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Background: The relationship between genotype and phenotype is governed by
numerous genetic interactions (GIs), and themapping of GI networks is of interest
for two main reasons: 1) By modelling biological robustness, GIs provide a
powerful opportunity to infer compensatory biological mechanisms via the
identification of functional relationships between genes, which is of interest for
biological discovery and translational research. Biological systems have evolved to
compensate for genetic (i.e., variations and mutations) and environmental
(i.e., drug efficacy) perturbations by exploiting compensatory relationships
between genes, pathways and biological processes; 2) GI facilitates the
identification of the direction (alleviating or aggravating interactions) and
magnitude of epistatic interactions that influence the phenotypic outcome.
The generation of GIs for human diseases is impossible using experimental
biology approaches such as systematic deletion analysis. Moreover, the
generation of disease-specific GIs has never been undertaken in humans.

Methods: We used our Indian schizophrenia case-control (case-816, controls-
900) genetic dataset to implement the workflow. Standard GWAS sample quality
control procedure was followed. We used the imputed genetic data to increase
the SNP coverage to analyse epistatic interactions across the genome
comprehensively. Using the odds ratio (OR), we identified the GIs that increase
or decrease the risk of a disease phenotype. The SNP-based epistatic results were
transformed into gene-based epistatic results.

Results: We have developed a novel approach by conducting gene-based
statistical epistatic analysis using an Indian schizophrenia case-control genetic
dataset and transforming these results to infer GIs that increase the risk of
schizophrenia. There were ~9.5 million GIs with a p-value ≤ 1 × 10−5.
Approximately 4.8 million GIs showed an increased risk (OR > 1.0), while
~4.75 million GIs had a decreased risk (OR <1.0) for schizophrenia.

Conclusion: Unlike model organisms, this approach is specifically viable in
humans due to the availability of abundant disease-specific genome-wide
genotype datasets. The study exclusively identified brain/nervous system-
related processes, affirming the findings. This computational approach fills a
critical gap by generating practically non-existent heritable disease-specific
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human GIs from human genetic data. These novel datasets can train innovative
deep-learningmodels, potentially surpassing the limitations of conventional GWAS.
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1 Introduction

Schizophrenia, a debilitating mental disorder with a lifetime
prevalence of around 1% and notable morbidity and mortality,
presents a significant public health challenge. Currently, the
Psychiatric Genomics Consortium (PGC) has identified over
250 schizophrenia risk loci, among more than 300 unique
association loci linked to major psychiatric disorders,
necessitating urgent exploration (Lam et al., 2019; Periyasamy
et al., 2019; Ripke et al., 2020). The discovery of these loci has
been greatly facilitated by Genome-wide Association Studies
(GWAS), a cornerstone in the field, having successfully unveiled
numerous loci associated with various complex traits and diseases
(Visscher et al., 2017). The GWAS Catalogue of September 2023
(Marees et al., 2018) catalogues a remarkable 552,116 significant
variant-trait associations from 6,566 publications. Despite GWAS’s
remarkable success in identifying this multitude of loci, only a
relatively small fraction of single nucleotide polymorphisms
(SNPs) associated with diseases/traits have been functionally
characterised. This limitation stems from diverse challenges
encompassing scientific, technical, methodological, and funding
aspects. Additionally, a significant majority of low penetrance
risk variants identified by GWAS are situated in non-coding
regions, impacting gene regulation, thereby presenting substantial
methodological hurdles in accurately pinpointing the causal variant,
identifying the genes it influences, and deducing the molecular
mechanisms of diseases (Egervari et al., 2018). The unravelling of
disease mechanisms and gaining fundamental biological insights are
pivotal for offering improved evidence-based and personalised
treatments. Existing in vivo models need increased sensitivity to
observe phenotypes associated with low penetrance risk variants,
given that the biological robustness inherent in these systems can
complicate results. Consequently, novel approaches are imperative
for swiftly translating GWAS discoveries into viable medical
interventions.

The complexity of biological systems raises many scientific
challenges as they have evolved to be robust in the face of
environmental and genetic perturbations. Systemic properties
such as extreme-polygenicity (Boyle et al., 2017), pleiotropy and
robustness are a result of redundant and compensatory mechanisms
that have evolved between molecular and organismic resolutions
(Periyasamy et al., 2009; Periyasamy et al., 2013), contributing to
nonadditive/nonlinear effects in biological systems. These
compensatory mechanisms regulated by various molecular
activities can contribute to biological epistasis (Moore, 2005;
Sackton and Hartl, 2016). Epistasis/GI manifests when the effects
of mutations/variants depend on the genetic background on which
they occur (Domingo et al., 2019). Such dependency on genetic
background/context can cause phenotypic diversity between
individuals and, on evolutionary timescales, incompatibilities
between different species. Such issues raise concern when using

in-vivo models to represent humans, as evidenced by the alarming
drug failure rates (~96%) when translating from preclinical to
clinical trials (Hingorani et al., 2019). Technologies that generate
data to study the above systemic properties are required to bridge the
genotype-phenotype gap. Fortunately, some high-throughput
technologies in genomics could be advantageous to infer GIs,
where they are thought to be one of the causes of missing
heritability (Eichler et al., 2010; Zuk et al., 2012). GIs frequently
connect genes between compensatory pathways, so they confound
our ability to predict phenotype from gene-environment
interactions. This major challenge must be addressed to realise
the potential of precision medicine. Causalities can be modelled
by identifying GIs that enhance or suppress a phenotype (Costanzo
et al., 2016). Currently, there is a yeast GI (Costanzo et al., 2016) and
a database containing ~223,000 GIs for the human cancer cell lines
(Horlbeck et al., 2018; Mair et al., 2019), a mere fraction of the
estimated number of gene-gene combinations (~200 million) for
humans. These datasets were generated by observing cellular
phenotypes for many combinations of double gene-silencing
experiments, analogous to generating gene-based statistical
epistasis data. However, this laborious experimental approach
becomes an improbable task when considering human
endophenotypes, let alone human disease phenotypes such as
schizophrenia. Hence, the only solution will be to use in silico
approaches. Although there are computational approaches to
predicting GIs (Sun et al., 2014; Wei et al., 2014; Niel et al.,
2015; Fang et al., 2019), genome-wide disease-specific human-
level GI data have not been generated to date.

2 Methods

2.1 Sample collection

All participants provided written informed consent, and the
study received ethical approval from each participating institution’s
institutional review boards. This research adhered to the
Strengthening the Reporting of Genetic Association Studies
(STREGA) reporting guideline. Our participant cohort was
drawn from The Schizophrenia Research Foundation in Chennai,
India, and overwhelmingly comprised individuals of Tamil
ethnicity, accounting for more than 97% of the sample. We
employed standardised assessment tools, which were
administered in Tamil when necessary. These tools included the
Diagnostic Interview for Genetic Studies (Nurnberger et al., 1994),
the Family Interview for Genetic Studies (Maxwell, 1992), the DSM-
IV diagnostic criteria, and a consensus diagnostic procedure.

The study population encompassed twomain groups: 1) a family
dataset that was assembled based on the presence of multiple
affected family members and 2) a case-control dataset. Our study
involved 1,716 participants, of which 816 were diagnosed with
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schizophrenia. The recruitment, genotyping, and data analysis
were carried out in consecutive phases, commencing on
1 January 2001.

To estimate the study power, we used a dedicated R package
powerGWASInteraction (Kooperberg and LeBlanc, 2008) to
conduct power analysis for genetic interactions. We used the
default parameters for the GxG interaction model and conducted
the analysis using powerGG (). The power was set at 80%, alpha at
0.05, case-control ratio at 0.5, disease prevalence at 0.01 and the
number of genes tested was set to 20,000. The sample size was
estimated to be approximately 8,000. In contrast, the false discovery
rate (FDR) method is widely utilised in situations with numerous
tests where the expense of false positives is minimal and employing
the Bonferroni procedure is unfeasible due to the sheer volume of
simultaneous tests (i.e., ~200 million in this case). It maintains strict
control over the family-wise error rate and becomes more
conservative as the number of comparisons increases. This means
that as the number of tests grows, Bonferroni correction becomes
increasingly stringent, potentially leading to a higher likelihood of
false negatives. FDR, on the other hand, focuses on the proportion of
false positives among the declared significant findings. It controls
the rate of false discoveries and, in many cases, allows for a higher
discovery rate than Bonferroni, especially in situations with many
hypotheses being tested. Hence, we also used the r package pwrFDR
(Jung, 2005; Liu and Hwang, 2007), a dedicated application to
calculate power based on FDR. The average power was 100% for
an effect size of 1.5, a sample size of 1716 and an alpha of 0.05.

2.2 Genotyping and quality control

The study sample was assembled and underwent genotyping in
sequential phases spanning 15 years. The family sample, consisting
of 658 individuals, was subjected to genotyping utilising the Illumina
CNV370 Beadchip array. Concurrently, a group of unrelated
controls, totalling 199 individuals, was initially enrolled in the
study and subsequently genotyped using Illumina OmniExpress-
12 arrays. In the later stages of the study, additional cases and
controls were brought on board. They underwent genotyping in two
distinct batches: the first wave included 1,370 individuals, and the
second encompassed 1,008 individuals. It is important to note that
the figures provided here represent the initial sample sizes before the
quality control process. The standard GWAS sample quality control
procedures have been followed to check for ancestry and relatedness
(Peterson et al., 2019).

2.2.1 MDS analysis
We conducted a multi-dimensional scaling (MDS) analysis with

the objectives of assessing potential array-related effects and
determining the genetic similarity of the Indian samples to the
South Asian (SAS) population in the 1,000 Genomes (1 KG) phase
3 reference dataset. The MDS analysis was performed using all
common SNPs found in both the Indian family and case-control
datasets and the 1,000 Genomes dataset, comprising a total of
2,504 samples and 26,231 SNPs after pruning. We excluded SNPs
with ambiguous strand information to avoid any potential issues

FIGURE 1
MDS analysis using 1,000G SAS population. Super populations include African (AFR), Admixed American (AMR), European (EUR), East Asian (EAS) and
South Asian (SAS). The figure shows the Indian case-control datasets (In-House) clustering with the SAS population.
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related to strand orientation. The absence of outliers in the analysis
confirmed that our samples exhibited Indian ancestry (See Figure 1).

2.3 Genotype imputation

2.3.1 Pre-imputation QC
To ensure the identification of genetically related individuals, we

compiled a set of 26,939 single nucleotide polymorphisms (SNPs)
that were in linkage disequilibrium independently and had a minor
allele frequency exceeding 0.05. These SNPs were consistently
present across all genotyping platforms employed in the study. In
the family samples, we employed identity by descent (IBD) analysis
and cross-referenced the results with the clinical records associated
with the four datasets. This allowed us to detect and eliminate
duplicate entries and incorrectly specified relationships. Individuals
demonstrating relatedness beyond second-degree (as indicated by
PI-HAT≥0.1875) were excluded from the case-control datasets.
Subsequently, we integrated the four datasets to identify
discrepancies in relatedness within and between families. This
process led to the removal of 143 individuals who exhibited such
discrepancies. Before proceeding with the imputation process, the
cleaned datasets underwent further filtering based on specific
parameters, including --geno 0.02, --maf 0.01, --hwe 0.001,
and --mind 0.1.

2.3.2 Imputation
As previously described, we applied imputation to each of our

four datasets using the 1,000 Genomes (1 KG) phase 3 reference
dataset. During this process, we updated the SNP coordinates to
align with human genome build 37 and ensured they were
oriented on the positive strand. To achieve accurate phasing,
we employed SHAPEIT v2.72720. Subsequently, we carried out
an imputation using IMPUTE v2.3.021. For the imputation
procedure, each chromosome was divided into segments of
5 megabases with a 250-kilobase overlap. As recommended by
the authors, we utilised all available 1 KG populations,
encompassing approximately 2,504 individuals, as the
reference dataset. The resulting imputed data was then
converted into ‘best guess’ genotypes and saved in binary
PLINK format for further analysis.

2.3.3 Post-imputation QC
From an initial set of 81,177,102 imputed single nucleotide

polymorphisms (SNPs), we applied a series of stringent filters
and quality control measures to reduce the dataset to
approximately 6.2–6.5 million SNPs. These filters included: 1)
Removing SNPs with an INFO score less than 0.8. 2) Extracting
of unrelated individuals. 3) Eliminating SNPs with a missing data
rate exceeding 0.05. 4) Discarding SNPs with a Hardy-Weinberg
equilibrium (HWE) p-value less than 1 × 10−5 in both cases and
controls. 5) Applying a stricter HWE threshold, with a p-value less
than 1 × 10−6 in controls. 6) Employing an even more stringent
HWE threshold, with a p-value less than 1 × 10−10 in cases. After
applying these quality control criteria, a total of 5.5 million genetic
variants and 1716 individuals (comprising 816 cases and
900 controls) remained in the dataset, having successfully met all
filtering and quality control requirements.

2.4 Generating GI data

Imputed data increased the SNP coverage for comprehensive
analysis of epistatic interactions across the genome. We mapped the
genes with promoter regions from the FANTOM5 project (https://
fantom.gsc.riken.jp/) (Lizio et al., 2015; Noguchi et al., 2017), which
had robust experimentally validated promotor regions for
GENCODE genes. All SNPs within the promotor and their
genes, considered to represent a gene, were included in the
analysis. Only intergenic SNP-SNP interactions were considered
for generating GIs. The generation of GIs using the standard
epistatic analysis method required significant investment in time
(i.e., many weeks), computational and storage resources as it
generated results for billions of SNP-SNP combinations. Initially,
we used the fast epistatic analysis method, BOOST (Wan et al.,
2010), on the SNPs located in genes and their regulatory regions to
identify the most relevant SNPs and then used the standard epistatic
analysis method on nominally significant epistatic SNP-SNP
combinations to generate OR for GIs (Steps 1-6 in Figure 2).
Plink 1.9 (Purcell et al., 2007) was used to conduct genome-wide
epistasis analysis. The multiple testing burden was further reduced
by collapsing the p-values and ORs of SNP-SNP to gene-gene
combinations. The SNP-based epistatic results were transformed
into gene-based epistatic results. The most significant SNP-SNP
p-value combination representing the two genes was transformed
into p-values representing the gene-gene combinations. By using the
odds ratio (OR), we identified the GIs that increase (OR >1) or
decrease (OR <1) the risk of a disease phenotype
(i.e., schizophrenia). The number of gene-gene combinations for
multiple tests was estimated to be ~200 million, assuming
20,000 protein-coding genes. The Bonferroni threshold was set at
2.5 × 10−10 (i.e. 0.05/200,000,000), and the false discovery rate
threshold (FDR value of 0.05) for significant GIs was set at 2.
375 × 10−3 for FDR significant GIs, assuming 200 million gene-
gene combinations.

2.5 Validating GI data

A subset of GIs with OR>2 and OR<0.5 was validated using
spatial analysis of functional enrichment (SAFE) (Baryshnikova,
2016; Baryshnikova et al., 2018) and REVIGO’s (Supek et al.,
2011) GO disease specificity analyses to confirm the relevance of
the generated data (Steps 7–9). SAFE is a systematic method for
annotating biological networks and examining functional
organisation. Due to the hierarchical nature of GO biological
processes, the resulting lists of GO terms can be large and highly
redundant. REVIGO summarises the non-redundant GO terms
using a semantic similarity algorithm that uses the ‘most
informative common ancestor’ approach to identify precise GO
biological process terms. We applied SAFE to annotate the
schizophrenia GI similarity network with GO terms and used
REVIGO to validate the GIs of schizophrenia. We used REVIGO
to reduce redundancy and summarise incomprehensible lists of Gene
Ontology terms by finding a representative subset of the terms by
clustering using semantic similarity measures. We used GOATOOLS
(https://github.com/tanghaibao/goatools) (Klopfenstein et al., 2018)
to plot the GO biological process hierarchy. GO release 2023-07-27
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(http://current.geneontology.org/ontology/go-basic.obo) was used
for this analysis.

2.6 Identifying hub genes

We considered all intragenic genetic interactions with nominal
p-values (1 × 10−5) to identify the hub genes and the potential drives
of schizophrenia. We considered a two-fold increase or decrease in
ORs for this analysis. We considered OR > 2 for all increased-risk
GIs, and for all decreased-risk GIs, we considered OR<0.5. From this
list, we tabulated the genetic interactions that showed an increased
risk for schizophrenia and decreased or no risk for schizophrenia.

2.7 Developing genetic interaction resource
for schizophrenia

We have generated a global schizophrenia GI dataset comprising
~9.5 million GIs (1 × 10−5). These data include intragenic and as well
as promoter/enhancer regions.

3 Results

We have developed a novel approach by conducting gene-based
statistical epistatic analysis using an Indian schizophrenia case-
control (case-816, controls-900) genetic dataset and transforming
these results to infer GIs. Although underpowered, we successfully

generated meaningful GI data with a small sample size 1716. The
SAFE and REVIGO analysis confirmed this by identifying brain/
nervous system-related biological processes exclusively. None of the
GIs reached the Bonferroni threshold of 2.5 × 10−10. However, all
9.5 million GIs surpassed the FDR significance threshold.

3.1 Genetic interactions that increase the risk
of schizophrenia

There were ~9.5 million GIs with a nominal p-value ≤ 1 × 10−5.
Approximately 4.8 million GIs showed an increased risk (Odds
Ratio >1.0), while ~4.75 million GIs had decreased or no risk (Odds
Ratio <1.0) for schizophrenia. This dataset includes interactions
between representative SNPs located in genes and SNPs overlapping
multiple genes, including promoters. There were 15 GIs with OR >8.
When considering GIs involved between intragenic regions, there
were ~125,000 GIs with a nominal p-value ≤ 1 × 10−5. This will be
the first step in developing a global GI resource for schizophrenia.

3.2 Biological processes involved in
schizophrenia

There were ~110,000 GIs with OR >2 or OR <0.5. SAFE and
REVIGO analysis exclusively identified brain/nervous system-related
biological processes, affirming the findings. The genetic interactions of
schizophrenia were functionally enriched in brain/nervous system-
related biological processes. Most biological processes were

FIGURE 2
The high-performance computing (HPC) bioinformatics workflow for generating GIs from disease-specific case-control datasets; Genes and
regulatory regions data: FANTOM5 and GENCODE project.

Frontiers in Genetics frontiersin.org05

Periyasamy et al. 10.3389/fgene.2023.1301150

http://current.geneontology.org/ontology/go-basic.obo
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1301150


FIGURE 3
Spatial analysis of functional enrichment of GI data generated using the Indian schizophrenia genetic data. The x-axis on the bottom shows the
enrichment score of biological processes, and the x-axis on the top shows the specificity of biological processes. The y-axis shows the GO biological
process enriched after multiple testing corrections. The biological processes are organised in the ascending order of specificity.
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semantically related to nervous system development, with synaptic
transmission being the next largest cluster, followed by synapse
organisation. Figure 3 shows the enriched biological processes
identified by SAFE. The lowest processes in the GO hierarchy are all
related to the nervous system (see Supplementary Figure S1).

3.3 Hub genes of schizophrenia

Notable genes are hub genes, which can be considered drivers of
schizophrenia. Figure 4 shows the top hub genes involved in
schizophrenia. CSMD1 had the highest GIs, followed by KCNIP4,
WWOX and NRXN3. Each hub gene increases the risk for
schizophrenia when interacting with a subset of genes and shows
decreased or no risk for schizophrenia with another subset of genes.
Supplementary Table S1 shows the complete list of hub genes and
their functions based on existing literature.

4 Discussion

We observed the nervous system development to have the
highest enrichment, and neurogenesis to have the highest
specificity. The schizophrenia GIs were primarily enriched in
biological processes involved in the nervous system and neuron-
related processes. In contrast to model organisms, this approach is
specifically viable in humans due to the availability of abundant
disease-specific genome-wide genotype datasets. Despite limited
power, meaningful GI data was generated with a small sample.
SAFE and REVIGO analyses exclusively identified brain/nervous
system-related processes, affirming the reliability of the generated
GIs. This computational approach fills a critical gap by generating
practically non-existent heritable disease-specific human GIs from
human genetic data. These novel datasets can train innovative deep-
learning models for post-GWAS functional characterisation,
potentially surpassing the limitations of conventional GWAS.

4.1 A novel computational approach to
generate practically non-existent GIs from
human genetic data

Biologists have used double gene silencing approaches for over two
decades to study GIs (Mani et al., 2008). Generating GI data has been
daunting as it involves establishing cell/animal lines to observe relevant
phenotypes, which often takes weeks to months per GI experiment.
However, this laborious experimental approach becomes an improbable
task when considering human endophenotypes, let alone complex
human disease phenotypes such as schizophrenia. Moreover, this is
neither ethical nor practical in humans, and observational studies
investigating phenotypes in any organism are subject to a range of
unknown confounding effects that are difficult to control. We have
proposed a novel approach by conducting analogous gene-based
statistical epistatic analysis using human genetic data and
transforming these results to infer gene-based GIs. This approach is
only feasible in humans because, unlike model organisms, abundant
GWAS data are available, including large-scale publicly available
biobank data. Compared to traditional observational experiments,
our strategy is robust to confounding, rapid, and cost-effective and
can be performed using existing GWAS data. The novel contribution of
our approach consists in how we generate and utilise the GI
information. OR is an often-ignored parameter. This information is
useful in detecting the direction andmagnitude of GIs.While existing in
silico approaches focus on the presence or absence of GIs, we also
include the effect size and direction of disease-specific GIs to infer
increased or decreased disease risk.

4.2 There currently needs to be
comprehensive heritable disease-specific
human GI data

Only two cellular-level GI datasets are available for the research
community: a wet-lab generated comprehensive yeast GI dataset
(~8 million GIs) and a cancer GI dataset (~230,000) generated using
human cancer cell lines with cell growth/viability as the phenotype. Our
approach addresses this problem by developing a novel in silicomethod

FIGURE 4
The hub genes of schizophrenia. The x-axis shows the number of
gene interactions of hub genes that increase or decrease the risk of
schizophrenia. The y-axis shows the hub genes of schizophrenia.
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to generate heritable disease-specific GIs such as schizophrenia. The
significant short-term outcomes will include: 1) Producing a
schizophrenia GI resource for the global biomedical science
community. 2) A contribution to the modelling of biological
robustness, thereby providing a powerful opportunity to infer
compensatory biological mechanisms and to study genetic
(i.e., variations and mutations) and environmental (i.e., drug
efficacy) perturbations. 3) The generation of GIs for other human
heritable diseases. In addition to contributing to basic research in
schizophrenia, disease-specific GIs are highly important for
translational research. The ubiquitous nature of biological robustness
is a major problem for pharmaceutical drug discovery, as humans can
develop resistance to therapeutic agents (Boucher and Jenna, 2013). GIs
can map the elusive relationship between genotype and phenotype and
are thought to underlie many common heritable diseases. Furthermore,
exploringGI networksmay help to realise the gene networks underlying
phenotypical variation and polygenic diseases.

4.3 A GI dataset for post-GWAS functional
characterisation

While GWAS has successfully unveiled numerous risk loci, it
faces ongoing critique due to its limited ability to elucidate many
molecular mechanisms influencing human phenotypes that
contribute to disease risk. GWAS loci often prove challenging to
decipher because linkage disequilibrium frequently masks the causal
variant during association, and identifying the specific gene
responsible for mediating variant effects on the trait is seldom
achievable solely through GWAS data. Moreover, a significant
proportion of GWAS risk variants with low penetrance reside in
non-coding regions that impact the gene regulation (Egervari et al.,
2018), presenting considerable methodological hurdles in accurately
pinpointing the causal variant, determining the genes it governs, and
deducing disease molecular mechanisms (Schaid et al., 2018). These
obstacles are unique to variant-trait associations within the realm of
GWAS. However, our approach remains unhindered by these
challenges as it can directly predict the causal genes and
molecular mechanisms from human genetic data, aligning with
one of GWAS’s primary objectives—to identify causal genes,
molecular mechanisms, and potential interventions.

4.4 Future directions

We plan to use the workflow to generate GIs for a larger dataset,
such as the PGC dataset. We anticipate large datasets could reveal
more significant GIs for schizophrenia. These datasets can be used
for various systems biology studies, such as developing explainable
deep learning models to predict disease mechanisms (Ma
et al., 2018).
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