs as are in the linkage mapping. Hence, MLMs
are good models for QTN/QTL detection. Nonetheless, the RTM-
GWASmodel exhibits the lowest false discovery rate as it imposes a very
stringent correction criterion (He et al., 2017). Here, 34 and 17 QTNs
were identified using the GAPIT–MLM formaturity and drought traits,
respectively, whereas 30 and 8 QTNs/QTLs were detected by the RTM-
GWAS model for the same two traits, respectively. Detection of fewer
QTNs/QTLs by multi-locus GWAS models compared to single-locus
GWASmodels is common, as previously reported by Chen et al. (2019)
when comparing the GAPIT–cMLM and mrMLM. By imposing the
second-stage threshold of the RTM-GWAS model, only one and two
QTN/QTLs were detected for the drought and maturity traits,
respectively, thus confirming the stringency of the RTM-GWAS
model. These models were complemented by the non-parametric
U-test statistics for detecting favorable alleles potentially affecting the
traits. For each trait, overlapping QTNs/QTLs were detected by using
both models, and the two QTNs Schr05_3842784 and Schr05_
4617251 were found to be pleiotropic for both maturity and

FIGURE 5
Manhattan and Q–Q plots showing QTN and chromosomal regions associated with maturity trait using the GAPIT–MLM model. Each panel
corresponds to one dataset. (A)Maturity mean dataset; (B)maturity BLUP dataset. The green line indicates the FDR threshold cut off <0.05, and the solid
green line indicates the Bonferroni threshold cutoff at 0.05.
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drought traits. The finding suggests that these genomic regions strongly
impact both traits and carry the genes that influence the traits. Indeed,
along the non-parametric U-test-validated QTN Schr05_3842784, the
QTN Schr05_4617251 located within the haploblock QTL chr05_
4616945_4617251 was also found pleiotropic on maturity and
drought, explaining 42% and 75% phenotypic variations,
respectively. Nonetheless, chr05_4617251 was not statistically
validated by the non-parametric U-test. The QTN Schr05_3842784,
validated by all three models, showed 0.53 and 0.32 allele effects that
increase the maturity and drought trait values and 5.41% and 7.4% of
PVE, respectively. Furthermore, based on the three statistical models,
three significant QTNs (Schr05_3842784, Schr05_5630468, and
Schr05_7891044) were found associated to the drought trait, had
0.26–0.32 allelic effects that increase drought tolerance, and showed
5.13%–7.4% of PVE on the trait. The data reported here are significant
because they derive from a unique and unprecedented mutagenized
diploid germplasmpanel. All previousmapping studies for the drought-
tolerance trait have focused on bi-parental populations (Anithakumari
et al., 2012; Khan et al., 2015; Schumacher et al., 2021); to our
knowledge, no previous investigations have reported GWAS
mapping for maturity and drought traits in diploid potatoes.
Moreover, in the context of changing climate, the identification and

development of early-maturity potatoes and potatoes that are drought
tolerant are sought as a climate adaptation solution for short- and long-
season growing areas. The current study identified both early- and late-
maturing potato clones that are drought-tolerant, meaning that
maturity class can be a physiological variable that can be used to
mediate drought tolerance in crops through drought escape (Hill
et al., 2021).

In the current study, a total of 38 candidate genes were identified
in genomic regions harboring the 34 QTNs associated with maturity,
while 18 candidate genes were found for the 17 QTNs associated
with the drought trait. Most of the genes were identified in a close
vicinity (0.5–1 kb) of the QTNs, suggesting their true impact on the
traits. In their study using an indirect yield trait (DRYM) for drought
tolerance in tetraploid potatoes, Schumacher et al. (2021) reported
candidate genes for drought tolerance, albeit from very large
(1.3 Mb–36.76 Mb) genomic regions. Our data are, thus, highly
relevant for targeted gene studies and marker development when
compared with the report by Schumacher et al. (2021). The roles of
auxin, gibberellic acid, and sucrose transport in plant development
are well known (Nagar et al., 2021). Furthermore, the roles for
phytohormones abscisic acid, brassinosteroid, cytokinin, ethylene,
gibberellic acid, jasmonic acid, and salicylic acid have been reported

FIGURE 6
Violin plots illustrating the phenotypic differences between potato genotypes carrying different alleles of the significant SNPs. (A)Drought tolerance.
(B) Plant maturity. Horizontal black bars represent the mean for each SNP allele. Statistical differences between alleles were tested using the
Mann–Whitney non-parametric U-test (p < 0.05).
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to be crucial in drought stress tolerance in plants through the
regulation of cellular functions and signaling (Guo et al., 2021; El
Sabagh et al., 2022). Our data showed genes such as the auxin
response factor that mediates auxin response and plays a crucial role
in lateral root development (El Sabagh et al., 2022); squamosa, which

is involved in gibberellic acid signaling, leaf development, and
vegetative phase change; the longevity assurance gene (LAG1),
which controls the life span; and sucrose transporter as part of
the genes found to carry the QTNs associated to the maturity trait.
Importantly, the QTN Schr05_3842784 with a validated allelic effect

FIGURE 7
Manhattan and Q–Q plots showing QTN and chromosomal regions associated with the drought trait using the GAPIT–MLM. Each panel
corresponds to one dataset. (A)Maturity mean dataset; (B)maturity BLUP dataset. The green line indicates the FDR threshold cut off <0.05, and the solid
green line indicates the Bonferroni threshold cutoff at 0.05.

FIGURE 8
Bean plots illustrating the favorable QTL effect between potato genotypes harboring zero to three drought-tolerance QTLs. Horizontal black bars
represent the mean for each class favorable QTL allele. Different letters indicate significant statistical differences according to the Kruskal–Wallis non-
parametric test (p < 0.05).
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on maturity was associated with genes involved in ubiquitination,
apoptosis, cell death (Soltu.DM.05G004500) (Shen et al., 2018),
abscisic acid responses, and osmotic stress tolerance
(Soltu.DM.05G004510). These observations suggest that critical
responsive genes carrying SNP variants associated with the
maturity trait were efficiently mapped in the current study.
Similarly, water access and conservation in the plant tissue,
chloroplast stability, and its proper development are critical for
plant survival under stress (He et al., 1995; Anithakumari et al., 2012;
Gervais et al., 2021; Hill et al., 2021; Lin et al., 2021). Here, using a
visual wilting assessment of the drought trait in the field condition
and followed by a GWAS, candidate genes playing roles in abscisic
acid responses and osmotic stress tolerance, responsive genes to an
endogenous stimulus, transcription regulators for response to
environmental stress and cues, signal transduction and response
to abiotic stress (Soltu.DM.05G008000), various stress-responsive
genes, chloroplast and cellular component function gene
(Soltu.DM.05G005430), cellular process and cell wall function
genes (Soltu.DM.05G004500 and Soltu. DM.05G020590), and
sucrose transport (Soltu.DM.05G006180) were identified as
associated with drought stress. The role for abscisic acid as a
signaling regulator of stomatal conductance and leaf thickness
has been reported as drought-tolerance mechanisms (Wang et al.,
2010; Hill et al., 2021). Our data show genes involved in signal
transduction and response to abiotic stress (Soltu.DM.05G005240,
Soltu. DM.05G005260, and Soltu. DM.05G008000), abscisic acid
signaling (Soltu.DM.05G004510), chloroplast development
(Soltu.DM.05G008010) (Lin et al., 2021), ands cell wall
modifications (Soltu.DM.05G020590), all concurring in synergy
to drought tolerance. Although similar genes have been reported
in other crops under drought stress (Mathew et al., 2019; Soto-Cerda
et al., 2020; Gutierrez et al., 2023), no such close intragenic QTNs
associated with drought tolerance have been previously reported in
potato. Our findings strongly suggest that relevant SNP markers
associated with drought-tolerance genes can be developed from the
current study. Based on the existing knowledge, cultivated tetraploid
potato landraces belonging to S. tuberosum, group Andigena, carry
some drought-tolerance traits (Nasir and Toth, 2022), and the
current data are contributory to expanding potato germplasm
with drought tolerance while displaying diverse maturity classes
for diverse continental agrosystems.

In conclusion, this study deciphered the genetic architecture as it
relates to QTN/QTL associated with maturity and drought traits in a
diploid germplasm panel and provided the first evidence for the
presence of candidate genes conferring tolerance to maturity and
drought stress on chromosome 5 of diploid potatoes. The genetic
loci with high phenotypic effects on both maturity and drought
traits can be of worth interest for marker development and further
detailed functional studies. The data and germplasmherein reported are
prime genetic resources for breeders and biologists in conventional
breeding and targeted gene editing in the context of climate change.
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Temperature (°C) and precipitation (mm) data during growing seasons in
years 2020 to 2022.

SUPPLEMENTARY FIGURE S2
Density plot of genome-wide distribution of 11,605 SNP markers across the
diploid potato genome. The horizontal axis displays the chromosome length
(Mb), while the colors represent SNP density.
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SUPPLEMENTARY FIGURE S3
Manhattan plot showing QTN/QTL and chromosomal regions associated
with maturity trait using the RTM-GS model. The blue line indicates the
second FDR threshold cut off <0.05.

SUPPLEMENTARY FIGURE S4
Manhattan plot showing QTN/QTL and chromosomal regions associated
with drought trait using the RTM-GWAS model. The blue line indicates the
second FDR threshold cut off <0.05.
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