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Ulcerative colitis (UC) is an inflammatory bowel disease, and is characterized by
the diffuse inflammation and ulceration in the colon and rectum mucosa, even
extending to the caecum. Epigenetic modifications, including DNA
methylations, histone modifications and non-coding RNAs, are implicated in
the differentiation, maturation, and functional modulation of multiple immune
and non-immune cell types, and are influenced and altered in various chronic
inflammatory diseases, including UC. Here we review the relevant studies
revealing the differential epigenetic features in UC, and summarize the
current knowledge about the immunopathogenesis of UC through epigenetic
regulation and inflammatory signaling networks, regarding DNA methylation,
histone modification, miRNAs and lncRNAs. We also discuss the epigenetic-
associated therapeutic strategies for the alleviation and treatment of UC, which
will provide insights to intervene in the immunopathological process of UC in
view of epigenetic regulation.
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Background

Ulcerative colitis (UC) and Crohn’s disease (CD) are the major forms of inflammatory
bowel disease (IBD). UC is considered as an immune-related inflammatory disease with a
noticeable prevalence in developed countries (>0.3%) (Mulder et al., 2014; Ng et al., 2017).
UC is mainly characterized by the lesion at the mucosa and submucosa of the colon and
rectum, and patients subjected to UC have a higher risk of developing into colorectal
cancer (CRC) owing to the long-time chronic inflammation (Ungaro et al., 2017;
Stellingwerf et al., 2019).

Many studies about in vitro and in vivo experiments and also clinical data have
contributed to a better knowledge of the mechanisms of UC. UC is majorly considered
to be driven by the collaboration of the genetic, environmental and dysfunctional
immune-mediated factors, as well as the disorder of host-microbiota homoeostasis
(Porter et al., 2020). Accordingly, the incidence rate of UC is closely related to
socioeconomic situation, which is potentially attributed to the radical change of
environmental factors and lifestyle (Ruiz-Casas et al., 2021). In recent years,
numerous studies based on multi-omics analyses have highlighted the relation
between microbial dysbiosis and the status of UC, and identified potential targets,
such as Bacteroides vulgatus proteases, for treating UC (Schirmer et al., 2018; Shen et al.,
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2018; Lloyd-Price et al., 2019; Mills et al., 2022). An endoscopic
study demonstrated that intestinal bacterial biofilms are present
in about 57% of patients with irritable bowel syndrome and 34%
of patients with UC, underlying an endoscopic feature with
abnormal bile acid metabolism and bacterial dysbiosis
(Baumgartner et al., 2021). Therefore, many researches uphold
the apply of antibiotics and relevant interventions to treat and
prevent IBD, such as the application of prebiotics, probiotics,
antibiotics, gene manipulation and fecal microbiota
transplantation approaches, which has been previously
reviewed (Glassner et al., 2020).

The influences of immune cells, cytokines and related
inflammatory signaling pathways have been also reported in
the pathophysiology of UC. For example, neutrophils have
been reported to facilitate the inflammatory cell death, thus
potentiating and amplifying the pro-inflammatory
environment in UC (Angelidou et al., 2018; Dinallo et al.,
2019). The pro-inflammatory cytokines produced by
neutrophils, monocytes and macrophages, including IL-6,
IL-1β, and TNF-α, together create an inflammatory milieu
and probably promote a pathologic adaptive immune
response in UC (Friedrich et al., 2019; Na et al., 2019).
Besides, Th2 and Th17 responses play essential roles in the
immunopathology of UC, mediated by IL-4, IL-5, IL-13 and
IL-23 (Fuss et al., 2004; Kobayashi et al., 2008). Innate
lymphoid cells (ILCs) have also been reported to mediate
the inflammatory responses mediated by IL-23 in UC
(Hepworth et al., 2013). Another study has analyzed the
circulating T cells that were isolated from patients with UC
and CD, and identified that transcriptional signatures of CD8+

T cells about the signaling triggered by IL-7 and TCR ligation
are related to the aggressiveness of disease course (Lee et al.,
2011). Apart from those immune cell types and cytokines
mentioned above, multiple cytokines secreted by antigen
presenting cells, effector and regulatory T cells, intestinal
epithelial cells (IECs) would act as promising targets for the
treatment of UC, including anti-TNF and anti-IL-12 therapies,
as well as tofacitinib as cytokine signaling blockers. The
relevant studies have been reviewed previously (Neurath,
2014).

Of late, data about the epigenetic, transcriptomic, post-
transcriptomic, proteomic and metabolomic modifications in
IBD have been accumulated, which contribute to illustrating the
complexity of IBD pathogenesis and immunopathology, and
also identifying more therapeutic targets for interventions and
treatments (Norouzinia et al., 2017). Among these, epigenetic
mechanisms that modulate gene expression via different kinds
of modifications of DNA, histones and chromatin, have been
unraveled to play significant roles in the development of diverse
inflammatory diseases including UC (Toyota et al., 2002; Koch
et al., 2013; Ballestar and Li, 2017). In this review, we fully
summarized currently available studies with regards to the
mechanisms of the epigenetic regulation in the
immunopathology of UC. We also discuss the epigenetic-
associated therapeutic strategies for the alleviation and
treatment of UC, which will provide insights to intervene in
the pathological process of UC related to epigenetic
mechanisms.

Epigenetic modifications

DNA methylation

DNA methylation is a basic mechanism of long-term epigenetic
modulations to regulate the expression of genes. Its dysregulation
leads to abnormal cell function and phenotypes, and in turn, results
in the development of complex diseases.

Epigenome-wide association study (EWAS) is a method to
detect genome-wide epigenetic variants (especially DNA
methylation at CpGs), so that to find the differences statistically
associated with phenotypes of interest (Campagna et al., 2021).
Novel candidate risk loci have been discovered through three-layer
EWAS using intestinal biopsies of UC, some of which were
functionally involved in the inflammatory responses, including
the serine protease inhibitor SPINK4, the complement factor CFI,
and the adhesion molecule THY1 (Hasler et al., 2012).

Genome-wide DNA bisulfite sequencing of mucosal biopsies
from treatment-naïve patients with UC and healthy counterparts is
used to evaluate the relation between DNAmethylation patterns and
gene expression levels in UC. Accordingly, hyper-methylation is
observed in the genes related to homeostasis and defense, while
hypo-methylation in the genes involved in immune responses, such
as chemokines and interleukins (Taman et al., 2018). Another study
has isolated IECs of the whole colonic biopsies from UC patients,
and generated gene expression and genome-wide DNA methylation
signatures of the inflamed and matched non-inflamed regions in the
colon. Identification of differential methylation patterns through
integrative analysis revealed four key genes that inversely correlated
between gene expression and methylation state: ROR1, RARB,
GXYLT2, and FOXA2 (Barnicle et al., 2017), emphasizing the
importance of colonic IECs and these four genes in the
pathogenesis of UC as potential therapeutic targets. Furthermore,
the abnormal methylation of tubulin protein TUBB6 was identified
as a marker of the progression of UC to invasive diseases, via a whole
epigenome analysis of samples of normal, disease-related and
dysplasia/neoplasia mucosa in UC patients (Beggs et al., 2018).
The methylation level of ESR1, TUSC3 and PAR2 genes were
significantly higher in patients with UC (Arasaradnam et al.,
2010; Gould et al., 2016). These previous data suggest that the
changes in DNA methylation and their influence on the
transcriptome might represent the mechanisms of the
immunopathology of UC, less depending on genetic variation. As
to the methylation features of the blood, a relevant study has found
that CXCL5, CXCL14, IL4R, IL17C and GATA3 were markedly
hypermethylated in the peripheral blood of UC patients
compared to those of healthy counterparts (Karatzas et al., 2014).

The chronic inflammatory state exposes patients with UC to
dangerous signals causing potential pathogenicity and
tumorigenicity, and thus UC elevates the risk to develop CRC
(Eaden et al., 2001). DNA methyltransferase (DNMT) is elevated
in non-neoplastic mucosa and serves as an early event in UC-CRC
(Foran et al., 2010; Fujii et al., 2010), implying the crucial roles of
DNA methylation in UC-related tumorigenicity. A previous study
detected the methylation level of multiple genes in the mucosa from
UC-CRC tumors and non-neoplastic colons, and identified the
methylated promoters of MINT1, RUNX3 and COX2 as potential
signatures of the occurrence of CRC in UC patients (Garrity-Park
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et al., 2010). Moreover, the overexpression of death-associated
protein kinase (DAPK), and its inactivation mediated by the
hypermethylation of DAPK promoter region result in the
accumulation of genomically-damaged epithelial cells in the
inflamed colonic epithelium in UC patients, which may initiate
the development of UC-related carcinoma (Kuester et al., 2010).

As was stated above, DNA hyper-methylation is proved to play
essential roles in the immune dysregulation related with UC.
Nevertheless, the function of DNA hypo-methylation in UC is
generally overlooked. A relevant study has performed whole
transcriptome RNA-sequencing and genome-wide DNA bisulfite-
sequencing of mucosal biopsies from patients with severe and mild
UC, and found that DNA hypo-methylation of the anti-
inflammatory genes is observable in severe UC, including IL10,
SIGLEC5, CD86, CLMP, NLRP3 and NLRC4 (Taman et al., 2021).
DNA hypo-methylation of gene Zbtb7b, referred to as the Th-
inducing POZ-Kruppel factor (Th-POK), could activate the
maturation of CD4+ T cells and repress the differentiation of
double-positive T cells, leading to the secretion of inflammatory
cytokines and thus causing colonic inflammation in UC (Xu et al.,
2022a). Moreover, DNA methylation is counteracted by the
demethylation process catalyzed by TET enzymes, which mediate
a series of oxidation reactions and convert methylated 5-
methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), 5-
formylcytosine (5fC) and sequentially 5-carboxylcytosine (5caC)
(Wu and Zhang, 2017). A recent study has analyzed colon tissue
samples from patients with UC and CRC as well as healthy
counterparts, and corroborated that the expression of TET2 and
5hmC levels decrease in those samples from patients with UC or
CRC (El-Harakeh et al., 2022) (Figure 1).

Histone modification

Histone modifications, such as histone acetylation, methylation
and ubiquitination, are able to improve or inhibit gene transcription,
and serve as important factors that modulate immune responses
during the immunopathogenesis of inflammatory diseases (Lin et al.,
2022).

Histone acetylation

H3K27 acetylation is considered to be positively correlated with
the increased transcriptional activity at gene promoter regions and
enhancer elements (Shvedunova and Akhtar, 2022). A whole-
transcriptome profiling has indicated the elevation of
inflammatory, metabolic, adhesion and oncogenesis pathways in
UC-derived compared to non-IBD-derived epithelial organoids,
demonstrating increased expression and H3K27 acetylation
(H3K27ac) of LYZ, S100P and NPSR1 in both UC and colitis-
associated colon cancer (Sarvestani et al., 2018). The expression level
of ornithine decarboxylase ODC is elevated in human colonic
macrophages from UC, CD, colitis-associated dysplasia and
colitis-associated colon cancer (Singh et al., 2018). An increased
level of H3K9 acetylation (H3K9ac) was manifest in tumor
macrophages from OdcΔmye mice, further revealing that
macrophage ODC could regulate histone modifications and thus
augment epithelial injury-associated colitis and colon cancer by
damaging the M1 responses (Singh et al., 2018). Furthermore, the
low expression of lysine acetyltransferase KAT2B was found in the
inflamed colons from UC and CD compared with healthy

FIGURE 1
DNA methylation and demethylation regulation in UC. DNA methylation is mediated by DNMT, and demethylation is catalyzed by TET enzymes.
DNMT is generally upregulated, while the expression of TET2 and the level of 5 hmC are downregulated in UC. According to diverse clinical samples and
analytic tools, genes related to homeostasis and defense are found featured by DNAmethylation, and genes involved in inflammatory immune responses
by DNA demethylation in UC.
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counterparts. KAT2B knockdown inhibited the occupancy of
KAT2B and thereby H4K5 acetylation (H4K5ac) at IL-10
promoter regions, resulting in the transcriptional silencing of the
anti-inflammatory cytokine IL-10 in the inflamed IBD tissues (Bai
et al., 2016).

Histone deacetylases (HDACs) are the important enzyme
regulating the level of histone acetylation (Haberland et al.,
2009). A markedly lower level of histone H3 acetylation was
observed in the epithelium of UC patients compared to those
from healthy controls (Li et al., 2020). This study also carried out
gene set enrichment analysis (GSEA) and found entinostat (MS-
275) to be a promising drug targeting UC, which is a specific
inhibitor of HDAC1/3. And the inhibition of vitamin D receptor
(VDR) significantly restrained the protective ability of MS-275
through interacting with NF-κB p65 and regulating apoptosis,
downstream expression of inflammatory cytokines, as well as
epithelial barrier function (Li et al., 2020).

Histone methylation

A study using the mouse model of DSS-induced colitis revealed
that the inhibition of histone H4K20 methyltransferase
SETD8 promoted the expression of p62, elevated the production
of inflammatory molecules, and thereby affected the progression of
IBD in patients (Chen et al., 2021a). It was reported that protein
arginine methyltransferase PRMT2-mediated H3R8me2a
methylation was accountable for the inhibition of SOCS3, and
thus suppressed the ubiquitination and degradation of protein
TRAF5 mediated by SOCS3. The elevated expression of
TRAF5 and the downstream NF-κB/MAPK activation mediated
by TRAF5 subsequently promoted the inflammatory state of colitis
(Li et al., 2022). Accordingly, elevated expression of PRMT2 was
observed in the inflamed tissues of patients from UC (Krzystek-
Korpacka et al., 2020), indicating the positive correlation between
PRMT2 expression and clinical disease severity of UC. Lonicerin
targets histonemethyltransferase EZH2whichmediates the decrease
of the gene repressive mark H3K27 tri-methylation (H3K27me3) on
the promoter of Atg5, facilitates the expression of ATG5 protein,
prevents the activation of NLRP3 inflammasome, and subsequently
alleviates DSS-induced UC (Lv et al., 2021). Another study also
demonstrated the role of EZH2 in UC. The inhibition of CCCTC
binding factor CTCF prevented the progression of UC by repressing
H3K27me3 modification via the deficiency of EZH2 in the IGFBP5
promoter (Gu et al., 2023). A recent study has found that
JMJD3 improves the immune dysfunction of intestinal mucosa
by influencing the demethylation of histone H3K27me3, which
inhibits the production of inflammatory molecules and thus
regulates the differentiation of Th17/Treg cells for the alleviation
of inflammation in the mice with experimentally DSS-induced acute
UC (Leng et al., 2022).

Other kinds of histone modification

A current study performed epigenetic profiling by time-of-flight
(EpiTOF) of the mononuclear cells in the peripheral blood from
38 patients of UC, 45 patients of CD and 11 healthy controls, and

revealed massive heterogeneities in comprehensive histone
modifications across multiple types of immune cells (Bai et al.,
2023). The increase of several kinds of histone acetylation was
observed in a subtype of CD56-bright natural killer (NK) cells
from IBD patients. The deficiency of cleaved H3T22 was
observed in CD34+ monocytes from IBD patients, implying their
function to be epigenetically primed for macrophage differentiation
(Bai et al., 2023). This study opens a new direction to better
exploring the characteristics and epigenetic heterogeneity of
global histone modifications in the pathology of UC, by using
more high-resolution epigenomic tools, outweighing the
traditional ChIP-seq methods (Figure 2).

MicroRNAs

Non-coding RNAs (ncRNAs) play regulatory roles in shaping
cellular activity and multiple cellular processes (Slack and
Chinnaiyan, 2019). MicroRNAs (miRNAs) are non-coding single-
stranded small RNAs approximately 17–25 nucleotides in length,
which serve as key mediators of gene expression in multiple diseases
including UC (Schaefer et al., 2015). miRNAs regulate UC mainly
through shaping the function of immune cells, affecting the IEC
barrier, and regulating the homeostasis between the host and gut
microbiota.

miR-141–3p is remarkably upregulated in the IECs of the mice
model of UC and might affect the infiltration of inflammatory cells
by targeting the chemokines CXCL9 or CXCL16 (Lee et al., 2015). It
was also reported that, cycloastragenol suppressed the expression of
SphK, MIP-1α, NF-κB, TNF-α, BAX, and cleaved caspase-3 in the
UC rat model, associated with the overexpression of miR-143 and
BCL2 (Bagalagel et al., 2022). Consequently, cycloastragenol could
protect against UC by regulating SphK/MIP-1α/miR-143 axis, hence
suppressing the inflammation and apoptosis-related signals
(Bagalagel et al., 2022). miR-24 has been reported to be
specifically upregulated in the colonic biopsies from patients with
active UC, down-regulating the mRNA and protein expression of
the tight junction–associated protein Cingulin and thus impairing
the intestinal epithelial barrier formation (Soroosh et al., 2019).
miR-223 is increased in patients with active UC and may act as a
promising signature reflecting diseasse severity (Neudecker et al.,
2017). However, another study has reported that myeloid-derived
miR-223 inhibits the release of IL-1β by preventing the activation of
NLRP3 to alleviate experimental colitis (Zhou et al., 2015),
suggesting that miR-223 may have complex functions in UC.
miR-31 was reported to be elevated in the colon samples from
patients with UC and CD, reducing the inflammatory responses in
the epithelial cells by repressing the expression of inflammatory
cytokine receptors Il7R and Il17RA, and also the signaling protein
GP130 (Tian et al., 2019). miR-182-5p was reported to be a
microRNA associated with the progression of colon cancer (Yu
et al., 2020), and the inhibition of miR-182-5p could protect against
UC by inhibiting HuR-mediated autophagy (Xu et al., 2022b).
Another study has reported that high expression of miR-182-5p
and SMARCA5 as well as low expression of DNA methyltransferase
DNMT3A are tested in patients with UC (Xu et al., 2022c).
Specifically, miR-182-5p could repress the Wnt/β-catenin
signaling pathway via the methylation of SMARCA5 mediated by
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DNMT3A, thereby exacerbating UC (Xu et al., 2022c). miR-222-
3p was reported to be elevated in the colons from patients with
UC and CRC, and the inhibition of miR-222-3p in IECs alleviated
the oxidative impairment by targeting BRG1 to activate Nrf2/
HO-1 signaling (Wang et al., 2023). miR-214 was proved to be
associated with the development of UC and could promote the
inflammation, whose deficiency improved the severity of colitis
(Liu et al., 2019). And STAT3 was identified as the transcription
factor of miR-214 (Liu et al., 2019). A sequential study revealed
that ginsenoside Rh2 may function as a kind of treatment of UC
by downregulating the level of STAT3/miR-214 (Chen et al.,
2021b).

The miR-378a-3p was reported to locate at the first intron of
PPARGC1B and was differentially regulated in the colonic mucosa of
patients with UC (Wu et al., 2008). miR-375-3p was downregulated
in the colonic mucosa of patients with UC and CD, and miR-375-
3p-mediated upregulation of TLR4 could activate NF-κB signaling
and thereby elevate the production of pro-inflammatory molecules
(Wu et al., 2019). miR-199a-5p showed significant upregulation in
the blood samples from UC patients compared with that of healthy
counterparts (Paraskevi et al., 2012). The decreased expression of
miR-195-5p could increase the expression of p65, SMAD7, and AP-
1, probably explaining the steroid resistance mechanisms in a part of
patients with UC (Chen et al., 2015). JAK/STAT signaling pathway
was found to be associated to the signaling transduction of plenty of
cytokines during the development and immunopathogenesis of UC,
andmiR-124 could modulate the expression of STAT3 in the colonic
samples of children with active UC (Li et al., 2010; Koukos et al.,
2013).

A recent study has depicted the differential expressed miRNAs
and mRNAs in the colonic mucosa of UC patients through
bioinformatic analyses. They further validated that miR-200a,
miR-141, and their target genes, including IRS1, HGF, SELE, and

PLEK, were differentially expressed in UC, identifying these genes as
potential biomarkers for targeting UC (Wang et al., 2021). The high-
fat diet in the mouse model could promote the release of exosomes
with multiple pro-inflammatory factors, including miR-155, from
visceral adipose into the intestine to facilitate macrophage
M1 polarization and thus exacerbate colitis (Wei et al., 2020).
Furthermore, the circRNAs–miRNAs network also plays an
essential role in the regulation of UC. hsa_circ_0001021 was
reduced and significantly associated with disease severity in UC
patients. hsa_circ_0001021 could protect against UC, which
influenced the IEC barrier functions by sponging miR-224-5p to
upregulate SMAD4 expression (Li et al., 2021). Apart from those
miRNAs mentioned above, several miRNAs were also reported to be
differentially expressed: miR-16-5p, miR-19a-3p, miR-21-5p, miR-
28-5p, miR-29a-3p, miR-30e-5p, miR-31-5p, miR-126-3p, miR-
146a-5p, miR-151a-5p, miR-155-5p, and miR-362-3p were
upregulated, while miR-192-5p was downregulated in biopsies or
blood samples of UC compared to those of healthy counterparts
(Takagi et al., 2010; Schaefer et al., 2015; Yarani et al., 2022).

LncRNAs

Long non-coding RNAs (lncRNAs) are known as transcripts
longer than 200 nucleotides without protein-coding capacity
(Statello et al., 2021). LncRNAs are able to bind and interact
with DNA, RNA or protein, and epigenetically regulate gene
expression majorly at the transcriptional and post-transcriptional
levels, through the regulation of transcription, mRNA stability,
protein translation and subcellular location, which have been
reported to play essential roles in different biological processes
involved in immune responses and disease development (Statello
et al., 2021).

FIGURE 2
Histone modifications and regulatory signaling pathways in UC. Histone K5, K9, K27 acetylation, K2, K27, R8 methylation and cleaved H3 Thr22 are
observed to regulate the expression of multiple inflammatory genes and the signaling pathways in UC patients or DSS-induced experimental UC model,
thereby resulting in the injury of colonic epithelium and immune dysfunction.
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LncRNA CDKN2B-AS1 is commonly decreased in patients with
UC. Forming linear and circularized RNA transcripts, the
downregulation of CDKN2B-AS1 causes elevated barrier integrity
in the colon by inhibiting the expression of Claudin-2 (Rankin et al.,
2019).

lncRNA H19 and miR-675-5p was upregulated while VDR was
downregulated in samples of UC patients compared to those of
healthy counterparts. The overexpression of H19 inhibited the
expression of tight junction proteins and VDR in vitro, mediated
by miR-675-5p targeting the 3′UTR of VDR mRNA (Chen et al.,
2016). A previous study has examined the differential expression of
lncRNAs in UC patients, and identified that the lncRNA IFNG-AS1
was related to the susceptibility loci SNP rs7134599 of IBD, and
could positively regulate the expression of inflammatory cytokine
IFNG by CD4+ T cells (Padua et al., 2016). By detecting the mRNA
expression of various lncRNAs in the tissues and plasma samples
from patients with UC and CD, a study found that LINC01272 and
KIF9-AS1 were considerably upregulated in tissues and plasma
samples from IBD patients compared to those from healthy
counterparts, whereas the expression of DIO3OS were markedly
downregulated (Wang et al., 2018). This study suggested that
LINC01272, KIF9-AS1 and DIO3OS might serve as promising
diagnostic signatures for UC and CD. Another study identified
329 upregulated and 126 downregulated lncRNAs in the tissues of
active UC compared with those of healthy controls, among which
BC012900, AK001903, and AK023330 were the most significantly
upregulated and BC029135, CDKN2B-AS1, and BC062296 were the
most downregulated transcripts (Wu et al., 2016). Besides, the
overexpression of BC012900 could repress proliferation and
facilitate apoptosis in the epithelium (Wu et al., 2016), implying
its role in elevating intestinal inflammation. Lnc-UC is a colitis-
associated cycling lnRNA uncovered in mice and humans (Wang
et al., 2020). It is induced by NF-κB signaling pathway in the colitis,
which can increase the transcription of Rev-erbα for the alteration of
circadian gene expression. Lnc-UC physically interacts with
Cbx1 protein to inhibit its function in gene silencing via
H3K9me3, thus promoting the transcription of Rev-erbα and
linking circadian clock to colitis (Wang et al., 2020).

A study has demonstrated that multiple immune-associated
pathways were implicated in UC, especially those involved in
innate immunity, via GSEA of samples from patients with active
UC and heathy counterparts (Xu et al., 2022d). Comprehensive
bioinformatics analysis and in vivo validation using the mouse
model of colitis identified IL1B, CXCL1, MMP1 and MMP10 as
markers of UC. Moreover, they predicted a competing endogenous
RNA (ceRNA) network of the lncRNA XIST-miR-9-5p/miR-129-
5p/miR-340-5p-NF-κB axis to regulate the expression of NF-κB (Xu
et al., 2022d), thus offering new insights for the combinational
therapies of UC. Lnc-ITSN1-2 could serve as a ceRNA to sponge
miR-125a, thus promoting the expression of IL-23R, promoting
CD4+ T cell responses and increasing the inflammatory cytokine
profiles of UC (Nie and Zhao, 2020). A recent study uncovered UC-
related lncRNAs, including ZFAS1, MIR4435-2HG, Pvt1, and IL6-
AS1, probably regulated by upstream differentially methylated
regions (DMRs). And they further identified genes implicated in
the inflammatory immune responses downstream of DMR-
modulated lncRNAs, including CCL18, SERPINB1, and SLC15A4
(Fenton et al., 2023). Therefore, the interplay between the expression

of lncRNAs in UC and the regulation of DNA methylation may
enhance our knowledge of the immunopathogenesis in UC.

Epigenetics-associated therapeutic
strategies of UC

There have been various novel therapeutic approaches and
drugs for the manipulation and treatment of UC, such as JAK
inhibitors (tofacitinib, upadacitinib, filgotinib, TD-1473),
phosphodiesterase inhibitors (apremilast), sphingosine receptor
modulators (fingolimod, ozanimod and etrasimod), anti-adhesion
molecules (natalizumab, vedolizumab, etrolizumab and
ontamalimab) and anti-interleukin antibodies (ustekinumab
targeting IL-12 and IL-23, mirikizumab targeting IL-23) (Hirten
and Sands, 2021). Besides, as an important transcription factor
responsible for the control of cellular defense, Nrf2 regulates the
progression of UC through multiple mechanisms, whose expression
is also regulated by epigenetic modifications (Peng et al., 2023).
There have been many natural compounds and synthetic chemicals
regulating the function of Nrf2 on UC, and novel drugs need to be
developed to potentiate the defensive effects of Nrf2 (Peng et al.,
2023).

miRNAs that play essential roles in the regulation of signaling
transduction pathways during the development of UC have been the
promising therapeutic targets. Obefazimond (ABX464) has been
originally used as an orally-administered small molecule drug anti-
human immunodeficiency virus (HIV) infection (Campos et al.,
2015). Recently, it seemed to be safe and well-tolerated in phase II
placebo-controlled induction trials to treat patients with moderate-
to-severe UC (Vermeire et al., 2021; Vermeire et al., 2022; Vermeire
et al., 2023), showing a great promise in the therapeutic application.
Obefazimond forms the interaction with the cap binding complex,
allowing for the enhanced selective splicing of miR-124 (an anti-
inflammatory microRNA mentioned above), resulting in a cascade
downregulation of pro-inflammatory cytokines and chemokines
(Vermeire et al., 2021; Vermeire et al., 2023).

As was mentioned above, many kinds of small molecules could
be promising drugs for therapeutic applications of UC, such as
ginsenoside Rh2 as an STAT3 inhibitor, MS-275 as an HDAC
inhibitor, lonicerin as an inhibitor of histone methyltransferase
EZH2, and cycloastragenol as an anti-inflammatory molecule,
whose effect have been validated in mice or rat models. Efforts
should be made to develop novel treatment modalities and
approaches, so that the clinical applications of these small
molecules regulating epigenetic events should be further
evaluated. Besides, the identification of novel biomarkers based
on epigenetic studies will help monitor disease activity and
ultimately lead to advances in the treatment of patients with UC
(Figure 3).

Future perspectives

It has been widely studied about the role of miRNAs as
diagnostic and therapeutic targets recently. miRNA-based
therapeutic strategies have offered a novel perspective for the
futural intervention of patients suffered from IBD
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(Aggeletopoulou et al., 2023). However, there are many challenges in
the development and clinical application of miRNA-based drugs.
Specifically, the high specificity, efficiency, off-target side effect, and
safety when delivered to the inflamed regions remain major
concerns, which can collectively influence many downstream
genes and relevant signaling pathways. Accurate and efficient
delivery of the specific miRNAs to the target cells or tissue
regions will contribute to eliminate the side effects and promote
therapeutic effects in vivo. Therefore, the delivery strategy for
miRNAs is also needed to be concerned.

The discovery of the cytosine derivatives, i.e., 5hmC, 5fC and
5caC, strongly expands our knowledge related to the modulation of
gene expression. The specific roles they might play in the regulation
of gene expression need to be further investigated. Due to the fact
that epigenetic modifications are reversible, we can potentially
reverse the relevant disease processes by targeting epigenetic
events to develop therapeutic approaches in the future. Moreover,
the interrelationship of different kinds of epigenetic regulation
should be explored to better study the effect of epigenetics on the
immunopathogenesis of UC.

Despite of the regulatory mechanisms we summarized in the
current review, there are still additional aspects that should be
considered respecting the instability of epigenetic mechanisms.
Attention should be paid to the differential epigenetics
potentially caused by the specific factors, such as ethnicity, age,
sex, lifestyle, comorbidity, environment and treatment. The impact
caused by these factors is gaining importance in terms of their
influence on the epigenetic signatures, the outcome, disease
progression, and response to UC treatments, which should
therefore be considered when designing relevant studies and
developing therapeutic strategies. The development of novel,
cutting-edge research tools and methods for epigenetic studies
allows for the possibility to identify specific patterns of DNA and

histone modifications, chromatin alterations, as well as non-coding
RNAs with clinical value in the treatment of UC.
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FIGURE 3
Small molecules potentially targeting epigenetic pathways for the treatment of UC. MS-275 inhibits the deacetylation of VDR promoter and thereby
activates VDR, which directly interacts with p65 and affects downstream expression of NF-κB-related inflammatory cytokines, cellular apoptosis and
epithelial barrier function. Lonicerin can be considered as an anti-inflammatory epigenetic agent that targets histone methyltransferase EZH2 mediating
the decrease of the gene repressive mark H3K27me3 on the promoter of Atg5 and inducing the expression of ATG5, and inhibits the activation of
NLRP3 inflammasome. Ginsenoside Rh2may function as a kind of treatment of UC by inhibiting the activation of STAT3/miR-214/PTEN. Cycloastragenol
treatment upregulates the expression of SphK, MIP-1α, BAX, NK-κB and TNF-α, while downregulates the expression of BCL2 and miR-143. These small
molecules may serve as potential agents alleviating inflammation and protecting against colitis in UC.
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