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Various methods have been proposed to estimate daily yield from partial yields,
primarily to deal with unequal milking intervals. This paper offers an exhaustive
review of daily milk yields, the foundation of lactation records. Seminal
advancements in the late 20th century concentrated on two main adjustment
metrics: additive additive correction factors (ACF) and multiplicative correction
factors (MCF). An ACFmodel provides additive adjustments to two times AM or PM
milk yield, which then becomes the estimated daily yields, whereas an MCF is a
ratio of daily yield to the yield from a single milking. Recent studies highlight the
potential of alternative approaches, such as exponential regression and other
nonlinear models. Biologically, milk secretion rates are not linear throughout the
entire milking interval, influenced by the internal mammary gland pressure.
Consequently, nonlinear models are appealing for estimating daily milk yields
as well. MCFs and ACFs are typically determined for discrete milking interval
classes. Nonetheless, large discrete intervals can introduce systematic biases. A
universal solution for deriving continuous correction factors has been proposed,
ensuring reduced bias and enhanced daily milk yield estimation accuracy. When
leveraging test-day milk yields for genetic evaluations in dairy cattle, two
predominant statistical models are employed: lactation and test-day yield
models. A lactation model capitalizes on the high heritability of total lactation
yields, aligning closely with dairy producers’ needs because the total amount of
milk production in a lactation directly determines farm revenue. However, a
lactation yield model without harnessing all test-day records may ignore vital
data about the shapes of lactation curves needed for informed breeding decisions.
In contrast, a test-day model emphasizes individual test-day data,
accommodating various intervals and recording plans and allowing the
estimation of environmental effects on specific test days. In the United States,
the patenting of test-day models in 1993 used to restrict the use of test-day
models to regional and unofficial evaluations by the patent holders. Estimated
test-day milk yields have been used as if they were accurate depictions of actual
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milk yields, neglecting possible estimation errors. Its potential consequences on
subsequent genetic evaluations have not been sufficiently addressed. Moving
forward, there are still numerous questions and challenges in this domain.
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Introduction

Accurate lactation records play an indispensable role in the
genetic advancement and comprehensive management of dairy
cattle, with test-day yields constituting the core of these records.
In countries such as the United States, most cows participating in
milk recording programs have their milk sampled and milk weights
documented monthly (Voelker, 1981). The term “test-day milk
yield” thus defines the milk quantity produced by a dairy cow on
the specific day when her yield is assessed. Test-day milk yields are
used subsequently to predict lactation milk yields (VanRaden, 1997;
Cole et al., 2009). Analyzing milk samples provides further
information about components, including fat, protein, and
somatic cell count. For effective herd management, periodic test-
day records serve as a significant source of information about the
productivity of individual cows and the overall herd (Everett et al.,
1994). Such information is also routinely utilized to assess the cow’s
health and milk quality and, in some instances, help determine milk
pricing. For genetic evaluations, test-day records are used to
calculate estimated breeding values (EBVs) for traits related to
milk production (e.g., Jamrozik et al., 1997a; VanRaden et al.,
2014). The latter information is instrumental in making breeding
decisions to improve the herd’s genetic potential for these traits for
future generations (Powell and Norman, 2006).

The frequency of test-day recordings can vary depending on the
herd management strategies employed. While a cow is milked
multiple times on a test day, not all these milkings are weighed.
This practice, emerging in the United States in the 1960s, reflected
the shift from the standard supervised twice-daily, monthly testing
scheme towards cost-efficient milking plans to minimize costs
associated with DHIA supervisor visits (Putnam and Gilmore,
1968). Plans such as the AM-PM method alternate sampling
during morning or evening milkings across lactation. Initially,
each test-day milk yield was taken to be twice a single yield,
assuming that morning and evening milking sessions are equally
spaced, each spanning precisely 12 h. Or, the biases will cancel out if
the unevenness is complementary between AM and PM milkings.
However, the practical situations are different. The AM and PM
milking intervals may differ, and the rates of milk secretion can
fluctuate between daytime and nighttime. AM milking intervals are
typically more extended than PM milking intervals, and AM milk
yields usually surpass PM milk yields (Putnam and Gilmore, 1970).
While the differences are present, they do not necessarily cancel out.
Wu et al. (2022) showed a broader range for morning milking
intervals (from 5.6 to 23.67 h) compared to evening milking
intervals (from 5.0 to 18.4 h), based on a US Holstein dairy cattle
dataset comprising 7,544 milking records from 5,201 Holstein cows
across 23 herds. The average morning and evening milking intervals
were 12.3 and 11.6 h, respectively. Coinciding with the extended
morning milking interval, the mean morning milk yield (16.4 kg)

exceeded the mean evening milk yield (15.3 kg). Further, a
generalized additive model applied to the same dataset indicated
that an average US Holstein cow had a higher probability (63.0%) of
producing more milk in the morning milking compared to the
evening milking, primarily due to more extended AM milking
intervals, whereas the reverse probability favoring a larger
evening milk yield was only 35.8% (Wu et al., 2023b).

A plethora of methodologies has been proposed to address
biases in daily yield computations, primarily arising from
unequal milking intervals (Figure 1). Central to these
advancements, from the 1980s to the 1990s, were the additive
correction factors (ACFs) and multiplicative correction factors
(MCFs). For instance, with AM-PM milking, an ACF model
supplies additional adjustment quantities over twice the AM (or
PM) yields to estimate the daily totals. In contrast, anMCF is defined
as a ratio of daily yield to the yield from a single milking, hence also
referred to as a ratio factor. Both ACFs and MCFs are computed for
discrete milking interval classes. MCFs have been proposed in
multiple forms (e.g., Shook et al., 1980; DeLorenzo and Wiggans,
1986), and their exact statistical interpretations differ (Wu X-L.
et al., 2023). Wu et al. (2023a) argued that the MCF models
encounter a particular challenge, termed ‘the ratio problem’, due
to the use of a ratio variable (i.e., proportional daily yield) as the
dependent variable in the data density (Wiggans, 1986) or the
smoothing functions (Shook et al., 1980; DeLorenzo and
Wiggans, 1986). The potential ramifications of this issue could
lead to biases in two main areas: the bias from omitted variables
and the bias frommeasurement errors (Lien et al., 2017). In response
to ‘the ratio problem’, Wu et al. (2022), Wu et al. (2023b) further
proposed an alternative solution in the form of an exponential
regression model, which demonstrated improved accuracy for
estimating test-day milk yields. Wu et al. (2003b) also evaluated
non-linear modeling strategies that relax the linearity assumption of
the Wiggans (1986) model in a US Holstein milking dataset. Their
results demonstrated that some non-linear models, such as cubic
splines, LOESS (locally estimated scatterplot smoothing), and
generalized additive models (GAM), were promising as they
enhanced the accuracy of estimated daily milk yields.
Particularly, GAM provides a flexible tool to capture non-linear
relationships in the data by utilizing different non-linear functions
for different predictor variables. GAM, when optimally constructed,
had the smallest errors and highest accuracies for estimating daily
milk yields among all the non-linear models evaluated (Wu et al.,
2023b).

The past 2 decades have witnessed a surge in genomic selection
studies focusing mainly on genotypes and statistical paradigms.
Although lactation records are equally significant, they have been
overlooked. The current systems for lactation records and
adjustments are somewhat outdated. Recent endeavors for a
large-scale dairy data collection, backed jointly by the US Council
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on Dairy Cattle Breeding, the USDA Animal Genomics and
Improvement Laboratory, and the National Dairy Herd
Information Association, are converging toward updating the
parameters for the current lactation recording systems, assessing
existing methods, and exploring new methodologies for producing
more reliable lactation records. This paper offers an exhaustive
review of daily milk yields, the foundation of lactation records. We
aim to provide readers with a multifaceted and in-depth
understanding of test-day milk yields, emphasizing daily yield
correction factors for estimating daily milk yields and their
implications for genetic evaluations. While test-day yields bear
immense significance for dairy management, this review does not
delve into its expansive scope. Nonetheless, we aspire that this
technical overview enlightens a broad spectrum of stakeholders
in the dairy sector, encompassing dairy farmers, geneticists,
animal scientists, and developers of dairy technology.

The roadmap

Primary landmarks

The “AM-PM milking” was the standard practice in dairy
farming, whereby cows were milked twice daily: once in the
morning (AM) and once in the evening (PM). Originating from
the era when manual milking was ubiquitous, this regimen
facilitated convenience by allowing cows to be milked in the
mornings and evenings (Porzio, 1953; Putnam and Gilmore,
1968). The protocol for each milking session is similar: cows are
brought in from the pasture or housing, and their udders and teats
are cleaned. Then, the milking process commences, either
mechanically or manually. After milking, cows are fed and
returned to their resting areas. The AM-PM milking plan not
only promotes the cow’s comfort by avoiding overfilling its
udder, thus lowering the chance of cow distress and some
possible health problems, but also fosters the milking consistency
that a cow responds positively to. Additionally, it allows the farmers
tomonitor the cows for any health and behavior anomalies regularly.

Technological advancements, notably automatic (robotic)
milking systems, have ushered in an era where thrice daily
milking (3X) or even more frequent sessions are becoming
common. Such systems permit more frequent and voluntary
milking, potentially elevating milk yield and augmenting animal
welfare (Barnes et al., 1990; Erdman and Varner, 1995; Smith et al.,
2002; Hart et al., 2013). From a biological standpoint, more frequent
milking entails more frequent udder emptying, potentially
stimulating heightened milk production. However, these more
frequent milkings are not without challenges because they
demand more labor, potentially increase cow stress if
mismanaged, and necessitate additional diet modifications to
cater to increased nutritional needs for augmented milk
production. Studies have indicated that while milk yield might
rise, milk fat and protein contents could otherwise decline
(Barnes et al., 1990; Erdman and Varner, 1995; Smith et al.,
2002; Hart et al., 2013). A 2014 USDA report revealed that
roughly 88% of dairy operations still predominantly milked cows
twice daily, a trend especially prevalent in very small (<30 heads),
small (30–99 heads), and medium operations (100–499 heads), with
84.4%–97.9% milking most cows twice daily. In contrast, around
57% of large operations opted for a three-times daily milking
schedule (https://www.aphis.usda.gov/animal_health/nahms/dairy/
downloads/dairy14/Dairy14_dr_PartI_1.pdf).

In the 1960s, cost-saving milking strategies emerged wherein not
all milkings on a test day were weighed. For instance, in the AM-PM
plan, AM and PM milkings were alternately measured on test days
throughout lactation. Initially, the daily milk yield was determined
as double the amount of a single sampled milking, mathematically
represented as (Figure 1):

ŷ � 2x (1)
where x denotes the known AM or PM yield for a cow, and ŷ is an
estimated daily milk yield. This naïve approach, referred to as the
‘baseline model’ or “2X” method in this paper, relies on the
assumption that the intervals and yields of AM and PM milkings
are identical, and so are AM and PM milk yields. Therefore, it
unexceptionally assigns a fixed multiplicative correction factor for

FIGURE 1
Illustration of variousmethods proposed for estimating daily milk yields. Notations: x represents a partial (morning or evening) milk yield; ŷ stands for
an estimated test-day milk yield; Δ (F) is an additive (multiplicative) correction factor for each milking interval class; j indexes morning (j � AM) or evening
(j � PM) milking, k indexes milking interval classes; E represents expectation operation; f stands for a non-linear function; t is a random variable for milking
interval; θ collectively include all variables other than t, x y, and k.
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all cows. However, in reality, AM and PMmilking intervals are often
not equal, and neither are AM and PM milk yields.

An original ACF model is essentially a factorial (or analysis of
variance) model that evaluates the difference between AM and PM
yield as the response variable. The factorial variables or predictors
include milking interval classes, lactation months, and more as
appropriate (Everett R. W. and Wadell L. H., 1970; Everett R. W.
andWadell L. H., 1970). Wu et al. (2022), Wu X-L. et al. (2023) have
shown that an ACFmodel can be interpreted as a linear regression of
test-day milk yield on the partial yield, milking interval, and other
covariates or factors as the predictor variables where applicable.
Consider milking interval time (t) as the only predictor variable for
simplicity. Let x be a PM yield and y be the daily total. Then, (y-x)
quantifies the AM yield. The ACF model can then be expressed as
follows:

E y − x( ) − x{ } � α + βt (2)
where α and β are the intercept and regression coefficients for
milking interval time t, respectively. If AM and PM milkings are to
be analyzed jointly, the above model can be set up to include
heterogeneous intercepts and common slopes for AM and PM
(Wu et al., 2022; Wu et al., 2023 X-L.). After some re-
arrangement, model (2) becomes:

E y( ) � Δ + 2x (3)
where Δ � α + βt is the additive correction term. Here, the
regression coefficient for the partial yield is precisely two,
meaning that the additive correction term is supplemented to
twice a partial, which then becomes the estimated total daily
yield. Setting Δ to zero reverts an ACF model back to the
baseline model. ACF are calculated for discrete milking interval
classes.

Multiplicative correction factors are ratios of daily yield to yield
from single milkings, denoted as F, also computed for discrete
milking interval classes (e.g., Shook et al., 1980; DeLorenzo and
Wiggans, 1986; Wiggans, 1986) (Figure 1). MCF models have been
proposed in multiple forms (Wu et al., 2022; Wu X-L. et al., 2023).
The two most common approaches include the DeLorenzo and
Wiggans (1986) model and the Wiggans (1986) model. The former
linearly regressed test-day yields on a partial yield without intercept
daily, whereas the latter treated proportional daily yield as a linear
function of milking interval time. A total daily yield is then estimated
by F times a single yield, where its value varies with different milking
interval classes and between AM and PM milkings. Letting F� 2
reverts the MCF model back to the baseline model.

Liu et al. (2000) reviewed various linear (and quadratic
regression) models where the dependent variable was test-day
milk yields. For instance, the linear model is mathematically
represented as (Figure 1):

ŷ � Δ + Fx (4)
where Δ (F) is the additive (multiplicative) correction factor
calculated for each milking interval class. Seemingly, the linear
model accommodates both scenarios, but, effectively, it resembled
more ACFmodels thanMCFmodels (Wu et al., 2022;Wu X-L. et al.,
2023). Setting F to 2 in (4) results in an ACF model, whereas letting
Δ equal 0 leads to an MCF model (DeLorenzo and Wiggans, 1986).

When both constraints are in place (i.e., Δ � 0 and F � 2), Equation
4 simplifies to be the baseline model.

Here, we illustrate the methods using AM-PM milking as an
example. Yet, these same principles can be applied to three times or
evenmore frequent milkings. We also presume that unequal milking
interval represents the only source of variation for daily milk yields
to simplify the discussion at this stage. Nevertheless, incorporating
more affecting variables or factors, such as DIM, into the model is
feasible and straightforward.

Exponential regression model

The exponential regression model proposed by Wu et al. (2022),
Wu X-L. et al. (2023) can be interpreted as a linear function of the
logarithm of daily milk yield (y) with respect to milking interval
time (t), DIM (d) where applicable, and the logarithm of a single
milking yield (x), depicted as:

log y( ) � α + βt + γ d − d0( ) + b log x( ) + ϵ (5)
Applying exponentiation on both sides of the above equation

gives:

y � xbe α+βt+γ d−d0( )+ϵ( ) (6)
Recognizing e ≈2.718, we can re-arrange the above exponential

function to the following, analogous to an exponential growth (or
decay) function:

y � y0 1 + r( )t* (7)
where y0 � xb is the initial state, and r� 1.718 designates the rate of
change, modulated by a meta-time term E(t*) � α + βt + γ(d − d0).
Mathematically, y undergoes an exponential growth when t*> 0, or
an exponential decay when t*< 0.

Wu et al. (2022) demonstrated that all these models gave similar
daily yield estimates for milking intervals between 10 and 14 h.
However, discrepancies in the estimated daily milk yields become
pronounced outside this range. Specifically, ACF and MCF models
were markedly superior to the baseline 2X model, producing
drastically more minor errors and greater accuracies. The MCF
models slightly surpassed the ACF models. Compared to the
currently used methods, the exponential model stood out for its
accuracy. For instance, relative to the Wiggans (1986) model, the
exponential regression model boosted the precision of estimated
daily milk yields by approximately 0.9% for Holstein cows and 1.5%
for Jersey cows.

Going beyond linearity

The Wiggans (1986) model, a de facto method for estimating
daily milk yields in the United States, hinges on the assumption
of linearity between proportional daily yields and milking
interval time. Designed initially to determine MCFs for cows
milked three times a day, the assumption stands due to the short
milking intervals involved. However, Wu et al. (2023b) have
recently demonstrated that this linearity assumption does not
apply to cows milked twice daily, as longer, irregular milking
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intervals are involved. Historical data indicated that daily milk
yield (including fat and solids-not-fat) did not have a linear
relationship with milking intervals exceeding 12 h (e.g., Ragsdale
et al., 1924; Bailey et al., 1955; Elliott and Brumby, 1955;
Schmidt, 1960). Hence, early studies tended to postulate
exponential milk curves up to 36 h (e.g., Brody, 1945).
Klopcic et al. (2013) suggested a modified Michaelis-Menten
function as a better fit for the trajectory of daily milk yields in
relation to a milking interval over the same duration.
Mathematically, the modified Michaelis-Menten function is an
altered exponential function, where the base is one plus the yield
for an interval of 720 min (i.e., 12 h), and the exponent is a non-
linear function of milking interval time. Neal and Thornley
(1983) showed that milk and component productions
exhibited an exponential increase in relation to the interval
between the current and the previous milkings, which later
leveled off to an asymptote, potentially due to cell
degradation and milk present in the udder.

Biologically, the milk secretion rate vitally influences the required
frequency for milking cows and the acceptable intervals between
milkings. The milk secretion rate depends on the pressure
accumulating within the mammary gland. When milk builds up
and accumulates in the mammary gland for a long enough time
period, sufficient pressure is generated to inhibit secretion, leading to
milk reabsorption by the blood (Schmidt, 1971). Amarked increase in
pressure occurs 1 hour after milking. Residual milk or complementary
milk then moves from the alveoli into the teat and gland cisterns,
causing a gradual increase in pressure due to the milk flow from the
alveoli to the teat and gland cisterns. The rate of milk secretion
remains linear for approximately 10–12 h after the last milking, then
decreases slightly afterward. This decrease continues until it ceases
around 35 h after the previous milking (Tucker et al., 1961; Schmidt,
1971). Therefore, while the linearity assumption is valid for
approximately 12 h post-milking, it is not sustainable beyond.

Wu et al. (2023b) evaluated various non-linear modeling
strategies in the Holstein dairy cattle. First, polynomial regression
is a common non-linear model. Shook et al. (1980) used quadratic
regression as a smoothing function to fit empirically computed
MCFs in practical scenarios. Second, rather than fitting a single
polynomial over the entire range of milking intervals, it is feasible to
fit multiple polynomials over different segments of milking interval
time. These segments are delineated by time points, known as
“knots”, leading to piecewise polynomial regression. Positioning k
knots throughout the milking interval range results in fitting
k+1 distinct cubic polynomials. Introducing more knots defines a
more flexible piecewise polynomial regression. With local
smoothing, it is often necessary to enforce constraints for
smoothness to ensure that the fitted curves are continuous and
smooth at each knot. Mathematically, this implies that the first and
second derivatives of the piecewise polynomial must be continuous
at each knot, thus producing the third type of curve known as cubic
splines. Splines can exhibit high variance at the extremes of the
predictor range, primarily when milking interval times are very
short or long. Hence, an additional constraint can be applied to
mitigate this issue, compelling the function to be linear at the
boundary. This method is known as natural splines. Likewise,
step functions fit piecewise constant regression coefficients within
different milk interval bins. We note that the model proposed by

DeLorenzo and Wiggans (1986), denoted by (D-W), shares some
commonalities with step functions, except that the D-Wmodel does
not define an intercept. Additionally, in the D-W model, the
response variable is a test-day milk yield rather than a
proportional test-day milk yield, and the predictor variable is a
single milk yield (AM or PM yield) rather than the milking interval
time. Lastly, Local regression, smoothing splines, and generalized
additive models are three examples of promising models that can
potentially improve the accuracy of estimated test-day milk yields
(Wu et al., 2023b). Local regression, such as LOESS, allows for fitting
flexible non-linear functions by computing a fit at a target point
using only the nearby (“local”) observations (Cleveland, 1979). Local
regression is also known as moving regression, a generalization of
the moving average and polynomial regression (Harrell, 2015).
Smoothing splines are functions that balance a measure of
goodness of fit with a derivative-based measurement of
smoothness (Craven and Wahba, 1979). In contrast, a spline
tends to interpolate all the observed data points, which can lead
to overfitting. Hence, a smoothing spline function can maintain the
smoothness of the curve while minimizing the residual sum of
squares. A GAM predicts the relationship between a response
variable and one or more predictor variables while allowing for
non-linear relationships. GAMs were initially developed by Hastie
and Tibshirani (1990) to combine the properties of generalized
linear models with additive models.

Mathematically, most non-linear models can generally be
expressed using basis functions. For instance, consider m
polynomials. The concept here is to have available a set of basis
functions or transformations that can be applied to the variable of a
milking interval t: b1(t), b2(t), . . ., b1(t). That is,

z � β0 + β1b1 t( ) + β2b2 t( ) + . . . + βmbm t( ) + ϵ (8)

where bj(t) � tj is the basis function for polynomial regression.
Similarly, step functions accommodate piecewise constant
regressions within different milk interval bins. Assume the
milking interval is divided into K+1 bins, delimited by cutpoints
C1, C2, . . ., and CK. Let Ck represent a dummy variable for the k-the
milking interval bin. Its value is one when the milking interval falls
within the k-the milking interval bin and zero otherwise, for
k � 0, 1, 2, . . . , K. The step functions are defined as follows:

z � β0 + β1C1 t( ) + β2C2 t( ) + . . . + βKCK t( ) + ϵ (9)
Here, C1(t) � C2(t) � . . . � CK(t) � 0 for the first milking

interval bin and C1(t) + C2(t) + . . . + CK(t) � 1 otherwise,
meaning that the partial yield needs to be in only one of the
following K milking intervals. In the above equation, β0 is the
mean value of zi for the first interval (t< c1). Then, for t≥ c1,
Equation 10 becomes z � β0 + βk + ϵ. Hence, the above equation
predicts the response of β0 + βk for ck ≤ t< ck+1, in which βk
represents the average change in the response for T in
ck ≤ t< ck+1 relative to t< c1. The basis functions for the
piecewise constant regression model are the following:

bj t( ) � I cj ≤ t< cj+1( ) (10)

Here, I(cj ≤ t< cj+1) is an indicator function, which equals one if
the condition cj ≤ t< cj+1 holds, and zero otherwise. Observing that
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the D-W model consists of local functions, we can similarly
construct the basis function as follows:

z � b1 C1 t( )x{ } + β2 C2 t( )x{ } + . . . + βk CK t( )x{ } + ϵi (11)
where Ck(t)x � x if Ck(t) � 1 or Ck(t)x � 0 if Ck(t) � 0, for k �
1, 2, . . . ,K.

Finally, a cubic spline with k knots can be represented using a
basis function. One possible form is a truncated power basis defined
per knot, as follows:

h t, c( ) � t − c( )3+ � t − c( )3 if t> c
0 otherwise

{ (12)

where c is the knot. To fit a cubic spline with K knots to the data, we
perform a least squares regression with an intercept and 3 +K
predictors: t,t2,t3,h(t, c1), . . . ,h(t, cK). The above amounts to
estimating K+4 regression coefficients.

Mathematically, GAMs do not represent a different form of
non-linear functions, but they provide a generalized model
framework that additively accommodates non-linear functions or
predictors. Consider milking interval (t), DIM (d), and parities (p)
as the predictor variables. Then, GAM for predicting daily milk
yields can be set up as follows:

g E z( )( ) � β0 + f1 t( ) + f2 d( ) + f3 p( ) (13)
In the above, E(z) is the expected value of the response variable,

g is a link function that relates the expected value of the response to
the linear predictor, β0 is the intercept term, and f1(ti), f2(di), and
f3(pi) are the smooth functions of the three predictor variables,
respectively. Here, t and d are treated as continuous variables, and p
is a categorical variable. Note that milking interval time can be
discretized and treated as a categorical variable. The link function, g,
is usually an exponential distribution, such as a normal
(i.e., Gaussian), binomial, or Poisson distribution. Conveniently,
an identity function can be the link function such that g(E(z))
reduces to E(z).

Non-linear model performance often rests on the appropriate
selection of hyperparameter values. Figure 2 shows the effects of two
distinct hyperparameters with GAM. In this example, we assigned
LOESS to fit the milking interval with the span value varying from
0.1 to 1.0 and employed smoothing splines for DIM, modulating its
degrees of freedom between 3 and 30. The smoothing splines are, in
essence, natural cubic splines with knots set at every distinct
predictor variable value—the milking interval time. The degrees
of freedom in these splines influence the penalized likelihood’s
shrinkage and the splines’ overall smoothness. For LOESS, the
span parameter determines the data percentage used in the local
regression, with a smaller value featuring a localized regression and a
larger value catering to a more global regression. The results showed
that the mean absolute errors (MAE) were smaller with a small span
value than a large value when fitting LOESS onmilking interval time.
With smoothing splines fitted on DIM, MAE was smaller with large
degrees of freedom than with small degrees of freedom. Therefore,
the most optimal values of these two parameters are span = 0.1 for
LOESS and 30 degrees of freedom for the smoothing splines in this
example.

Wu et al. (2023b) compared the performance of the
aforementioned non-linear models for estimating daily milk yields.
Overall, these non-linear models, except step functions, demonstrated
smaller errors and greater accuracies for estimated test-daymilk yields
to varying extents compared to the traditional linear models. Among
the non-linear models, GAMs yielded the least bias and the greatest
accuracy. This accentuates the potential of further harnessing GAMs
to estimate test-day milk yields. Other non-linear models which are
also promising include LOWESS and smoothing splines.

Deriving daily yield correction factors

Discrete additive factors

Additive correction factors are calculated for discrete milking
interval classes, with the additive correction amount quantified by
Δ � α + βt. For instance, the ACF for the kth milking interval class is
computed as follows:

Δ k( ) � α̂ + β̂�t k( ) (14)
where �t(k) is a midpoint of milking interval class k. Here, we used the
superscript “(k)” as an index for discretized milking interval classes.

Wu et al. (2022), Wu X-L. et al. (2023) show that the sum of
ACFs within eachmilking interval class was constant. For traditional
AM-PMACFmodels, where the regression coefficient for the partial
yield is b � 2, the sum is zero:

Δ k( )
AM + Δ k( )

PM� 0 (15)
For linear regression, where b can take real values, the sum is the

following.

Δ k( )
AM + Δ k( )

PM � 2 − b( )�y k( ) (16)
Using a simulation dataset, Wu X-L. et al. (2023) showed that the

sum of ACFs within each milking interval class was 0 for conventional
ACF models (b� 2), and it was 1.405 for the linear regression model

FIGURE 2
Three-dimensional relationships contour plots of mean absolute
errors (MAE) of estimated daily milk yields obtained from a generalized
additive model that fitted proportional test-day milk yields (z) on
milking interval time (t) as locally weighted regression (loess) with
varying span parameter values (from 0.1 to 1.0) and DIM (d) as cubic
splines (cs) varying degrees of freedom (df = 3:30).
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(b� 1.942). This larger sum with linear regression arose because its
regression coefficient for the partial yield in linear regression was less
than 2. In this example, the traditional ACF model supplemented
additive corrections to 2 times the partial yields, whereas the linear
regression supplemented additive corrections to 1.942 times the partial
yield. Knowing their relationships provides convenience for calculating
daily yield correction factors. For example, once evening ACFs are
calculated, then morning ACFs can be conveniently obtained using the
relationships (15) and (16), and vice versa (Shook et al., 1980).

Discrete multiplicative factors

Multiplicative correction factors are also calculated for discrete
milking intervals. For the DeLorenzo and Wiggans (1986) model,
the regression coefficient is obtained for each milking interval class,
denoted by b(k), which coincides with the corresponding MCF. An
alternative form of MCF based on this model is as follows:

F k( ) � b k( ) � E y k( )( )
E x k( )( ) �

1
n∑y k( )
1
n∑x k( ) �

∑y k( )

∑x k( ) (17)

The above form of MCFs aligns with that empirically derived by
Shook et al. (1980). Both share the same interpretation of an MCF as
the ratio of the expected value of daily milk yields over the expected
value of a single (AM or PM) milk yield. Shook et al. (1980)
evaluated MCFs empirically as the ratio of bulk daily milk yield
to bulk AM or PM milk yield. In the above, we observe that ∑ x(k)

corresponds to bulk AM or PM milk yields and∑y(k) corresponds
to daily milk yields.

For the Wiggans (1986) model, MCFs are obtained by locally
taking the expected value on both sides of the model equation,
assuming that E(ϵ)� 0. That is,

F k( ) � E
y k( )

x k( )( ) � 1

α̂ + β̂�t k( ) (18)

The aboveMCF corresponds to the expected value of the ratio of
a test-day yield to a partial yield, not the same as that derived from
DeLorenzo andWiggans (1986). Still, both forms coincide with each
other approximately because taking the first-order Taylor series
approximation to the term on E(y(k)

x(k)) leads to an approximation:
E(y(k)

x(k)) ≈ E(y(k))
E(x(k)).

The relationship between morning and evening MCFs, confined
to the same dataset, is the following (Wu X-L. et al., 2023):

1

F k( )
AM

+ 1

F k( )
PM

� 1 (19)

Multiplicative correction factors for non-linear models, such as
the exponential regression model, can also be constructed, e.g., by
following the second interpretation of DeLorenzo and Wiggans
(1986). Please refer to Wu et al. (2023a) for a detailed description.

Continuous correction factors

The practice of deriving daily yield correction factors on discrete
milking interval classes has been in place for decades, but it was
recently under scrutiny (Wu et al., 2023b). On the one hand,

calculating correction factors on discrete milking interval bins
presumes that these factors remain consistent within each bin,
imposing a theoretically debatable contention. On the other
hand, determining the optimal size for these discrete bins is
practically challenging. A bin size that is too small might not
provide enough data to calculate yield correction factors for
every bin accurately. Conversely, a large bin size can inevitably
compromise the accuracy of the estimated daily milk yields.

Instead, continuous daily yield correction factors can be derived
(Wu et al., 2023b). For example, assuming there is sufficient data for
every milking interval time range, continuous MCFs can be derived
based on the Wiggans (1986) model as follows:

Ft* � 1

E z | β̂0, β̂1, t � t*( ) �
1

β̂0 + β̂1t*
(20)

By noting ẑt* � β̂0 + β̂1t*, where z is a proportional daily milk
yield, we can calculate anMCF as the reciprocal of average estimated
proportional daily yields, utilizing all data satisfying t � t*. That is,

Ft* � 1

E z|t � t*, θ̂( ) �
1
ẑt*

(21)

Here, θ collectively includes all unknown model parameters. The
above formula retains the MCF interpretation by the Wiggans
(1986) model, assuming all other covariates have been averaged
out or are non-existent. Because E(z|t � t*, θ̂) can be evaluated
numerically by estimated or fitted proportional daily yields,
Equation 21 is universally applicable, encompassing both linear
and non-linear models, and even non-parametric models.

In practice, however, there may not always be sufficient data
for every milking interval time unit. A more favorable approach,
in line with the concept of locally weighted regression, involves
calculating the MCF for each milking interval time t by utilizing
the data within locally defined neighborhoods, not limited to
using only the data with t � t* (Wu et al., 2023b). Then, the MCF
can be obtained by taking the reciprocal of the weighted mean of
proportional daily milk yields within each locally defined
neighborhood:

Ft* � 1

E f w′z
∣∣∣∣θ, t ∈ N t*( )( )( ) (22)

where t ∈ N(t*) comprises all the observations within the
neighborhood centering at t*, and w is a vector of weights
defined for all the observations in this neighborhood. The
weights are defined to be linearly or non-linearly proportional to
a distance measure in milking interval time for each observation
relative to t*. Think of deriving continuous MCFs on moving
windows, which are neighborhoods. The size of the
neighborhood is adjustable, depending on the data information
required. Within each neighborhood, the weight increases as the
observation gets close to t* in milking interval time. Hence, with the
local regression approach, computing continuous MCFs can
overcome the limitations of the discrete MCF model because it
can always ensure sufficient data for computingMCFs andminimize
system bias.

Figure 3A shows MCFs calculated with both approaches using a
simulation dataset (Wu X-L. et al., 2023). Continuous MCFs were
generated every 0.1-h time using LOESS and the Wiggans (1986)
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model (GW1). The Wiggans (1986) model was also used to generate
discrete MCFs for 30-min milking interval bins (GW2). Overall, the
MCFs obtained from GW1 were more akin to the MCFs obtained
from LOESS with larger span parameter values (0.9) because LOESS
with large span parameter values featured global regression.
Nevertheless, both models did not give identical MCFs,
suggesting that they still performed differently. The weights
assigned to each dataset with LOESS are different: the closer a
data point was to the mid-point of the neighborhood, the larger
weight it got. In contrast, GW1 assigned the same weights to all data
points. Therefore, LOESS can achieve the best local fitting while
retaining excellent global smoothing.

To show the presence of systematic biases in daily milk yields
estimated from discrete MCFs, we calculated average estimated daily
milk yields thus obtained with the Wiggans (1986) model and,

meanwhile, fitted smoothing splines on the actual test-day milk
yields and calculated average estimated test-day milk yields. The
absolute deviation between the smoothed average of actual daily
milking yields and the average of estimated daily milk yields was
minimal at the mid-point of each milking interval class or bin; it
then increased as the milking interval time moved away toward the
boundaries (Figure 3B). Similar results were also obtained using the
real dataset in the US Holstein dairy cattle (Wu et al., 2022). These
recurrent patterns suggest that systematic biases were minimal at the
central location of each milking interval bin and maximum on the
boundaries between milking interval bins. Wu et al. (2022), Wu et al.
(2023a), Wu et al. (2023b) have analytically shown why large
milking interval classes or bins can lead to systematic errors. All
these results, when combined, forcefully suggest that the periodical
biases arising from deriving correction factors on large discrete

FIGURE 3
Multiplicative milk yield correction factors (MCFs) obtained using two different strategies (A) Discrete versus continues MCFs for the morning (AM)
and evening (PM) milkings, derived from theWiggans (1986) model (GW) and locally weighted regression (LOESS; span = 0.1, 0.5, and 0.9, and degree = 1)
(B)Discrepancies between smoothed average test-daymilk yields and average estimated test-daymilk yields obtained based onMCFs obtained using the
Wiggans (1986) model. GW1 = MCFs computed for every 0.01-h time unit based on the Wiggans (1986) linear regression model; GW2 = MCFs
computed for 30-min bins based on the Wiggans (1986) model; LOESS_α = MCFs calculated for every 0.01-h time unit based on LOESS with the span
being α = 0.1, 0.5, 0.9, respectively.
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milking interval classes were not just theoretical. Still, it is playing
out in the real world, too.

Applications to genetic evaluations

Utilizations of test-day milk yields in genetic evaluations fall into
two broad categories. In countries such as Canada, Finland,
Germany, Italy, the Netherlands, and Switzerland, genetic
evaluations are performed directly based on test-day yield
records. This approach is referred to as the test-day yield model
or, simply, the test-day model. In contrast, the United States
employs a distinct strategy wherein genetic evaluations are
derived from projected 305-day lactation yields, calculated from a
subset of test-day yields throughout the lactation period. The latter
method is referred to as the lactation yield model. Notably, test-day
data have been collected in the United States since 1905 for
management and have contributed to national genetic evaluations
since 1936. However, the patenting of the test-day model in the
United States in 1993 confined its application primarily to regional
and unofficial evaluations under the exclusive purview of the patent
holders (Powell and Norman, 2006).

Lactation yield model

A lactation yield model capitalizes on the high heritability of
total lactation yield, providing an assessment directly pertinent to
dairy producers. The total amount of milk produced over a lactation
is a direct determinant of farm revenue. However, an intrinsic
drawback of a lactation model is that it does not utilize all
available test-day records, though lactation curves can be inferred
by additional steps based on test-day milk yields. Knowing
individual lactation curves can be useful in making informed
breeding decisions.

Projection of lactation milk yields Accurately projecting total
lactation milk yields is crucial to genetic evaluations under the
lactation milk yield model. The Centering Data Method (CDM;
McKellip and Seath, 1941) and the Test Interval Method (TIM;
Sargent et al., 1968) were two well-known empirical methods used to
estimate lactation milk yields in the 20th century. CDM calculated
lactation yields based on yields from two consecutive milkings per
month. The sampling day was centered as nearly as possible in the
test month period but not necessarily aligned with the calendar
month. Nevertheless, CDM overestimated actual yields until peak
lactation and the yield following the last test day, typically
underestimating yields for other test periods. Consequently, TIM
supplanted CDM in the US in 1969 (McDaniel, 1969). TIM
interprets the span between two test days as a distinct test
period, with production credits bifurcated based on the data
from each test day. Production credits for the first half of the test
period are computed based on the first test-day information.
Production credits for the second half of the test period were
based on the second test-day information. For the first and last
test intervals, yield credits were calculated similarly to CDM. Hence,
TIM produced more accurate estimates when milk weights and
component samples were obtained monthly, permitting greater
flexibility than CDM (Norman et al., 1999). Shook et al. (1980)

further proposed adjusting the credits for the first and second test
intervals for the nonlinear shape of the lactation curve and the last
test for a continuation of the expected decline, aiming to minimize
the biases from overestimating credits for the first and last test
intervals and underestimating credits for the second test interval.

Beginning in February 1999, the Best Prediction (BP)
methodology was employed to estimate unobserved daily yields
based on known daily yields (VanRaden, 1997; Cole and
VanRaden, 2006). A fundamental assumption underlying BP is the
prior knowledge of means and (co)variances, coupled with the premise
that deviations of observed and unobserved milk yields from their
respective populationmeans follow amultivariate normal distribution.
Consequently, the 305-day milk yield is calculated by the sum of the
population mean and the product of covariance between observed and
unobserved test-day yields, the inverse variance of observed test-day
yields, and the deviations of observed test-day yields. The population
means are often derived from the population average of lactation
curves, for instance, the Wood lactation curve (Wood, 1967). Studies
have shown that BP yielded more accurate 305days yields than TIM
(e.g., Norman et al., 1999). Aggregating all the measured and estimated
daily yields up to 305 days in milk gives the lactation yield. An added
advantage of this aggregation method is its capacity to facilitate
inference on individual lactation curves. Alternatively, lactation
milk yields can be calculated directly without aggregating daily
yields. BP was initially implemented limited to 305-day lactations.
However, longer lactations can be accommodated by estimating
covariances for days in milk greater than 365 days (Cole et al.,
2007; Cole et al., 2009). Lactation milk yields can be estimated via
a single-trait prediction exclusively from test-day milk yields or
through multi-trait analysis encompassing other component traits,
such as fat and protein. Multiple-trait predictions exhibit heightened
accuracy, especially when some component samples are lacking
(Schaeffer and Jamrozik, 1996).

Standardization of lactation records In the United States,
lactation records have been standardized to a mature equivalent
yield since the beginning of the 20th century (Freeman, 1971).
Adjustments to age metrics other than mature age have also been
considered (e.g., McDaniel, 1973). A mature-equivalent lactation
yield delineates the hypothetical amount of milk a cow would have
produced if she were mature (roughly 4–5 years old) under a twice-
daily milking regime for 305 days. Milk records extending beyond
305 days are truncated, whereas those falling short are projected to
305-day yields (VanRaden, 1997). The key to adjusting milking
frequencies is quantifying the relative increase of daily yields when
switching from non-standard milking to standard, twice-daily
milking. Notably, such gains can vary with age, season, and
region. Wiggans and Powell (1980) estimated the relative
increase in milk yield from 3X milking compared to 2X milking
daily, which was 20% for 2-year-old cows, 17% for 3-year-old cows,
and 15% for 4-year-old cows. Furthermore, a recent proposal by
VanRaden et al. (2023) advocates a negative exponential function to
derive correction factors tailored for adjusting milking frequencies.
It is evident that current correction factors for adjusting milking
frequencies are outdated and necessitate updating. Powell and
Norman (2006) also argued against adjusting milking frequencies
independent of multiplicative independent of milk yield
standardization for other factors, positing that discerning yield
variations solely based on milking frequency is challenging.
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Additionally, lactation standardization considers factors such as age
of the cow (or age-parity), and month of the year at calving (or season-
region) (Norman et al., 1995; Miles et al., 2023). The mature-equivalent
factors currently used in the national evaluation were derived almost
30 years ago (Schutz and Norman, 1994). The USDA updated age
factors routinely in 1935, 1942, 1953, and 1974. Norman et al. (1995)
reported changes in maturity patterns across time. Adjustments
catering to 5-year periods were integrated into the national animal
model from 1995 onwards. Multiplicative factors standardize the mean
and standard deviation proportionally, and separate pre-adjustment
factors standardize the genetic variances of records across time and
herds before their incorporation into the animal model (Wiggans and
VanRaden, 1989). A further pre-adjustment was added in 2007 to
standardize variance across parities. Notably, the base adjustment varies
with countries. For instance, while the United States, Australia, Canada,
and Italy adjust records to mature age, some other countries opt for
adjusting records to a first-lactation age ranging from 24 to 30 months.
Israel adjusts to 36 months or the age of average production.
Recommendations from Interbull lean towards adjusting to the
average age. While the rationale for mature age adjustments may be
entrenched in tradition, adjustment to average agemay bemore realistic
because it puts records on the scale of an average cow in the herds, and,
on average, adjusted and actual yields would be similar for a herd
(Powell and Norman, 2006). Nevertheless, as Miller (1973) analytically
highlighted, for any set of age means fromwhich adjustment factors are
constructed, the base to which records are adjusted exerts minimal
influence on ranking animals.

US dairy genetic evaluations In the United States, the genetic
merits of animals are assessed on mature equivalent 305-day
lactation yields, utilizing a multiple-trait, animal model (Wiggans
et al., 1988; Wiggans and VanRaden, 1989; VanRaden et al., 1995).
Incoming data undergo rigorous checks for plausible values and
alignment with pre-existing records (Norman et al., 1994; Miles
et al., 2023). Multiplicative adjustments are conducted for calving
age and month within each breed, times milked per day (adjusted to
twice daily milking), previous days open, and heterogeneous
variance. The base for mean and variance adjustments is set at
36-month-old and second-parity cows. Unequal variances across
time, herds, and breeds are adjusted to the base variance calculated
from standardized records of first lactation cows that calved in 2007.

The current CDCB genetic evaluations are scheduled tri-
annually (April, August, December), encompassing lactation
records from animals that calved post-1960, with the pedigree
data from birth years as far back as 1950. The animal model,
operational since 1989, is represented as:

y � Mm + Za + ZAgg + Pp + Cc + e (23)
In this model equation, y is a vector of standardized lactation

records (e.g., milk, fat, and protein yields). Vectors m, a, g , p, and c
contain the effects for the management group, random additive
genetic merit, unknown parent group, permanent environment, and
herd-sire, respectively. Matrices M, Z, ZAg , P, and C denote their
respective incidence matrices, while e encapsulate unaccounted
residuals. This model facilitates the simultaneous evaluation of all
animals in the dataset, accounting for all relatives that contribute to
the assessment of each animal (VanRaden and Wiggans, 1991).
Unknown parent groups can also be considered (VanRaden and

Wiggans, 1991), The genetic evaluation system has been modified at
times to meet the needs of the US dairy industry and leverage
technical and methodological advancements. The current animal
model has been enhanced to capture phenotypic variations due to
varying calving ages and parities. Unknown parents are grouped by
birth years, breeds, and, for Holstein cattle, separately for US and
foreign animals. Unknown sires and dams of cows are grouped
separately, but unknown parents of bulls are assigned to a combined
group. The relationship matrix also accounts for the effects of
inbreeding on Mendelian sampling variance. The genetic base in
the US dairy cattle evaluations is recalibrated every 5 years. Hence,
the next base change will be in 2025, when the cows born in
2020 become the base population, and their average evaluation
will be set to 0. The periodic base recalibration, executed every
5 years, is integral for reflecting the genetic progress observed in the
population.

Test-day yield models

A test-day model is an animal model directly evaluating test-day
observations. These models accommodate diverse data structures,
from varied intervals to distinct recording plans. For instance, while
some herds may only record milk yields, others may also include
records of fat and protein contents. Test-day models offer a nuanced
way to account for factors with varying effects on each test day
(Druet et al., 2003). Moreover, specialized curves for distinct factors
can be deduced by nesting the DIM class into the source of variation
(Stanton et al., 1992). Historically, two-step test-day models
emerged in regions such as Australia (Beard, 1983; Jones and
Goddard, 1990), New Zealand (Johnson, 1996), and the
Northeastern United States (Kachman and Everett, 1989; Everett
et al., 1994; Wiggans and Gengler, 1999). This methodology first
corrects test-day records for factors such as age-season, previous
open days, milking regularity, lactation stage, milking age, and
gestation days. Post-adjustments, breeding values for lactation
traits are then ascertained via an animal model. On the other
hand, one-step models perform both processes concurrently. The
latter approaches fall into two categories. The first category includes
test-daymodels with fixed regression of yield on DIM, assuming that
test-day records within a lactation are repeated records (Meyer et al.,
1987; Ptak and Shaeffer, 1993), hence referred to as repeatability
test-day (REP-TD) models. The second category includes random
regression test-day (RR-TD) models that define the animal’s genetic
effect by random regression coefficients, also allowing for
covariances among them.

Repeatability test-day models. Meyer et al. (1987) originally
proposed one-step REP-TD models in Australia in the form of a
sire model. Ptak and Schaeffer (1993) advocated using a repeatability
animal model for genetic evaluations of dairy sires and cows, making
it popular. A general scalar representation of a REP-TDM is the
following:

y � HTD+∑bixi + a + p + e (24)

where y is a test-day yield, HTD is a fixed herd test-day effect, a is a
random genetic effect of an animal, p denotes the permanent
environmental effect associated with each lactation, and e is the
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residual term. The lactation curve is accounted for by several
coefficients of a fixed regression of yield on DIM or functions of
DIM,∑ bixi. Optionally, regressions can be nested within classes of
other fixed effects like age. This ensures that the heterogeneity of the
residual variance is accounted for (Ptak and Schaeffer, 1993). This
model has been extended to multiple traits such as milk, fat, protein,
and somatic cell scores, with test-day records within the lactation
viewed as repeated traits and those between lactations as separate
traits (Reents et al., 1995a; Reents et al., 1995b).

Random regression test-day models. A REP-TD model is ideal if
genetic correlations among test-day yields are very high or near
unity. But, in reality, they are not. To better fit the latter scenario,
Schaeffer and Dekkers (1994) proposed using random regressions
for evaluating animals’ genetic effects, permitting a covariance
structure among the regression coefficients. Their model
underwent further refinements, culminating in Canada’s adoption
of a multiple-trait (milk, fat, protein, and somatic cell score),
random regression test-day animal model in February 1999
(Jamrozik et al., 1997b; Schaeffer et al., 2000). Typically, the
model includes fixed regressions accounting for similarities of
lactation curves within specified groups of animals (e.g., regions
and age classes), and random regressions are added to account for
the individual variation of animal genetic effects and permanent
environmental effects (Jamrozik et al., 1997a; Jamrozik and
Schaeffer, 1997). A similar model was proposed by Kettunen
et al. (1998), which included a random herd test month of
production effect with different submodels for the genetic and
permanent environmental components. Gengler et al. (1999)
proposed an RR-TD model with an alternate strategy for solving
the system of equations. The general concept of random regressions
was previously described by Henderson (1982) and Laird and Ware
(1982).

The general scalar representation of the RR-TD model adopted
in Canada (Jamrozik et al., 1997c; Schaeffer et al., 2000) is the
following:

y � HTD+∑bz+∑az+∑pz + e (25)

where y is a test-day record,HTD is the fixed herd test-day effect, b
is a vector of fixed regressions within region, age, and season, a is a
vector of random regression genetic coefficients specific for each
animal, p is a vector of random regression coefficients for
permanent environmental effects for each cow, and e is the
residual term for each observation. The submodel for the shape
of the lactation curve is identical for fixed and random regressions.
For instance, when Wilmink’s function is used (Wilmink, 1987),
the function is defined by z′ � ( 1 t e−0.05t) with t denoting DIM.
Extending the RR model to simultaneously account for multiple
traits (e.g., milk, fat, protein, and SCS) is straightforward but can
be computationally intensive.

Estimated breeding values and persistency proofs. The REP-TD
model operates on the premise that genetic variation remains
constant throughout lactation. As a result, while EBVs can be
computed for any stage of lactation, their interrelationships result
in a basic linear function when calculated for distinct periods. On the
other hand, RR-TDmodels permit changes in an individual’s genetic
merit at any given day during lactation. Hence, an RR-TD model
calculated the breeding value for an animal as integrals from the

individual curve, enabling EBVs to be presented as curves of genetic
merit (White et al., 1999). The inherent advantage of genetic merit
curves lies in their capacity to visually portray genetic merit level
while simultaneously depicting lactation persistency of lactation
(Swalve, 2000). This feature aids breeders in selecting bulls most
suitable for their production systems, especially when contemplating
the optimal lactation length, even if it falls short of the standard 305-
day lactation duration.

Persistency proofs can be deducted from the daily genetic merit
curves derived from RR-TD models (Jamrozik et al., 1997b;
Jamrozik et al., 1998). Persistency, an economically pivotal trait,
influences feed expenses, health, and fertility traits (Dekkers et al.,
1998). Of these aspects, the repercussions of persistency on health,
specifically metabolic stress causing health problems in cows, may
outweigh its effect on feeding costs. Assessing feed expenses involves
determining how supplementing concentrates to persistent cows can
be partially offset by roughage, thus reducing overall costs (Swalve
and Gengler, 1998).

Random-regression test-day models allow for estimating the
genetic variance and ‘genetic yields’ for each individual day of
lactation, thus paving the way for establishing precise persistency
benchmarks. Such adaptability allows diverse persistency criteria to
be determined from genetic assessments with RR-TD models. For
instance, Jamrozik et al. (1998) proposed using the average slope of
an animal’s lactation curve between days 60 and 280 as a measure of
persistency. Their findings pointed to heritability levels in the range
of 0.20–0.30 for milk, fat, and protein yields over the first three
lactation cycles, alongside an almost negligible genetic interrelation
between persistency and yield. However, a challenge surfaced from
their analysis: the genetic correlations of persistency across
lactations remained consistently low, roughly around 0.35. The
underpinnings for this tenuous interplay between lactations
remain speculative. Indirect selection predicated on such feeble
correlations would prove inefficacious. Further complexities
emerge, such as the challenge of achieving consensus on a
singular persistency definition, like the slope of the lactation
trajectory between days 60 and 280, which opposes the aspiration
of providing EBV for diverse production systems.

Cross-country genetic evaluations

During the 1980s, exporting North American semen to multiple
countries led to numerous globally located daughters of highly
ranked bulls. This widespread distribution fueled the interest in
evaluating bull merits internationally. In 1994, the International Bull
Evaluation Service (Interbull), rooted in Sweden, was founded by
four Nordic countries and incorporated two breeds.

Interbull harmonized national genetic evaluations from various
countries to present assessments of a comprehensive set of bulls
based on each participating country’s metrics. In August 1995,
Interbull adopted the multiple-trait, cross-country evaluation
system (MACE) proposed by L. R. Schaeffer (1994), which
encompasses genetic correlations between countries that are less
than unity. This model fundamentally functions as a single-trait sire
(lactation) model, integrated with a vector of phantom parent
genetic group effects, and is designed to facilitate the comparison
of dairy sires across multiple nations.
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yi � μi1 + ZiQGI + ZiSI + ei (26)
In the above, yi is a vector of sire daughter yield deviations

(DYD) from country i, μi is the overall average DYD, which reflects
the definition of genetic basis in that country, g i is a vector of
phantom parent genetic group effects, defined across countries and
by birth year within the country of birth, si is a vector of sire genetic
effects (transmitting abilities), Zi is the matrix that relates elements
of yi to elements in si, Q is a matrix that associates sires with their
genetic groups, and ei is a random mean residual effect defined for a
variable number of daughters.

Subsequent model advancements encompass a multiple-trait,
sire (lactation) model devoid of the phantom genetic group effect, as
proposed by Weigel et al. (2001), and a multiple-trait, test-day
(animal) model, as introduced by Jamrozik et al. (2002). In the
former model, the fixed effects additionally include herd-year-
season of calving, age at calving, milking frequency, and heterosis
(breed composition) classes. In the latter model, the fixed effects
integrate herd-test day effects and a combination factor
compromising of breed composition, age at calving, season of
calving, and DIM effect; the random effects include random
regression coefficients for the permanent environmental effect,
random regression coefficients for animal genetic effect, and
regression coefficients for genetic group effects, in addition to the
residuals.

Aftermath: discerning actualities from
projections

Estimated test-day milk yields have been used as if they were
accurate depictions of actual test-day milk yields, neglecting the fact
of possible estimation errors. The potential consequences arising
from the disturbances linked to these estimates on subsequent
genetic evaluations have not been sufficiently addressed. Liu et al.
(2000) assessed six linear and non-linear regressions compared to
the 2X method for estimating daily yields in AM-PM milking
schedules. They reported a reduction in the variances of
estimated yields compared to actual daily yields from different
lactation stages, underscoring the need to expand the variance of
estimated yields to a comparable scale with actual yields in genetic
evaluation. Adjustments enabling comparable variances between
actual and projected lactation yields were previously proposed by
VanRaden et al. (1991). Essentially, linear (and quadratic) regression
models are ACF models (Wu et al., 2022; Wu et al., 2023 X-L.).
Hence, they did not preserve the actual variance structures as did
MCF models (Miller, 1973). Even when estimated daily yields from
single milkings were expanded to a comparable scale to actual daily
yields, they could be assigned to more significant error variances
than actual daily yields. Hence, variance-rescaling approaches could
lower heritability and repeatability for expanded daily yields.
Consequently, for estimating a cow’s breeding value, her own
records received less weight when she was in AM-PM milking
schemes than in a standard A4 testing program (Liu et al., 2000).

In this section, we analytically show the influence of errors
associated with estimated test-day milk yields from two perspectives:
estimating lactation milk yields using best prediction and genetic
evaluation per se. In the former scenario, let y be a n × 1 vector of

305-day milk yields for n animals, and X be a n × k matrix of test-
day milk yield deviations, where k represents the number of test days
for each lactation period. According to VanRaden (1997), the
unknown lactation or daily yields are estimated to be a
population average plus the covariance between 305-day milk
yield and test-day milk yields (c) multiplied by the inverse of the
variance of test-day yields (V−1), multiplied again by the test-day
yield deviations. That is,

E y( ) � 1μ + c′V−1X( )′ (27)
where μ, c and V are assumed to be known. The above equation can
be viewed as a linear regression yet with a known population mean
and variance-covariance terms, which can be re-arranged as follows:

E y( ) � 1μ + Xβ (28)
where β � c′V−1. The assumption for no measurement errors,
typically made for linear regression, does not hold with (28)
when applied to estimate 305-day yields. Test-day milk yields are
not measured directly but instead estimated, introducing potential
errors. When these estimation errors are small in magnitude, they
can be safely discarded because their impact on the results tends to
be minimal. However, if the errors are significant, they will lead to
erroneous and even invalid estimates.

Denote projected lactation yields by y*, estimated from test-day
yields, denoted by X*. Further, let test-day milk yields be estimated
from single milkings with errors. Hence, errors-in-variance models
(Griliches and Ringstad, 1970; Chesher, 1991) can be used to
describe their relationships, as follows:

y* � E y( ) +  � 1μ + Xβ +  (29)
X* � X + V (30)

Here,  is a n× 1 vector containing the usual disturbance, and V
is a n × kmatrix with measurement errors. We assume that  and V
both have null means and are mutually independent: E() � 0,
E(′) � Iσ2 , E(V) � 0, E(V′V) � R, and E(V′) � 0.

Replacing X in (29) with X � X* − V leads to:

y � 1μ + X* − V( )β + � 1μ + X*β +  − Vβ( )� 1μ + X*β + *

(31)
where * � ( − Vβ) is a new error term, also referred to as the
composite disturbance. The problem with (31) is that, assuming
E(*)� 0, it infringes upon the fundamental assumption of linear
regression because the explanatory variables and the error term are
no longer uncorrelated, as follows:

E X* − E X*( )( )′ * − E *( )( )[ ] � E V′  − Vβ( )[ ]
� E V′[ ] − E V′V[ ]β � 0 − Rβ

� −Rβ ≠ 0

(32)
When using the estimated test-day milk yields with

measurement errors to estimate the actual lactation yields, the
resulting linear regression coefficients also do not correspond to
their “true” values. For instance, let x*j � xj + vj, where x*j and xj are
vectors for estimated and actual milk yields on test day j, respective,
and vj is a vector of estimation errors specific to the jth test day. Let
y � 1μ +∑k

j�1xjβj + ϵi represent the actual lactation yields. Then, we
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show that the regression coefficients calculated from estimated test-
day yields, denoted by β̂

*

j, for test-day j, is the following, which do
not correspond precisely to their “true” effects (denoted by βj).

β̂
*

j �
COV x*j, y( )
Var x*j( ) � COV xj + vj, xjβj( )

Var xj + vj( ) � βjσ
2
xj

σ2xj + σ2v
(33)

Therefore, disregarding the errors linked to projected lactation
milk yields from estimated test-day yields, instead of actual yields,
does not imply their nonexistence. On the contrary, these errors give
rise to biases known as regression dilution or regression attenuation
(Frost and Thompson, 2000).

When measurement errors associated with test-day yields are
significant, how do they affect the estimation of heritability, an
important genetic parameter for genetic evaluations? Here, we give
an analytical illustration based on a simplified animal model, where
the overall mean (μ) is the only fixed effect and the random-effect
terms include animal effects (u), namely, additive genetic effects, for
test-day or lactation yields plus the residuals (e).

y � 1μ + Zu + e (34)
Here, for example, y is a vector of daily milk yield directly

measured on n cows on a given test day. The random animal effects
u~ N(0,Aσ2u) are assumed to follow a multiple-variate normal
distribution with null means and the variance-covariance matrix
defined by the product of the numerator additive genetic
relationship matrix A and a scalar quantity σ2u. The residuals
follow a multiple-normal distribution with null means and a
common variance: e~ N(0, Iσ2e).

The mixed-effect model equation (MME), in matrix form, is the
following:

1′1 1′Z
Z′1 Z′Z + A−1σ−2u

[ ] μ̂
û

[ ] � 1′y
Z′y[ ] (35)

Following Henderson (1986), the estimated animal effects and
residuals are the following:

û � C2W′y (36)
ê � y − 1μ̂ − Zû (37)

Here, W � ( 1 Z ), C and C2 are given by taking the symmetric
inverse of the coefficient matrix of (35), as follows:

C � C2

C2
[ ] � C11 C12

C21 C22
[ ] � 1′1 1′Z

Z′1 Z′Z + A−1σ−2u
[ ]

−1
(38)

In (37), μ̂ represents some solution for the overall mean, which is
not unique when each animal has only one observation. Instead, we
take a simple, parsimonious solution, which is the arithmetic average
of daily milk yields:

μ̂ � 1
n
1′y (39)

The estimated variances for the random genetic effects and
residuals are the following (Henderson, 1986):

σ̂2u �
1
q

û′A−1û + tr A−1C22( )( ) (40)

σ̂2e �
1
n

ê′ê + tr WCW′( )( ) (41)

where q is the number of random effects, and n is the number of
observations.

Then, the heritability for this test-day milk yield is estimated as
follows:

h2 � σ2u
σ2u + σ2e

� n û′A−1û + tr A−1C22( )( )
n û′A−1û + tr A−1C22( )( ) + q ê′ê + tr WCW′( )( )

(42)
When daily milk yield is not measured directly but estimated from

partial yields, the estimated daily yields may not precisely correspond to
the actual test-day milk yields. Let  be a vector of the deviates of
estimated daily milk yields (y*) from their actual values, that is,

y* � y +  (43)
Then, the animal model becomes:

y* � 1μ* + Zu* + e* (44)
In the above, we used * to distinguish between variables in the

model (44) from those in the model (34). Then, we show that the
overall mean, when obtained as the arithmetic average of corrected
test-day milk yields, remains the same as in (39):

μ̂* � 1
n
1′y* � 1

n
1′ y + ( ) � 1

n
1′y+ 1

n
1′ � 1

n
1′y (45)

The above holds because E() � 1
n1′ � 0. However, the

estimated random animal effects and residuals appear different.
That is,

û* � C2W′y* � C2W′ y + ( ) � C2W′y + C2W′ � û + C2W′
(46)

ê* � y* − 1μ̂* − Zû* � y + ( ) − 1μ̂ − Z û + C2W′( )
� ê +  − ZC2W′( ) (47)

Assume that deviates happen randomly such that E() � 0.
Then, we have E(û*) � E(û) and E(ê*) � E(ê). However, when
systematic biases are present, the bias increases as the milking
interval becomes more uneven (Wu et al., 2022). Even when the
estimated breeding values are unbiased, as in the case of random
deviations, the variance components obtained from corrected test-
day milk yields do not correspond precisely to those obtained from
actual test-day milk yields. This is analytically shown as follows:

σ̂2
u* �

1
q

û*′A−1û* + tr A−1C22( )( )
� 1
q

û + C2W′( )′A−1 û + C2W′( ) + tr A−1C22( )( )
Letting b � C2W′, which quantifies the deviation of û* from û*,

the above becomes:

σ̂2u* �
1
q

û + b( )′A−1 û + b( ) + tr A−1C22( )( )
� 1
q

û′A−1û + 2û′A−1b + b′A−1b + tr A−1C22( )( )
� σ2u +

1
q

2û′A−1b + b′A−1b( ) (48)
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Following a similar strategy and letting d �  − ZC2W′, we
have:

σ̂2e* �
1
n

ê + d( )′ ê + d( ) + tr WCW′( )( )
� 1
n

ê′ê + 2ê′d + d′d + tr WCW′( )( ) � σ2e +
1
n

2ê′d + d′d( )
(49)

Consequently, the heritability estimate obtained from estimated
test-day milk yields also deviates from the heritability of actual daily
milk yields. The following adjustments are needed to retain the same
heritability as (42).

h2 � σ2u* − 1
q 2û′A−1b + b′A−1b( )

σ2u* + σ2e*( ) − 1
q 2û′A−1b + b′A−1b( ) + 1

n 2ê′d + d′d( )( )
� σ2u

σ2u + σ2e( ) (50)

Otherwise, if large in magnitude, the estimation errors associated
with test-daymilk yields would have significant implications, potentially
influencing heritability estimates and the estimated breeding values. A
thorough understanding of this situation hinges on further studies.

Conclusion

We provided a comprehensive review of test-day milk yields,
focusing on two primary daily yield correction methods and their
applications, drawing insights from seminal studies over the past
century. Test-day records offer meticulous insights into a cow’s
productive life, elucidating the intricate interplay of genetic and
environmental determinants shaping the quantity and quality of
milk production. Such information is pivotal in formulating
advanced mathematical models, thereby refining milk yield
projections. The incorporation of test-day milk yields in dairy cattle
genetic evaluations is instrumental in establishing a basis for heritability
assessment and breeding value determination. This, in turn, steers
breeding strategies aimed at elevating futuremilk yields and overall herd
efficacy. Moreover, these yield records furnish invaluable perspectives
for informed dairy management decisions, from fine-tuning feed
efficiency and fortifying animal wellbeing to strategic culling
decisions. This paper deliberates on the ramifications of modulating
test-day milk yields, highlighting possible challenges and their potential
effects on ensuing genetic evaluations.

The consistent acquisition and nuanced analysis of test-day data
remain central to the progressive, sustainable, and profitable evolution of
the dairy industry. In an ongoing endeavor, extensive, high-resolution
milking data are being gathered for subsequent research. This initiative
receives joint support from the USCouncil onDairy Cattle Breeding, the
USDA Agricultural Genomics and Improvement Laboratory, and the
NationalDairyHerd InformationAssociation. Access to this new dataset
will enable a thorough re-evaluation of existing systems and the
development of novel tools, ensuring they reflect the most current
and relevant realities. It will also facilitate the updating of pertinent

parameters. Follow-up projects will include the reassessment of
corrections applied to lactation yields and the refinement of
adjustments for mature equivalent yields. These are crucial aspects
for the future planning and enhancement of genetic evaluations and
dairy production systems in the United States. As scientific and
technological capabilities advance, we anticipate a heightened
utilization of milk yield records, promoting more efficient genetic
selection and herd management practices, thereby driving the dairy
sector towards a profoundly knowledge-based and data-informed future.
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