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While genetic markers related to meat production traits have been identified in many
other cattle breeds, research on weight in Hanwoo cattle (Korean native cattle) is still
insufficient. In this study, we performed expression quantitative trait loci (eQTL)
analysis and differential gene expression analysis to detect candidate genes
influencing the weight characteristics of 32 castrated Hanwoo cattle across
22 tissues and, we identified variants that affect gene expression levels. In total,
we identified a total of 3,298 differentially expressed genes, among which we
discovered key genes such as UBD, RGS2, FASN, and SCD that have functions
related to adipogenesis, body weight, obesity, and lipid metabolism. Gene-set
enrichment analysis revealed that candidate genes in adipose tissue are involved in
metabolic pathways linked to obesity-related traits, adipose metabolism, and lipid
metabolism. Additionally, we found that decreased expression of TRIM31 contributes
to weight gain which can be explained by the associated candidate cis-eQTL
genotypes for TRIM31 and their effect on differential gene expression between the
lower and higher weight groups. Our findings revealed candidate genes associated
with the weight of Hanwoo cattle and perhaps can provide comprehensive insights
into the association of weight with various tissues beyond adipose tissue andmuscle,
indicating the potential for expanding the focus of livestock trait research.
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Introduction

Hanwoo cattle (Korean native cattle) is a breed of cattle indigenous to Korea that was
previously used for agricultural, transportation and religious purposes but later evolved into beef
cattle and remains one of the country’s most important food sources to this day (Lee et al., 2014).
Hanwoo cattle are recognized for their high fertility, but their slow growth rate hinders their meat
production capability (Choi et al., 2019). For efficient meat production of beef cattle, it is
important to maximize their weight, which is an economic trait (Fink et al., 2017). Livestock
weight is economically important because it indicates livestock ability, a standard for determining
livestock rations and selling prices, and is also used as a trait to evaluate livestock breeding value
(Wangchuk et al., 2018). To this end, a significant amount of genetic research has focused on
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elucidating the genetic determinants of body weight and related traits in
cattle and other livestock species (Littlejohn et al., 2012).

Genetic studies have progressively shed light on the complex
underpinnings of body weight traits in cattle. For instance, Duan et al.
(2021) pinpointed several single nucleotide polymorphisms (SNPs) in
Chinese Simmental cattle that correlate with body weight, revealing genes
that govern growth and development. Similarly, Naserkheil et al. (2020)
conducted a GWAS that identified genes in Hanwoo cattle associated
withmetabolic processes and growth, highlighting the genetic complexity
of these traits. Furthermore, Liu et al. (2018) provided insight into the role
of lipid metabolism by analyzing differentially expressed genes (DEGs) in
the subcutaneous adipose tissue of Lilu cattle, underscoring the
multifaceted nature of weight regulation at the genetic level.

While these studies offer valuable information, they primarily rely
on GWAS for gene identification, and little attention has been given to
integrating transcriptomic data with expression quantitative trait loci
(eQTL)mapping to gain amore holistic understanding of weight traits.
Recognizing this gap, our study harnesses RNA-seq technology to
profile gene expression across Hanwoo cattle tissues, integrating eQTL
analysis to elucidate the genetic mechanisms influencing weight. The
eQTL analysis is crucial in elucidating the significant association
between gene expression levels and genetic polymorphisms,
providing a profile that highlights the unique biological significance
(Peng et al., 2018; Cai et al., 2023). This comprehensive approach aims
to build on the existing genetic framework, adding depth to our
understanding of how genetic variations contribute to phenotypic
expressions related to body weight in Hanwoo cattle.

In recent studies on weight and body composition traits of
Chinese Lilu cattle and common beef breeds in the United States
(such as angus, beefmaster, brahman, etc.), identified significant
candidate genes have been reported to be involved in lipid
metabolism pathways (Liu et al., 2018; Lindholm-Perry et al.,
2020). Lipid metabolism, which contributes to the characteristics of
body weight, encompasses a range of biochemical pathways including
fat synthesis, lipolysis, lipid transport, and oxidation (Muradian et al.,
2015). These processes occur not only in adipose tissue but also in
various other tissues such as the brain, liver, and muscles (Adibhatla
and Hatcher, 2008; Yang et al., 2013; Zhang et al., 2022). Therefore,
the aim of this study was to perform expression quantitative trait loci
(eQTL) analysis and differential gene expression analysis in different
tissues to detect candidate genes influencing weight in Hanwoo cattle.

Materials and methods

Experimental overview and sample
collection

To identify expression quantitative trait loci (eQTL) in Hanwoo
cattle, 32 animals from the same farm were provided by the Hanwoo
Cattle Research Institute, National Institute of Animal Science, South
Korea. The age (Mean ± Sd, 15.6 ± 5.5) and body weight (Mean ± Sd,
388.9 ± 115.6) of the 32 samples were measured at the time of slaughter
(Supplementary Table S1). The 22 tissues collected for RNA-sequencing
are as follows: abdominal fat (ABF), abomasum (ABO), back fat (BFT),
blood (BLO), cecum (CEC), colon (COL), duodenum (DUO), heart
(HEA), ileum (ILE), jejunum (JEJ), kidney (KID), kidney fat (KIF), liver
(LIV), sirloin (LOM), lung (LUN), omasum (OMA), rectum (REC),

reticulum (RET), round (RMP), rumen (RUM), spleen (SPL) and
tenderloin (TEN). Three of 32 individuals (Sample IDs: 192018,
192032, 202012) included missing tissue samples. Information about
the tissues collected per individual is provided in Supplementary Table
S2. Ethics approval was obtained from the National Institute of Animal
Science (approval no: NIAS20201979).

RNA isolation and sequencing

Tissue samples harvested from 32 castrated Hanwoo cattle were
processed for RNA preparation using two distinct methods. The first
method involved RNA extraction following the Trizol Beating RLT
Dnase column protocol, utilizing the QIAamp 96 Viral RNA Kit in
conjunction with QIAzol Lysis Reagent. The second method extracted
RNAbased on theTrizol beating isopropanol columnDNase tissueRNA
protocol, employing the QIAamp DNA Mini Kit and QIAzol Lysis
Reagent. Additionally, for the blood samples, RNA was extracted by
referencing the 900 µL Trizol Isopropanol column protocol, using a
combination of QIAzol_3X and QIAzol Lysis Reagent. RNA
concentration was checked using a NanoDrop ND-1000
spectrophotometer (NanoDrop Technologies, United States). RNA
extracted from tissues and blood was all subjected to RNA QC using
the TapeStation RNA Screen Tape, and the criteria were Concentrations
(total amount) > 0.5 (ug), RINs value > 6, and rRNA ratio > 1. The
quality and the integrity of the RNA was assessed using a bioanalyzer
(Agilent, Santa Clara, United States) and only samples with a RIN value
greater than 8.0 was used for cDNA library construction. Individual
libraries were generated using Illumina TruSeq™ RNA Sample
Preparation Kit (Illumina, San Diego, CA, United States). All samples
were sequenced on the Illumina NovaSeq 6000 sequencer, generating
100bp paired-end reads at a sequencing depth of 6 Gb. Sequencing for all
samples was conducted across separate lanes as per the workflow
schedule, rather than being performed on a single lane. The goal was
to produce data of at least 60 million reads for each sample. The raw
reads were freely deposited at the National Center for Biotechnology
Information (NCBI) Sequence Read Archive (SRA) database under
accession number E-MTAB-13398.

RNA-seq data production and RNA
SNP calling

We sought to obtain quantified expression values transcripts per
million (TPM) to compare gene expression levels and for use in eQTL
analysis. RNA-seq data of the 22 tissues sourced from 32 samples were
quality-checked with FastQC (version 0.11.9) (Brown et al., 2017), and
low-quality reads were filtered through the Trimmomatic (version 0.39)
process (Bolger et al., 2014). Expression levels were quantified using the
rsem-calculate-expression function of the RNA-seq by expectation
maximization (RSEM) software (version 1.3.1) (Li and Dewey, 2011),
generating TPM values for each of the 22 tissues across the 32 samples.
The ARS-UCD1.2 of cattle was used as the reference genome.

To acquire single nucleotide polymorphisms (SNP) information
requisite for principal component analysis (PCA) and eQTL analysis,
SNP data was derived from RNA-seq datasets. RNA-seq data from
32 samples of BLO tissue were subjected to SNP calling using genome
analysis toolkit (GATK) (version 4.1.4.0) (DePristo et al., 2011)
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adhering to the best practice guidelines (https://gatk.broadinstitute.org/
hc/en-us/articles/360035531192-RNAseq-short-variant-discovery-
SNPs-Indels). First, after the previously mentioned Trimmomatic
process, we mapped the reference using the spliced transcripts
alignment to a reference (STAR) (version 0.11.9) tool (Dobin et al.,
2013) and removed duplicates using the MarkDuplicatesSpark tool in
GATK. After going through the SplitNCigarReads process of the GATK
and base quality recalibration, variant calling was performed using the
HaplotypeCaller tool. To enhance the accuracy of RNA SNP variants,
we treated genotypes with a genotype quality (GQ) less than 20 and a
read depth (DP) less than 5 as missing. SNPs exceeding a 10% missing
rate (-geno 0.1) were filtered. We then excluded the sex chromosomes
and indels, focusing our analysis solely on autosomal SNPs.

Study design

The 32 samples varied in age, as detailed in Supplementary Table
S1. For an accurate analysis, the weight phenotype was adjusted for

the effect of age (Figure 1). We adjusted the weight phenotypes for
age by simple linear regression and standardized the residuals to
z-scores by using the “lm” function in the R (version 4.2.2) software
(Ihaka and Gentleman, 1996). The heavy group consists of the top
10 samples with the highest z-scores after age fitting, while the light
group comprises the bottom 10 samples. They represent groups at
the ends of a continuum in the age-adjusted weight phenotype. For
each tissue, the transcriptomic comparison between the two defined
groups was performed to identify differentially expressed genes.

Principal component analysis for genetic
similarity and pattern identification

To ensure the independence of the samples and to detect any
potential correlations resulting from genetic or environmental
influences, we performed principal component analysis (PCA).
The PCA was executed using the genome-wide complex trait
analysis tool (GCTA64) (Yang et al., 2011), utilizing variant call

FIGURE 1
Flowchart outlining the study design and analytical approach for differential expression gene (DEG) analysis in cattle.
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format (VCF) files obtained from RNA sequencing data of BLO
(Granato et al., 2018). The VCF files were first converted to Plink
format with Plink software for compatibility with the GCTA64 tool.
Subsequent analyses were restricted to autosomal chromosomes to
avoid confounding factors associated with sex chromosomes. The
PCA was computed using the “--pca 21” option to extract the first
21 principal components. The principal components (PC1 and PC2)
were adjusted as covariates in the differential gene expression (DEG)
analysis to mitigate potential confounding effects.

Differential gene expression analysis and
inter-tissue correlation analysis

In the RNA-seq process, the number of reads of each gene was
calculated using the FeatureCount (version 2.0.1) program (Liao
et al., 2014) for the bam file generated after the STAR process (Dobin
et al., 2013). Read counts were converted to counts per million
(CPM), and genes with maximum CPM values less than 1 in the
samples were removed. When specifying the model to be fitted, the
values of PC1 and PC2 were applied as covariates to control for
external factors. Differentially expressed genes (DEGs) were
identified using the limma (version 3.52.4) -voom package (Law
et al., 2014) of R software (Ihaka and Gentleman, 1996), and
10 samples with high z-scores were grouped as cases (= heavy
group), and 10 samples with low z-scores were grouped as controls
(= light group) for comparative analysis. DEGs were identified based
on a p-value < 0.05 and | Log2FC | > 1. In the reference genome ARS-
UCD1.2 obtained with Ensembl’s BioMart tool (https://asia.
ensembl.org/index.html), overlapping analysis was performed
using the Ensembl Gene ID to identify candidate DEGs.

The comprehensive assessment of gene expression correlations
across all tissues was conducted using t-values derived from the
limma-voom package, which was employed in the DEG analysis. To
test the correlation between tissues, we utilized the Pearson
coefficient test. Using the “corrplot (version 0.92)” function in R
package, we distinguished and visualized three primary clusters
through the hierarchical clustering algorithm (hclust).

cis-eQTL analysis

Following the correlation analysis, which identified three
adipose tissues [ABF (n = 342), BFT (n = 195), KIF (n = 160)]
as significant clusters, we proceeded with an eQTL analysis aimed at
uncovering variants that influence the regulatory mechanisms of
gene expression for DEGs within these specified tissues. First, the
previously generated vcf file, which only included SNP calling, was
converted into PLINK format using VCFtools (version 0.1.13)
(Danecek et al., 2011) and PLINK (version 1.90b6.24) (Purcell
et al., 2007). The phenotypic dataset was represented by the TPM
expression levels for each sample across all identified DEGs within
the three examined tissues. Genome-wide efficient mixed model
association (GEMMA) (version 0.98.5) (Zhou and Stephens, 2012)
was utilized to perform association tests between the expression
levels of DEGs and genotypes. Our selection criteria for candidate
cis-eQTL variants entailed choosing SNPs that were not only on the
same chromosome as their corresponding gene but also within a

proximity of 500 Kb to the gene’s transcription start or
polyadenylation site, with an emphasis on those exhibiting a
p-value below 5e-05. It was run on each gene separately to
identify variants with a minimum minor allele frequency
(MAF) of 5%.

Next, we aimed to examine the linkage disequilibrium (LD)
relationships of surrounding SNPs with the candidate variant that
satisfied both the p-value and MAF criteria. To observe the LD
relationships with a larger number of SNPs, we utilized variant data
generated up to the GATK variant calling stage using RNA-seq data.
The vcf file processed through the GATK pipeline was then
converted to PLINK format using VCFtools and PLINK. We
assessed LD relationships within a 250 Kb window on both sides
of the significant SNP of interest and retrieved all reported pairs. The
results were visualized using bar plots to illustrate the LD
relationships between the candidate variant and other SNPs.

Gene set enrichment analysis and
visualization

DAVID v6.8 (https://david.ncifcrf.gov/) tool Field (Huang et al.,
2007) was used for functional annotation and enrichment analysis of
the DEG list. A p-value of 0.05 was used as the criterion for statistical
significance. The gene set of genes reported in the GWAS catalog
was identified using the GENE2FUNC process of the FUMA GWAS
(https://fuma.ctglab.nl/) Field (Watanabe et al., 2017). For both
tools, a p-value of 0.05 was used as the criterion for statistical
significance.

Results and discussion

Experimental design and data quantification

We obtained the RNA-seq data for 22 tissue samples from
32 castrated Hanwoo cattle of different ages and weights (Materials
and Methods) from the same farm managed by the Hanwoo
Research Institute. Of the 32 samples, 3 samples (Sample ID:
192018, 192031, 202012) did not have sequencing data for some
tissues, so the data were generated only with the tissues that had
complete sequencing data (Supplementary Table S2). Statistical data
regarding sequence quality and alignment information have been
compiled and summarized for three adipose tissues in
Supplementary Table S3. The 32 cattle were of different ages and
had different body weights for each age (Supplementary Table S1).
Our data show a high correlation between age and weight, and we
confirmed that age explains a significant portion of the variation in
body weight through the scatter plot (R2 = 0.9075, p-value < 2.2E-16)
(Supplementary Figure S1). Our goal was to detect differentially
expressed genes (DEGs) that affect body weight and strictly control
for other environmental factors. Body weight as a phenotype was
adjusted considering age through simple regression analysis, and
residuals were standardized as the z-score to control for the age
factor (Supplementary Table S1).

In addition, we sought to control the genetic architecture and
external influences on body weight among Hanwoo cattle. To
achieve this, we evaluated the sample independence and potential
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correlations due to genetic or extrinsic factors. The analysis revealed
that the first principal component (PC1) accounted for 7.0% of the
variance in the data, while the second principal component (PC2)
explained 5.6% (Supplementary Figure S2A). Although it seemed to
form a cluster, it was confirmed that samples of similar weight or
similar age were not grouped. We used a scatter plot to examine the
causal or correlational relationship between PC1 and PC2 and the
sample’s age, weight, and z-scores (Supplementary Figure S2B)
(Kahng et al., 1998). All scatter plots showed apparent linear
relationships, but PC1 × months, PC1 × body weights, PC1 ×
z-score, PC2 × months, and PC2 × body weights demonstrated
non-significant correlations with p-values greater than 0.05. The
scatter plot of the PC2 × z-score was considered statistically
significant with a p-value of 0.03, but it exhibited a weak

correlation with an R2 value of 0.16. These results suggest that
the formed clusters are not strongly associated with age or weight,
and there are no genetically related individuals. However, it also
demonstrates the necessity to consider PC1 and PC2 to obtain
robust evidence of genetic mechanisms underlying body weight
regulation.

Analysis of differentially expressed
candidate genes involved in body weight in
each tissue

To carefully detect differential gene expression in relation to
weight, we defined the heavy (case) and light (control) groups

TABLE 1 Differentially expressed genes (DEGs) Top 1 by tissue.

Tissue Gene Gene name Log2FC p-value Function & association

ABF NFATC1 nuclear factor of activated T cells 1 1.107661292 2.05E-04 Estimated glomerular filtration rate in diabetes,
Estimated glomerular filtration rate in diabetes,

Estimated glomerular filtration rate in non-diabetics

ABO C1H3orf52 chromosome 1 C3orf52 homolog −1.22000226 2.26E-04 -

BFT ZNF385A Zinc Finger Protein 385A 1.030168135 2.37E-04 Adipogenesis through 3′-UTR binding and translational
regulation of CEBPA mRNA, Body height, BMI-

adjusted waist circumference

BLO BTBD16 BTB Domain Containing 16 −3.192387309 1.42E-04 Bipolar disorder disease

CEC SCGB1D secretoglobin, family 1D 2.761929305 2.69E-04 -

COL REG3G Regenerating Family Member 3 Gamma 5.174855604 3.47E-04 Regenerating islet-derived protein 3-gamma levels

DUO BTNL9 Butyrophilin Like 9 1.219409464 3.32E-03 Blood protein levels

HEA EFEMP1 EGF Containing Fibulin Extracellular Matrix Protein 1 −1.19589485 1.41E-04 Body height, Body fat distribution, Body weight, Body
mass index

ILE CDCA7 Cell Division Cycle Associated 7 −1.17600901 9.35E-06 MYC-mediated cell transformation and apoptosis

JEJ IL21 Interleukin 21 −2.137673447 2.05E-04 Cytokines with immunomodulatory activity

KID TOPAZ1 Testis And Ovary Specific TOPAZ 1 1.771979303 3.66E-03 Body mass index, Sperm development and sperm cell
division

KIF CD300H CD300H Molecule (Gene/Pseudogene) 3.114638566 2.35E-04 Involved in innate immunity and autoimmune response

LIV CYP1A1 Cytochrome P450 Family 1 Subfamily A Member 1 −1.068010846 1.34E-04 Involved in the metabolism of various endogenous
substrates including fatty acids, steroid hormones and

vitamins

LOM BARX1 BARX Homeobox 1 1.52242117 2.13E-03 Body mass index, Inhibits endoderm Wnt activity

LUN FOSB FosB Proto-Oncogene, AP-1 Transcription Factor
Subunit

−1.71298643 2.74E-03 Coexistence of osteoporosis, colon cancer and obesity

OMA ADAMTSL3 ADAMTS Like 3 1.038905769 4.64E-05 Body fat distribution, Body fat percentage, Abdominal
adipose tissue volumes, Type 2 diabetes, Weight

REC UBD Ubiquitin D −1.929973168 6.09E-4 Inflammation, apoptosis and tumorigenesis,
Adipogenesis and proliferation

RET SLC6A14 Solute Carrier Family 6 Member 14 −1.243818073 9.84E-04 Mutations in this gene are associated with X-linked
obesity

RMP CASQ2 Calsequestrin 2 −1.278916229 1.55E-03 Serves as an internal calcium store in muscle

RUM SH2D1A SH2 Domain Containing 1A 1.240464379 1.13E-04 Inhibitors of transmembrane proteins

SPL OR5E1 Olfactory receptor family 5 subfamily E member 1 −2.866277868 5.28E-03 -

TEN ALB Albumin −3.212922518 1.05E-03 Control of colloidal osmotic pressure in the blood
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which correspond to the top and bottom 10 individuals according
to the age-fitted body weight z-scores, respectively. The
transcriptomic comparison between groups was performed for
each tissue independently while adjusting for the covariates
PC1 and PC2 (Supplementary Table S4). By comparing the
control and case groups in each of the 22 tissues, we found a
maximum of 602 DEGs in the ILE and a minimum of 17 DEGs in
the Tenderloin (TEN) (Supplementary Table S5) (Zhou et al.,
2019). The top 1 genes that were significantly identified in each
tissue, Zinc Finger Protein 385A (ZNF385A), EGF Containing
Fibulin Extracellular Matrix Protein (EFEMP1), Testis And
Ovary Specific TOPAZ 1 (TOPAZ1), Cytochrome P450 Family
1 Subfamily A Member 1 (CYP1A1), BARX Homeobox 1
(BARX1), FosB Proto-Oncogene (FOSB), ADAMTS like 3
(ADAMTSL3), Ubiquitin D (UBD), Solute carrier family
6 member (SLC6A14) are known to be associated with
adipogenesis, adipocyte proliferation, height, body mass index
(BMI), lipid metabolism, weight and obesity-related functions
(Table 1) (Suviolahti et al., 2003; Safran et al., 2010; DuBois
et al., 2012; Welter et al., 2014; Skrypnik et al., 2017; Zhao
et al., 2018; Rask-Andersen et al., 2019; Wang et al., 2020; Xiao
et al., 2020). The genes identified that genes contributing to weight-
related functions are not exclusively expressed in adipose tissue but
also in other tissues such as the heart (HEA), kidney (KID), liver
(LIV), sirloin (LOM), lung (LUN), omasum (OMA), rectum
(REC), and reticulum (RET). This suggests a broader biological
involvement of these genes across various tissue types in the
regulation of body weight.

In addition, 381 genes were differentially expressed in two or more
tissues (Supplementary Table S6). Notably, the RGS2 and the UBD
exhibited differential expression inmultiple tissues. TheRegulator Of G
Protein Signaling 2 (RGS2) showed significant differential expression in
9 tissues (Abomasum (ABO), BLO, Colon (COL), ILE, Sirloin (LOM),
Omasum (OMA), Rectum (REC), Spleen (SPL) and TEN), and the
UBD was differentially expressed in 7 tissues (COL, Jejunum (JEJ),
Liver (LIV), LOM, OMA, REC, Rumen (RUM)). It has been reported
that the loss of RGS2 is advantageous for glucose production but
disadvantageous for glycogen and lipid production, contributing to a
lean phenotype with a lower body weight (Nunn et al., 2011). This has
previously been demonstrated to emphasize the importance of RGS2 in
obesity control and insulin sensitivity because it is involved in
adipocyte differentiation, and impaired adipocyte differentiation can
contribute to a lower body weight phenotype. The downregulation of
the UBD has been reported in previous studies to partially inhibit
adipogenesis of subcutaneous adipocyte precursor cells within pig
muscles and to suppress cell proliferation, indicating its essential
role in the differentiation of adipocyte precursor cells (Zhao et al.,
2018). This suggests that in order to understand the mechanisms by
which differentially expressed genes (DEGs) in non-adipose tissues
influence body weight, additional analyses are also necessary.

Correlation of gene expression patterns
between tissues

To examine the overall relationship of gene expression patterns
across the entire tissue, we generated a correlation plot using the
T-values from the Limma-Voom analysis, representing the expression

differences between the case and control groups (Figure 2). We used a
hierarchical clustering algorithm (hclust) to generate correlation plots
by dividing into three major clusters to view the clustering of tissues
with similar gene expression patterns. The highest positive correlation
coefficient observed (correlation coefficient = 0.58) was between the
Abdominal Fat (ABF) and Back Fat (BFT), and the highest negative
correlation coefficient (=−0.42) was between the OMA and Cecum
(CEC). One of the three clusters was identified to consist exclusively of
adipose tissue, including ABF, BFT and kidney fat (KIF). This result
indicates a similarity in gene expression patterns among adipose
tissues, and we specifically focused on adipose tissue as the
primary tissue for further investigation.

Functional annotation of adipose
tissue DEGs

Figures 3A–C depict the differential expression patterns of all
genes in three adipose tissues (ABF, BFT and KIF) and showcase the
DEGs that were significantly selected in two or more adipose tissues.
Figure 3D depicts the differential expression profiles and related
enrichment analysis of significant DEGs in the three adipose tissues
using the Gene Ontology (GO) (Consortium, 2004), conducted
through the FUMA GWAS (Watanabe et al., 2017). The gene set
enrichment analysis mapped 40 genes to the obesity-related traits
(p-value < 0.05) among the GO terms (Figure 3D).

In the GO analysis of adipose tissue using DAVID (Huang et al.,
2007), the genes were examined separately as upregulated genes and
downregulated genes (Table 2). The downregulated genes, including
those involved in signal transduction, organ or limb morphogenesis,
bone cell differentiation or development, variousmetabolic biosynthetic
processes, and other related biological processes (BP), were enriched
with 41, 24, and 7 significant GO terms in the ABF, BFT, KIF tissues,
respectively. The upregulated genes, primarily involved in metabolism,
fatty acid metabolism, lipid metabolism, glutathione, and other
metabolic processes, were enriched with 18, 3, and 2 significant GO
terms in the ABF, BFT and KIF tissues, respectively. This indicates that
most of these are associated with metabolic processes such as fatty acid
and lipid metabolism and signal transduction.

Expression comparison of fatty acid
metabolism

We discovered through gene set enrichment analysis that many
DEGs are associated with metabolic processes such as fatty acid and
lipid metabolism in adipose tissues. We examined the expression
levels of Fatty acid synthase (FASN) and Stearoyl-CoA desaturase
(SCD), DEGs involved in well-known fatty acid metabolism according
to the literature, in all tissues (Figure 4) (Zhang et al., 2018).
We confirmed that the FASN and SCD are expressed significantly
more in the adipose tissues than in the other tissues. FASN is a
complex homodimeric enzyme that regulates the de novo synthesis of
long-chain fatty acids in mammals (Chakravarty et al., 2004). It
catalyzes the formation of fatty acids with a 16-carbon atom
length from acetyl-CoA and malonyl-CoA (Chakravarty et al.,
2004). The expression product of the FASN is involved in lipid
metabolism, and it is known to participate in fat accumulation and
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fatty acid composition in pigs and cattle (Grzes et al., 2016; Raza et al.,
2018). The SCD functions as an enzyme in mammalian adipocytes,
converting saturated fatty acids into monounsaturated fatty acids
(MUFAs) (Taniguchi et al., 2004). The conversion of saturated fatty
acids to MUFAs by the SCD enzyme has a role in signal transduction,
cell differentiation, and cell apoptosis. It can influence the
development of certain tumor mutations (Dobrzyn and Ntambi,
2004). Considering the various roles of these MUFAs, changes in
SCD activity in mammals can potentially impact key physiological
variables such as differentiation, insulin sensitivity, metabolic rate,
obesity, atherosclerosis, and cancer (Dobrzyn and Ntambi, 2004). The
SCD is an important metabolic control point in weight regulation.
One study identified it as one of the genes exerting the greatest
influence on intramuscular fat content and fatty acid composition in
Angus cattle through a Genome-wide association study (GWAS)
(Dobrzyn and Ntambi, 2004; Ros-Freixedes et al., 2016).

The candidate cis-eQTL variant regulating
the expression level of TRIM31

In the adipose tissues of ABF, BFT, and KIF, expression
quantitative trait loci (eQTL) analysis was conducted on
697 genes identified as differentially expressed, which yielded
three SNPs meeting the significance threshold of p-value < 5e-05
and possessing a minor allele frequency (MAF) greater than 5%
(Supplementary Table S7). The three SNPs that met both the p-value
and MAF criteria were exclusively discovered in the ABF tissue; no
SNPs in the BFT and KIF tissues satisfied these conditions. One SNP
was located within the UBD and emerged as a significant variant
influencing the expression levels of Tripartite Motif Containing 31
(TRIM31) (chr23:29119138, p-value = 8.86e-06, MAF = 19.4%). The
other two SNPs were positioned near theAdenosine Deaminase RNA
Specific (ADAR) and identified as significant variants affecting

FIGURE 2
Correlations and hierarchical clustering between tissues based on the t value representing the difference in expression between the case group
(sample with a high z-score) and the control group (sample with a low z-score). The closer the correlation value is to 1, the higher the correlation.
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the expression of the Tudor Domain Containing 10 (TDRD10) (chr3:
15995172, p-value = 1.31e-05, MAF = 5%; chr3:15995183, p-value =
1.31e-05, MAF = 5%). TRIM31 has been identified as a “Janus-faced”
regulator of innate immune responses, facilitating signal
transduction through target substrate degradation or ubiquitin
modification (Xu et al., 2022). Furthermore, in some studies,

functional impairment (knockout) of TRIM31 has been shown to
significantly increase body weight, fasting blood glucose levels, and
fasting insulin levels induced by a high-fat diet (HFD), suggesting that
reduced expression of TRIM31 can contribute to weight gain (Xu
et al., 2022). Due to the lack of literature supporting the involvement
of TDRD10 in weight regulation, the SNP (chr23:29119138) within

FIGURE 3
Volcano plot of DEGs in adipose tissue [(A) ABF, (B) BFT, (C) KIF]. The X-axis is Log2FC, the Y-axis is -Log10p- value, and the cutoff criterion is
p-value < 0.05, |Log2FC| > 1. Black dots are points that do not satisfy both the p-value and the Log2FC FC criterion, pink dots are points that satisfy only the
Log2FC criterion, purple dots are points that satisfy only the p-value criterion, and red dots are differentially expressed genes (DEGs) that satisfy both
p-value and Log2FC criteria. We displayed the genes associated with obesity-related traits based on the results of (D). (D) Table showing the gene set
reported in the GWAS Catalog based on the results of FUMA GWAS using candidate genes from the three tissues.
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TABLE 2 Significant gene set enrichment analysis in 3 adipose tissue (ABF, BFT, KIF) DEGs.

Tissue Regulation Pathways Term p-value

ABF Downregulated GO-Biological Pathways Positive regulation of mesenchymal cell proliferation 3.07E-05

Mesenchyme migration 1.19E-03

Animal organ morphogenesis 1.62E-03

Proximal/distal pattern formation 2.00E-03

Positive regulation of gene expression 2.29E-03

Embryonic limb morphogenesis 2.86E-03

Positive regulation of canonical Wnt signaling pathway 3.54E-03

Embryonic forelimb morphogenesis 3.93E-03

Positive regulation of smoothened signaling pathway 4.33E-03

Extracellular matrix organization 5.15E-03

Osteoblast differentiation 5.18E-03

Lymphangiogenesis 6.26E-03

Regulation of heart contraction 6.26E-03

Cartilage development 7.25E-03

Chondrocyte differentiation 8.43E-03

Embryonic digestive tract development 8.75E-03

Positive regulation of endothelial cell migration 1.04E-02

Inner ear morphogenesis 1.11E-02

Negative regulation of osteoblast differentiation 1.19E-02

Collagen fibril organization 1.26E-02

Positive regulation of protein kinase B signaling 1.29E-02

Intermediate filament cytoskeleton organization 1.48E-02

Intermediate filament organization 1.84E-02

Oogenesis 1.84E-02

Positive regulation of cell proliferation 2.52E-02

Wnt signaling pathway 2.57E-02

Positive regulation of MAPK cascade 2.74E-02

Lung development 2.87E-02

Positive regulation of vascular endothelial growth factor production 3.08E-02

Ureter maturation 3.28E-02

Vascular smooth muscle contraction 3.28E-02

Signal transduction 3.29E-02

Positive regulation of axonogenesis 3.32E-02

Eye development 4.32E-02

Zymogen activation 4.32E-02

Regulation of Ras protein signal transduction 4.35E-02

Negative regulation of inflammatory response 4.55E-02

Inner ear development 4.58E-02

(Continued on following page)
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TABLE 2 (Continued) Significant gene set enrichment analysis in 3 adipose tissue (ABF, BFT, KIF) DEGs.

Tissue Regulation Pathways Term p-value

Negative regulation of Wnt signaling pathway 4.58E-02

Brain development 4.76E-02

Regulation of heart rate by cardiac conduction 4.85E-02

Upregulated GO-Biological Pathways Glutathione metabolic process 1.80E-05

ATP synthesis coupled electron transport 6.75E-04

Mitochondrial electron transport, NADH to ubiquinone 8.85E-04

Fatty acid biosynthetic process 2.01E-03

Phospholipid biosynthetic process 3.40E-03

Unsaturated fatty acid biosynthetic process 4.54E-03

Mitochondrial respiratory chain complex I assembly 8.27E-03

Response to stilbenoid 1.35E-02

Regulation of phospholipid biosynthetic process 1.35E-02

Response to glucose 1.87E-02

Tryptophan transport 2.03E-02

Proteolysis 3.04E-02

Regulation of cytokine production 3.16E-02

Protein homotetramerization 3.90E-02

Negative regulation by host of viral process 4.01E-02

Glycerol-3-phosphate metabolic process 4.01E-02

Fatty acid elongation, polyunsaturated fatty acid 4.66E-02

Lung lobe morphogenesis 4.66E-02

BFT Downregulated GO-Biological Pathways Protein urmylation 2.25E-02

tRNA wobble position uridine thiolation 2.80E-02

Lung vasculature development 2.80E-02

Axon guidance 4.23E-02

Extracellular matrix organization 4.78E-02

Tyrosine phosphorylation of STAT protein 4.99E-02

Digestive tract morphogenesis 4.99E-02

Upregulated Glutathione metabolic process 3.00E-05

CDP-diacylglycerol biosynthetic process 2.94E-02

Axonemal dynein complex assembly 4.73E-02

KIF Downregulated GO-Biological Pathways Superoxide anion generation 1.93E-06

Extracellular matrix assembly 1.59E-03

Thyroid hormone generation 2.24E-03

Stabilization of membrane potential 3.85E-03

Negative regulation of osteoclast differentiation 4.81E-03

Positive regulation of apoptotic cell clearance 1.10E-02

Regulation of thyroid hormone generation 1.10E-02

(Continued on following page)
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UBD that regulates the expression of TRIM31was selected as the most
prominent candidate cis-eQTL variant associated with weight control.

We sought to determine whether the genotype of the candidate cis-
eQTL variant (chr23:29119138) is associated with the regulation of
TRIM31 expression and body weight control. Samples with the GG
genotype at chr23:29119138 showed lower expression levels of TRIM31
compared to samples carrying the alternative allele A (p-value = 8.86e-
06) (Figure 5A). Upon comparing TRIM31 expression levels between
the heavy and light groups, the light group exhibited a significantly
higher level of TRIM31 expression than the heavy group (Figure 5B).
Although the p-value did not reach statistical significance, visualization
of the raw body weight differences based on the genotypes at chr23:
29119138 showed a trendwhere individuals carrying allele A exhibited a
lower weight distribution (Supplementary Figure S3). These research
findings, while not statistically significant, support the directionality of
weight regulation associated with TRIM31 expression previously
reported in the literature (Luo et al., 2022; Xu et al., 2022). This
suggests that a reduction in TRIM31 expression may contribute to
an increase in body weight, and the variant at chr23:29119138 could
potentially regulate the expression of TRIM31.

However, the candidate cis-eQTL variant is located within the exon
of the UBD gene, which has been reported in mice to be a gene
upregulated by an HFD, and the deficiency ofUBD has been associated
with a reduction in body fat due to increased energy expenditure (Choi
et al., 2015). Given that the TRIM31 gene (but not theUBD) showed the
differential expression between weight groups, the significant
association of the SNP within the UBD gene and the expression

level of TRIM31 may have been attributable to strong linkage
disequilibrium (LD) within this region. To examine this further, an
LD pattern analysis was conducted within a 250 Kb range on either side
of the candidate variant to assess the LD relationship with neighboring
SNPs. The LD analysis revealed a high level of linkage around the
candidate cis-eQTL variant and also confirmed a strong LD (R2 = 1)
with SNPs within the TRIM31 (Figure 5C; Supplementary Figure S4).
These findings suggest that the neighboring SNPs may be co-inherited
with the candidate cis-eQTL variant and could be implicated in gene
expression regulation, even if they are not the direct causative variants.
Moreover, the candidate variant could be correlated with the causal
variant due to close genetic linkage. Consequently, the candidate cis-
eQTL variant may be closely linked to the actual causative variant or
contribute to the modulation of TRIM31 expression. This underscores
the need for further investigation to elucidate the fundamental genetic
mechanisms.

Limitation

The current study’s outcomes are subject to several limitations.
Weight gain over time serves as an important indicator of feed
efficiency and would likely yield better performance in research
outcomes. Additionally, the absence of information on
environmental factors presents a limitation in completely
controlling for external influences. Nevertheless, it is acknowledged
that body weight is significantly influenced by both environmental

TABLE 2 (Continued) Significant gene set enrichment analysis in 3 adipose tissue (ABF, BFT, KIF) DEGs.

Tissue Regulation Pathways Term p-value

Defense response to Gram-positive bacterium 1.38E-02

Proteolysis 1.52E-02

Melatonin biosynthetic process 1.64E-02

Extracellular polysaccharide biosynthetic process 1.64E-02

Positive regulation of hydrogen peroxide biosynthetic process 1.64E-02

Negative regulation of BMP signaling pathway 2.13E-02

Cell adhesion 2.21E-02

Hyaluronan biosynthetic process 2.72E-02

Hydrogen peroxide metabolic process 2.72E-02

Ossification 2.86E-02

Hydrogen peroxide biosynthetic process 3.25E-02

Positive regulation of platelet aggregation 3.25E-02

Response to light stimulus 3.78E-02

Bone trabecula formation 3.78E-02

Respiratory burst 4.31E-02

Positive regulation of phosphatidylinositol 3-kinase signaling 4.70E-02

Embryonic eye morphogenesis 4.84E-02

Upregulated GO-Biological Pathways Regulation of potassium ion transmembrane transport 1.40E-04

Regulation of membrane potential 1.29E-02
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and genetic factors. Particularly in humans, the heritability estimate
for body weight has been reported to be between 0.7 and 0.81, while in
cattle, heritability estimates vary but have been reported to range from
approximately 0.3 to 0.6 (Toshniwal et al., 2008; Russo et al., 2010;
Polizel et al., 2018; Rezende et al., 2022). Recognizing the weight of
genetic contributions, this study meticulously incorporated principal
components (PC1 and PC2) as covariates in the DEG analysis to
mitigate environmental biases, thus sharpening the focus on genetic
correlations with body weight.

The sample size, comprising 32 individuals, is relatively small,
which restricts the ability to detect trans-eQTLs that typically exhibit
smaller effect sizes compared to cis-eQTLs. In both DEG and eQTL
analyses, the p-value significance threshold did not meet the
stringent standards set by FDR adjustment, posing challenges in
identifying influential genes and SNPs. This raises concerns
regarding the incidence of Type I errors. The imperative for
subsequent analyses with augmented datasets is clear, to yield
more precise and dependable outcomes.

FIGURE 4
Boxplot to confirm the expression level of representative genes (FASN, SCD) related to fat metabolism. (A) The expression pattern of the FASN across
all tissues. (B) Boxplot showing the differential expression pattern of FASN in ABF tissue based on groups (z-scores of top and bottom 10 samples). (C)
Expression pattern of the SCD across all tissues. (D) Boxplot showing the differential expression pattern of the SCD gene in ABF tissue based on groups.
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Despite these issues, the study leverages the convergence of DEG
and eQTL analyses to enhance the reliability of the genetic associations
identified. The utilization of RNA-seq data for eQTL analysis is a novel
approach for Hanwoo cattle research, marking a significant
contribution that paves the way for future inquiry. This research
underscores the importance of continuous investigation, bolstered
by broader datasets, to reinforce the preliminary findings presented.

Conclusion

We analyzed the gene expression data from multiple tissues to
identify genes and biological mechanisms at the transcriptome level
that influence the weight of Hanwoo cattle. Our study has uncovered
transcriptional changes associated with weight in previously
overlooked tissues. We have confirmed that the candidate genes
we discovered are associated with biological pathways involving
various metabolic processes, such as lipid metabolism,
adipogenesis, and adipocyte proliferation. Using RNA-seq data in
expression quantitative trait loci (eQTL) studies enabled us to identify
allele-specific gene expression easily. By integrating eQTL and
differentially expressed genes (DEGs) analysis results, we have
identified genomic regions that may regulate the expression of
candidate genes, such as TRIM31 and provided insights into their
association with the expression levels. Of particular interest, we found
that the variant regulating the expression of TRIM31 is located within
the UBD, which is known to regulate adipogenesis. The findings
suggest that further analysis is necessary to fine-map causal cis-eQTL
variants regulating TRIM31. Moreover, it emphasizes the necessity to
broaden the focus and understanding of research on various tissues
that can influence the weight of Hanwoo cattle and other livestock.
Our study may represent a comprehensive genomic and
transcriptomic portrait of livestock body weight by utilizing the
RNA-seq data of many tissues and progress toward understanding
the role of eQTLs in determining livestock phenotypic diversity.
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