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Chronic lymphocytic leukemia is a complex and heterogeneous hematological
malignancy. The advance of high-throughput multi-omics technologies has
significantly influenced chronic lymphocytic leukemia research and paved the
way for precision medicine approaches. In this review, we explore the role of
machine learning in the analysis of multi-omics data in this hematological
malignancy. We discuss recent literature on different machine learning models
applied to single omic studies in chronic lymphocytic leukemia, with a special
focus on the potential contributions to precision medicine. Finally, we highlight
the recently published machine learning applications in multi-omics data in this
area of research as well as their potential and limitations.
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1 Introduction

The breakthroughs of Next-Generation Sequencing (NGS) over the last decade have led
to an increase in both the volume and complexity of omics data in genome-wide (bulk)
(Lander et al., 2001; Venter et al., 2001) and deeper at the single-cell level. NGS allowed the
scientific community to study various biological mechanisms such as genetics (whole-
genome sequencing), gene expression (RNA-seq), and epigenetics [DNA methylation (e.g.,
whole-genome bisulfite sequencing), chromatin accessibility (ATAC-seq), chromatin
immunoprecipitation assays with sequencing (e.g., ChIP-seq for histone markers)]
resulting in high dimensional omics data (Reuter et al., 2015). Apart from the genome-
wide approaches, single-cell technologies provide the opportunity to study different
modalities such as gene expression (scRNA-seq) and chromatin accessibility (scATAC-
seq) at the resolution of individual cells (Heumos et al., 2023). This technology shows
distinct advantages over bulk data, particularly in capturing the clonal architecture and the
cell type composition of the tumor microenvironment.

In addition, global scientific communities and consortia such as The Cancer Genome
Atlas (TCGA) (Tomczak et al., 2015), the International Cancer Genome Consortium
(ICGC) (International Cancer Genome et al., 2010), BLUEPRINT (Martens and
Stunnenberg, 2013), Human Cell Atlas (HCA) (Lindeboom et al., 2021), etc., make
relevant results available to everyone by publishing omics data and metadata, giving the
opportunity for further exploration and data integration. This vast amount of complex
omics data can be analyzed with machine learning (ML) algorithms to uncover biomarkers
or predictive signatures for better patient stratification and treatment selection. However,
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most of the published applications of ML are based on single omic
studies such as only bulk gene expression. Although multi-omics
analysis using ML is still at an early stage, many review articles have
discussed how useful and significant the applications of ML in this
area can be (Reel et al., 2021; Arjmand et al., 2022; Kharb and
Joshi, 2023).

There are certain ML methods suitable for combining different
modalities of omics data such as autoencoders which can reduce the
multi-omics dimensionality and identify important patterns of the
input data (Feldner-Busztin et al., 2023). A successful application
from (Chaudhary et al., 2018) identified multi-omic features linked
to the differential survival of patients with hepatocellular carcinoma
by creating two subgroups. Applications like this are a
transformative step forward in the domain of personalized oncology.

Here we focus on multi-omics data in the context of chronic
lymphocytic leukemia (CLL), along with the application of ML
techniques, and the potential of this emerging field. CLL is an ideal
model for the integration of multi-omics data using ML
methodologies since it is the most common adult leukemia in
Western countries (Kipps et al., 2017) and is characterized by
clinical and biological heterogeneity (Delgado et al., 2020).
Interestingly, this heterogeneity is reflected in a complex
interaction between genetics, epigenetics, and the tumor
microenvironment (Delgado et al., 2020) making it a promising
area of multi-omics applications. The vast majority of the
publications applying ML in CLL are related to clinicobiological
data or single omic studies data set. Since few publications exist with
multi-omic data and ML in CLL (Argelaguet et al., 2018; Lu et al.,
2021; Tsagiopoulou et al., 2022), we discuss them in addition to
single omic studies showing the significance of this application, the
promising field of ML and multi-omic data.

2 Precision medicine and single omic
studies in CLL

2.1 Precision medicine in CLL

Before the applications of NGS and omics data, the patient’s
stratification and clinical management of CLL were performed with
technologies such as fluorescence in situ hybridization (FISH) and
targeted sequencing. The first important component reported in
CLL was the importance of cytogenetic abnormalities which,
ranking from high to low risk, are del(17p), del(11q), trisomy
12 and del(13q) (Baliakas et al., 2016). In addition to del17p,
resulting in TP53 gene inactivation, the TP53 mutations are
associated with a short time to progression and, consequently, an
early need for treatment, poor response to chemoimmunotherapy
and an overall dismal outcome (Dohner et al., 2000; Zenz et al.,
2010). The classification of CLL cases based on somatic
hypermutation (SHM) status of the clonotypic BCR IG became
the strongest prognostic marker in CLL until now (Fais et al., 1998;
Hamblin et al., 1999; Chiorazzi and Ferrarini, 2003). This distinction
includes two categories with markedly different outcomes: those
with little or no somatic hypermutation (SHM) (‘unmutated CLL’,
U-CLL) who follow considerably more aggressive clinical courses
compared to those with a significant SHM burden (‘mutated
CLL’, M-CLL).

However, NGS empowers precision diagnostics in CLL,
introducing other genomic markers with prognostic or predictive
impact. Whole-genome sequencing studies revealed important new
driver mutations in MYD88, NOTCH1, SF3B1, POT1, and XPO1,
which were associated with clinical outcomes (Knisbacher et al.,
2022). Moreover, sub-clonal TP53 mutations with variant allele
frequency (VAF) below 10% were impossible to detect before
NGS. This undetected mutation contributed to relapse after
chemoimmunotherapy. Nowadays, TP53 mutations are
considered for targeted therapies such as BTK inhibitors (Byrd
et al., 2013) serving as a predictive marker for treatment outcomes.

Several targeted therapies with remarkable clinical efficacy are
on the market but still resistance and relapse occur. The challenge
for precision medicine is the definition of more predictive markers
that will assist in the better stratification of the patients and clinical
decision-making.

2.2 Single omic studies in CLL and
applications of machine learning

There are two primary ML strategies: supervised and
unsupervised. The main difference between them is the
requirement of metadata information to label the training data in
a supervised manner, whereas unsupervised methods are based on
the raw data only (Xu and Jackson, 2019) (Figures 1A,B).

The most popular ML techniques for analyzing single omic
studies data in CLL are the principal component analysis (PCA) and
hierarchical clustering which are unsupervised methods using
metadata information for visualization purposes. PCA transforms
high-dimensional data into a lower-dimensional space (Jolliffe and
Cadima, 2016) and is used for data exploration such as variability,
outliers, and extraction of subgroups of patients. Another popular
methodology is hierarchical clustering which separates the variables
[patients or events (genes, chromosomal locations)] into clusters
based on their distances (Johnson, 1967). Plenty of single omic
studies use the data to evaluate the separation of the subgroups of
interest. For example, CLL patients with mutated IGHV genes
(M-CLL) and patients with unmutated IGHV genes (U-CLL)
were found to be divided using PCA and hierarchical clustering
in a range of omics data such as gene expression, DNA methylation,
histone markers, and chromatin accessibility (Kulis et al., 2012;
Beekman et al., 2018). Diving into U-CLL subgroup, cases carrying
identical BCR belonging to an aggressive subgroup of the disease
called stereotyped subset #8 were found to be distinct using PCA and
hierarchical clustering in different single omic modalities, i.e., gene
expression, DNA methylation, and histone modifications
(Papakonstantinou et al., 2019; Tsagiopoulou et al., 2023).
Trisomy 12 showed a distinct DNA methylation pattern together
with altered chromatin activation using PCA explains some of the
biological differences of this cytogenetically defined subtype
(Beekman et al., 2018; Tsagiopoulou et al., 2020). An additional
layer of analysis is the k-means algorithm (MacQueen, 1967) that
has been applied in the CLL omics area in terms of the segregation of
patients or features (genes, chromosomal location, etc.) (Chuang
et al., 2012; Beekman et al., 2018) into k clusters.

Non-negative Matrix Factorization (NMF) is mainly used to
perform unsupervised analysis of the complete set of genomic data
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(Kasar et al., 2015; Robbe et al., 2022). This method divides the data
into two or more non-negative matrices, capturing meaningful
mutational patterns in the data and uncovering distinct
subgroups (Lee and Seung, 1999). One of these applications
(Robbe et al., 2022) highlighted the key role of the noncoding
mutation in the NMF which dramatically increases the level of
distinction. Another publication using Bayesian NMF (weighted
average AUC = 0.88) and 603 RNA-seq samples reported eight
expression subgroups of CLL patients that were associated with the
three epigenetic subtypes (n-, m-, i- CLL) and SHM status
(Knisbacher et al., 2022).

Beyond unsupervised applications, supervised machine learning
algorithms such as support vector machines (SVM) are commonly
used on omics data, as it separates the different variables into
different classes based on selected features (Cortes and Vapnik,
1995). These MLmethodologies aim at providing novel perspectives
on the classification and stratification of CLL cases. A table featuring
all these ML applications in CLL is presented in Table 1. In more
detail, a breakthrough application of SVM from (Queiros et al.,
2015), used 133 DNAmethylation CLL samples to build a prediction
model (error rate = 1%) based on 5 CpG sites that classify CLL
patients into three subgroups, namely, naive B-cell-like (n-CLLs),
intermediate (i-CLLs), and memory B-cell-like CLL (m-CLLs),
showing significant differences in the outcome. Since this
classifier was built using Illumina 450K arrays and one of the five
CpG sites in the classifier is not present in the EPIC array, a recent

study published a new SVM classifier for these three epigenetic
entities (Duran-Ferrer et al., 2020). Within the same study, a
classifier was built using DNA methylation data (training series =
1,345 samples and external validation series = 711) along with SVM
to diagnose an unknown B-cell tumor to the correct disease (e.g.,
CLL, MCL) and its subtypes (m-, n-, i- CLLs for CLL) (Duran-Ferrer
et al., 2020). The classifier achieved remarkable accuracies for both
the predictions of the main B-cell tumor entities (mean sensitivity
was 97% for training series and 99% for validation series) and B-cell
tumor subtypes (mean sensitivity was 90% for training series and
97% for validation series). In the same direction of diagnostic
purposes, Artificial Neural Network (ANN) (Rumelhart et al.,
1986), SVM, and Random Forest (RF) (Breiman, 2001) were
evaluated for their performance in classifying healthy and CLL
patients based on expression values of 12 genes (Shaabanpour
Aghamaleki et al., 2019). These algorithms operate by analyzing
the expression values of these genes and utilizing patterns within this
data to classify the samples. Notably, ANN exhibited the highest
accuracy with respect to the classification of CLL versus healthy
samples (ANN = 0.969, SVM = 0.952, RF = 0.936). Between the two
CLL subtypes the accuracy of ANN was 0.981.

Regarding treatment prediction, a Gaussian mixture model
(McLachlan, 2000) using expression data (initial cohort =
196 cases and validation cohort = 79 cases) from 2,198 genes. This
model separates the different variables (e.g., genes) into different
classes (Gaussian distributions) based on the patterns it finds in the

FIGURE 1
Illustration of ML for precisionmedicine in CLL. (A). Flow ofML application in omics data resulting precisionmedicine applications (B). ML application
in single omic studies (C). ML methods in multi-omics in CLL.
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data showing an association with the time to treatment. The genes
associated with time to treatment were used for a ML classifier from
BigML (BigML, 2011) and showed high accuracy in predicting the
need for treatment within the first 5 years following diagnosis.
(Mosquera Orgueira et al., 2019). This application paves the way
for the identification of high-risk patients using ML.

Nowadays, state-of-the-art technologies to study individual cells
(e.g., scRNA-seq) have required dimensionality reduction in their
tools through unsupervised methods such as PCA or t-SNE. These
techniques are used to project the single cells into lower dimensions.
Even though the amount of scRNA-seq data in CLL has vastly
increased in recent years, there is only one application of ML in
downstream analysis using SVM (Rendeiro et al., 2020). This single-
cell application of ML predicted the time point of sample collection
(day 0, 30, or 120/150) after the start of ibrutinib therapy for 4 CLL
patients using scRNA-seq data (cross-validated test set ROC-AUC
values = 0.975–0.999). This suggests that single cells undergo
changes that reflect the duration of ibrutinib therapy.

In summary, machine learning and single omic studies have
significantly contributed to CLL research. Unsupervised
methodologies such as PCA and hierarchical clustering have played
a critical role in visualizing the landscape of CLL and finding patterns
(Chuang et al., 2012; Kulis et al., 2012; Kasar et al., 2015; Beekman et al.,
2018; Papakonstantinou et al., 2019; Tsagiopoulou et al., 2020; Robbe
et al., 2022; Tsagiopoulou et al., 2023). These approaches help
researchers explore and understand the complexities of the disease,
enabling the classification of patients into distinct subgroups. ML

classifiers offer a potential tool for disease diagnosis and disease
subtype detection (Shaabanpour Aghamaleki et al., 2019; Duran-
Ferrer et al., 2020), as well as treatment outcome prediction
(McLachlan, 2000) which will help to identify high-risk patients and
optimize treatment decisions. However, ML classifiers have not only
distinguished different CLL subgroups but revealed new epigenetic-
mediated categories including the high clinical relevance of the i-CLL
subgroup (Queiros et al., 2015). Inmore detail, n-CLL andm-CLL cases
were associated with IGHV mutational status and next omics studies
associated the less well defined i-CLL group with a clinically aggressive
subgroup of CLL called the stereotyped subset #2 (Bhoi et al., 2016) and
a point mutation in IGLV3-21R110 (Nadeu et al., 2021). This
classification of patients has been commonly used in research since
then (Bhoi et al., 2016; Mallm et al., 2019) highlighting the importance
of this model in precision medicine in CLL.

2.3 Applications of ML in multi-omic analysis
in CLL

In terms of multi-omics data and ML, few publications took
advantage of the rich data availability in CLL and by applying ML
methodologies they offered new perspectives in CLL(Figure 1C).

A recently published tool for patient subtyping called Multi-Omics
Factor Analysis (MOFA) used CLL as an application highlighting
expected observations such as the importance of IGVH mutational
status and reported new insights (Argelaguet et al., 2018). MOFA

TABLE 1 Classification machine learning models published in CLL studies.

Study Omic
measurement

ML method Sample size Performance Metrics

Knisbacher et al.
(2022)

RNA-seq Bayesian NMF 603 CLL cases weighted average of AUC = 0.88

Queiros et al. (2015) 450K methylation arrays SVM 133 CLL cases classified 132/133 of the patients into the right
epigenetic subgroup

error rate (1.00%)

Duran-Ferrer et al.
(2020)

450K and EPIC
methylation arrays

SVM Training series (n = 1,345): 809 cases of acute
lymphoblastic leukaemia, 74 cases of mantle
cell lymphoma, 490 CLL cases, 55 Diffuse large
B cell lymphoma.

main B-cell tumor entities: mean sensitivity was
97% for training series and 99% for validation
series

External validation series (n = 711) B-cell tumor subtypes: mean sensitivity was 90%
for training series and 97% for validation series

Shaabanpour
Aghamaleki et al.
(2019)

gene expression
microarrays

SVM, RF, ANN 42 CLL cases and 11 healthy controls CLL and healthy donorts: SVM: AUC = 0.985,
accuracy = 0.952/ RF: AUC = 0.969, accuracy =
0.936/ ANN: AUC = 0.991, accuracy = 0.969

Two CLL subtypes: ANN: AUC = 0.991,
accuracy = 0.981

Mosquera Orgueira
et al. (2019)

RNA-seq Gaussian mixture
model and BigML

Training series (n = 196): 169 CLL, 22
monoclonal B cell lymphocytosis (MBL), and 5
small lymphocytic lymphoma (SLL) samples
External validation series (n = 79): 72 CLL, 4
SLL, and 3 MBL samples.

90% precision at identifying patients that needed
treatment in 5 years with 69.23% recall,

88.57% precision at identifying patients without
treatment in 5 years with 96.88% recall

False positive rate = 3.1% False negative rate=30%

Rendeiro et al.
(2020)

scRNA-seq SVM sample collection (day 0, 30, or 120/150) for
each of the ~19,000 single-cell transcriptomes
for CLL cells from four donors.

cross-validated test set ROC-AUC values = 0.975
to 0.999

Frontiers in Genetics frontiersin.org04

Tsagiopoulou and Gut 10.3389/fgene.2023.1304661

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1304661


uncovers the principal components of biological and technical diversity
when analyzing multiple omics datasets from the same samples. This
method is based on PCA and uses the principal components to generate
subgroups called factors. These factors can be shared by multiple omics
modalities or can be datatype (single omic data) specific and enable a
variety of downstream analyses, including the identification of
subgroups and data imputation. The application of MOFA in CLL
was based on DNA methylation and gene expression data from
200 patients. The results showed separation by known clinical
markers and other unknown axes of variation such as oxidative
stress. This observation was examined in more detail in the next
publication of the same group, in which they discovered 6 factors/
subgroups of CLL patients (Lu et al., 2021). Five out of six were
associated with known markers (i.e., IGVH mutational status, trisomy
12, the three epigenetic subtypes). However, they introduce a new
Factor 4, previously unknown, as the “CLL proliferative drive” (CLL-
PD). CLL-PD was associated with poor clinical outcome and with
activation of mTOR-MYC-oxidative phosphorylation by gene
expression, proteomic and single-cell resolution analysis. Except for
the identification of the CLL subgroup based on ML, another
methodology called InterTADs focuses on the integration of the
multi-omic data considering the chromatin configuration of the
genome (Tsagiopoulou et al., 2022). This method can detect
topologically associated domains with different activity which is
measured by mixing the values of the different omic data. Applying
this approach across 135 CLL cases with paired gene expression and
DNA methylation, meaningful results were reported in IGVH
mutational status and trisomy 12. PCA and the metadata
information of IGHV mutational status of the CLL patients were
used to confirm the value of this approach since the explained
variance of the PCs was increased compared to PCAs including the
single omic datasets. These applications highlight the power of multi-
omics data andML to gainmore granularity in the data and report new
results with potential impact in precision medicine.

ML methodologies applied to multi-omics data offer fresh
perspectives in the interpretation of diverse omics layers. These
concepts often revolve around the identification of novel patient
subgroups with distinct and uncharacterized characteristics, as
exemplified by the MOFA tool (Argelaguet et al., 2018). Conversely,
InterTADs (Tsagiopoulou et al., 2022) places a primary focus on
genome regulation and activation, utilizing clinicobiological
metadata for subgroup evaluation. It is worth noting that both of
these tools have concentrated on a limited number of multi-omic
datasets, typically three or fewer. In the future, the application of these
or newmethodologies should encompass a more comprehensive range
of layers, covering both coding and noncoding regions.

2.4 Limitations in multi-omics and ML

Considering all the supporting evidence of single omic studies and
multi-omics approaches that we discussed in the previous sections, the
field of integration of multi-omics data using ML is a promising area
supporting precision medicine. However, one significant limitation
for the ML applications is the nature of omics data characterized by
the high dimensionality (features) and small sample size (patients)
(Hastie et al., 2009). The validation and reproducibility of ML
applications with multi-omic data can be challenging, leading to

the potential overestimation of model performance. This challenge
becomes particularly pronounced when studying rare entities, such as
stereotype subset #8 or cases carrying specific low-frequency genetic
mutations, as it is exceptionally difficult to locate additional cohorts
meeting the experimental conditions for validating ML findings.

ML heavily relies on data quality, and omics data can be noisy
and subject to batch effects, potentially leading to biased or
inaccurate results. In the same direction, multi-omics datasets are
not comprehensive, as they often combine data from different
sources. For instance, a dataset might include RNAseq data from
blood samples and another omics layer from tissue biopsies which
can present challenges when attempting to gather omics data
exclusively from a single sampling site. This issue is less critical
for malignancies originating in the blood, but even in such cases, cell
sorting before analysis, while reducing background noise, can
introduce bias due to factors such as cells undergoing apoptosis
or releasing associated compounds. Finally, ML models may
oversimplify the biological complexity of the studied systems,
potentially missing relevant interactions and features especially in
deep learning methodologies that are considered black-box models.

2.5 Future challenges and directions in
multi-omics and ML

A future challenge involves the development of ML algorithms
able to manage a large number of features within a small cohort. The
development of the next-generation of ML multi-omics
methodologies should consider the phenotypic outcome of gene
expression as the primary link connecting various modalities of
omics data. Moreover, there is no widely accepted approach for
multi-omics data integration and a recent benchmarking paper (Cai
et al., 2022) concluded that most of the tools did not show
significantly enhanced performance over PCA, showing the
importance of new approaches. The challenges associated with
dimensionality, small sample sizes, and the high number of genes
in omics data can be addressed with the introduction of single-cell
data. Single-cell omics data, which focuses on individual cells rather
than samples, offers a promising approach to overcome these
limitations. This approach not only sidesteps the constraints of
sample size but also provides valuable insights into gene regulation
and activation, even if it does not directly address patient subtyping.
Many applications of NMF in scRNA-seq in cancer reported diverse
expression programs within the malignant cells including key
features such as cell cycle and hypoxia showing a promising
methodology for multi-omics studies (Barkley et al., 2022; Gavish
et al., 2023). These results highlight the potential of ML
methodologies in advancing single-cell multi-omics research.

3 Concluding remarks

The applications of ML and multi-omic data in CLL are still in
their early stages, but the results highlighted by this review suggest that
these technologies have the potential to significantly improve risk
stratification and patient outcomes. However, this ongoingmovement
tomulti-omics data utilizingMLmethods will hopefully assist in truly
implementing precision medicine for CLL patients in the near future.
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