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Ovine footrot is an infectious disease with important contributions from
Dichelobacter nodosus and Fusobacterium necrophorum. Footrot is
characterized by separation of the hoof from underlying tissue, and this
causes severe lameness that negatively impacts animal wellbeing, growth, and
profitability. Large economic losses result from lost production as well as
treatment costs, and improved genetic tools to address footrot are a valuable
long-term goal. Prior genetic studies had examined European wool sheep, but
hair sheep breeds such as Katahdin and Blackbelly have been reported to have
increased resistance to footrot, as well as to intestinal parasites. Thus, footrot
condition scores were collected from 251 U.S. sheep including Katahdin,
Blackbelly, and European-influenced crossbred sheep with direct and imputed
genotypes at OvineHD array (>500,000 single nucleotide polymorphism) density.
Genome-wide association was performed with a mixed model accounting for
farm and principal components derived from animal genotypes, as well as a
random term for the genomic relationship matrix. We identified three genome-
wide significant associations, including SNPs in or near GBP6 and TCHH. We also
identified 33 additional associated SNPs with genome-wide suggestive evidence,
including a cluster of 6 SNPs in a peak near the genome-wide significance
threshold located near the glutamine transporter gene SLC38A1. These findings
suggest genetic susceptibility to footrot may be influenced by genes involved in
divergent biological processes such as immune responses, nutrient availability,
and hoof growth and integrity. This is the first genome-wide study to investigate
susceptibility to footrot by including hair sheep and also the first study of any kind
to identify multiple genome-wide significant associations with ovine footrot.
These results provide a foundation for developing genetic tests for marker-
assisted selection to improve resistance to ovine footrot once additional steps like
fine mapping and validation are complete.
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1 Introduction

Footrot, or infectious pododermatitis, is a hoof infection
commonly found in sheep, goats, and cattle. Although footrot
was first described more than 180 years ago, it is a complex
disease still endemic in many countries (Zanolari et al., 2021).
Ovine footrot is caused by an interaction of two anaerobic,
Gram-negative bacteria: D. nodosus (formerly Bacteroides
nodosus) and F. necrophorum (formerly Sphaerophorus
necrophorus). However, Dichelobacter nodosus is the primary
causative agent of footrot in sheep (Kennan et al., 2014). Initial
colonization of the hoof by opportunistic bacteria, including the
ruminant digestive tract commensal bacterium Fusobacterium
necrophorum, is followed by infection with D. nodosus, and
interaction between these two pathogens causes footrot in
sheep. Ovine footrot is characterized by the separation of the
keratinous hoof from the underlying tissue and causes severe
lameness (Kennan et al., 2011). The annual costs of footrot were
estimated at £24.4 million in UK (Nieuwhof and Bishop, 2005) and
$18.4 M in Australia (Sackett et al., 2007; Smith et al., 2022), which
corresponds to £1.32 and £0.15 per living ewe and lamb, respectively
(Nieuwhof and Bishop, 2005). In Switzerland, annual costs for
footrot were estimated at CHF33 million for the sheep
population (Zingg et al., 2017). Affected sheep frequently
experience pain, discomfort, and reduced mobility which affects
their ability to access feed (Abbott and Lewis, 2005). Thus, it is not
surprising that affected sheep can experience reduced growth rates
and wool production. For instance, one study showed that lambs
with footrot reached slaughter weight 31.9 days later than lambs
without footrot (Zingg et al., 2017).

Currently, a variety of different footrot management and
treatment approaches are utilized world-wide. These include foot
trimming, foot baths/foot soaks with zinc sulfate and copper sulfate,
injection of antibiotics (penicillin and streptomycin combinations),
and topical medications or vaccination against D. nodosus. None of
these interventions is perfect, and the best results are obtained when
several methods are combined (Bennett and Hickford, 2011).
Variation in management and treatment reflects variation in
stocking rate (of importance with a contagious disease), the size
of flocks, the cost of labor for labor-intensive management practices,
and the cost and availability of remedies and acceptability of the
various management and treatment regimes in different markets.
There remains a need for additional minimally labor-intensive tools
to reduce both losses and treatment costs of ovine footrot.

Since pathogen persistence in the environment depends on the
host (Clifton et al., 2019), one possibility is to use genetic resistance
to footrot as a prevention tool. Demonstration of genetic variance
can provide a sense of the promise of such a strategy, and studies
dissecting genetic variation involved in degrees of footrot resistance
have been ongoing for the last 4 decades (Escayg et al., 1997).
Moderate heritability has been estimated for ovine footrot,
generally between 0.20 and 0.30 depending on breed and
phenotypic scoring method (Emery et al., 1984; Raadsma et al.,
1994; Nieuwhof et al., 2008a; Raadsma and Conington, 2011),
demonstrating that footrot resistance is a heritable trait. Breed
differences have been observed, including that Merino sheep are
particularly susceptible to footrot, while others such as Romney are
more resistant (Emery et al., 1984). These results suggest there is

potential for development of genetic tools to improve footrot
resistance, as simple phenotypic selection has led to long-term
genetic improvement (Parker et al., 1983; Conington et al., 2008).

To enhance genetic gains, the identification of specific genes and
molecular markers associated with footrot resistance is needed.
Although a few genetic markers for natural resistance to footrot
have been identified (Litchfield et al., 1993; Escayg et al., 1997;
Niggeler et al., 2017), there is still a paucity of information about
genetic variation in susceptibility to ovine footrot. The role of the
major histocompatibility complex (MHC) in modulating immune
responses, and subsequently disease susceptibility for both the Class
I and Class II regions, has been investigated in relation to footrot
resistance (Litchfield et al., 1993; Escayg et al., 1997; Hickford et al.,
2004; Raadsma and Dhungyel, 2013). For genome wide association
studies, only two studies (Mucha et al., 2015; Niggeler et al., 2017),
have been reported and they were focused solely on European wool
sheep breeds. Katahdins and other hair sheep show distinct genetic
heritage (Spangler et al., 2017) which has manifested in
demonstrated differences in disease resistance traits between hair
and wool sheep (Vanimisetti et al., 2004). Some have suggested that
hair breeds like Katahdin and Blackbelly might be more resistant to
footrot than other sheep (Yazwinski et al., 1979; Zajac, 1995; Bishop
and Morris, 2007; Azarpajouh, 2014; de Almeida, 2018), and there
has not been an investigation of the genetics of ovine footrot
susceptibility at the genome-wide level in these breeds. Therefore,
the main aim of this study was to undertake a genome-wide
association study (GWAS) to investigate Single Nucleotide
Polymorphisms (SNPs) and identify genes linked to footrot
susceptibility in North American hair and wool sheep.

2 Materials and methods

2.1 Animals and phenotyping

Over a 4-year period (2010–14), as part of a NE-SARE-funded
study to teach producers a method for elimination of footrot on NE
sheep farms, the research team visited sheep farms at least twice in
6 northeastern states (Maine, New Hampshire, Vermont,
Pennsylvania, Maryland and New York). All farms had self-
identified as affected with ovine footrot. As part of a 4-week,
multi-visit farm protocol for footrot control, the research team
inspected and trimmed sheep hooves on the initial farm visit.
The research team categorized each sheep as being free of any
signs of footrot (score 1), showing signs suggestive of footrot (odor,
interdigital inflammation; score 2) or having overt footrot (keratin
lesions such as undermining of the sole, odor; score 3). Additional
details on the scoring systemmay be found in Supplementary Figure
S1. For each sheep, the highest score for any individual hoof was
taken as the final score for the animal. In addition to the foot score
for each sheep, breed, or breed group (e.g., for crossbreds) was
recorded. All farms had one or more sheep with footrot, indicating
the presence of the etiologic agents on the farm’s property. Farms
with prevalence of 10% or above in the flock were selected for
inclusion in the study. Production systems varied in size and breed
composition, including fraction of crossbred sheep. Sheep age was
not available for every flock, but average age was approximately
2 years for those where it was recorded. Anticoagulated (EDTA)
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blood was collected once during the study from each sheep for DNA
extraction and further analysis. The dataset consisted of 251 sheep
from 9 farms including Katahdin and Blackbelly hair sheep, Merino,
Polypay, and other wool sheep from European-influenced breeds,
plus crossbred sheep.

2.2 Genotypes and imputation

Genomic DNA was extracted as previously described (White
et al., 2012). Briefly, DNA was isolated using the Invitrogen
GeneCatcher™ gDNA 3–10 mL Blood Kit as per manufacturers’
instructions (Life Technologies, Carlsbad, CA, US). DNA samples
were checked for quality and quantity using an ND-1000
spectrophotometer (Nanodrop, Wilmington, DE, US) and
equilibrated to 50 ng/μL for genotyping. Animals were genotyped
in the GeneSeek laboratory (Lincoln, NE, United States) using the
Illumina ovine HD (Kijas et al., 2014) and the Illumina ovine
SNP50 BeadChips (Becker et al., 2010) (Illumina Inc., San Diego,
CA, United States). For 200 sheep, genotypes were collected with the
Illumina OvineHD array. An additional 51 sheep were matched by
breed and farm with other animals in the OvineHD dataset, and
these additional animals were genotyped with the Illumina
OvineSNP50 array. All unphased genotypes were converted from
the. ped format of PLINK v1.9 (Purcell et al., 2007; Chang et al.,
2015) to variant call format using a script incorporating the data.
table v1.11.4 package in R v3.3.2 (R Core Team, 2016). Before
imputation, loci without available position information and loci with
a call rate lower than 95% from either array were removed using a
script incorporating the same R package. Finally, a similar R script
was used to reassemble the dataset following group-specific
imputation (for groups consisting of Katahdin sheep, sheep with
Barbados Blackbelly heritage, and other breeds to represent the three
largest genetic groupings in this dataset). For sheep genotyped with
the OvineHD BeadChip, genotype information was added for loci
not already present in the OvineSNP50 dataset, and this group was
designated as a reference panel. In this reference panel, Beagle
v5.0 was used to impute sporadic missing genotypes and then to
phase the imputed genotypes (Browning and Browning, 2007) with
default settings (Browning et al., 2018). Using the Beagle v5.0 default
settings, only the sheep genotyped on the OvineSNP50 BeadChip
were imputed to the OvineHD BeadChip marker set and phased
(Browning and Browning, 2007; Browning et al., 2018).

2.3 Statistical analysis

Genome-wide association was performed in SNP and Variation
Suite (SVS) version 8 (Golden Helix, Inc., Bozeman, MT, US) (Lee
et al., 2012). Initial quality control was performed to remove variants
with minor allele frequency below 2% and Hardy-Weinberg
equilibrium tests with p < 10–25. Initial association models were
constructed in the EMMAX (Kang et al., 2010) implementation
within SVS containing fixed effects of breed, farm, and principal
components derived from genome-wide genotypes (Price et al.,
2006; Zhang and Pan, 2015) as well as a random term for the
genomic relationship matrix. However, the breed term was multi-
colinear with the principal components, indicating that the principal

components contained the same information as the breed term.
Indeed, preliminary analysis showed R2 between breed and the first
principal component alone was 0.679, R2 between breed and the first
two principal components was 0.949, and R2 between breed and all
20 principal components was >0.999 so the breed term was dropped
in favor of the principal components. Final association models were
mixed models including fixed effects for the additive contribution of
the SNP of interest, farm, and 20 principal components derived from
genome-wide genotypes, as well as the genomic relationship matrix
as a random effect. Genome-wide significance was determined by
p < 5 × 10−7, and genome-wide suggestive evidence was determined
by p < 1 × 10−5 (Burton et al., 2007). Manhattan plots and Q-Q plots
were constructed in R using the mhplot2 script kindly provided by
Dr. Stephen Turner (http://gettinggeneticsdone.blogspot.com/2011/
04/annotated-manhattan-plots-and-qq-plots.html, viewed on 11-
15-11).

3 Results

There were 92 sheep with healthy scores of 1 (no footrot in any
foot), 52 with intermediate scores of 2 (at least one foot with a score
of 2), and 107 with scores of 3 for footrot disease (at least one foot
with a score of 3). Out of 553,197 SNPs, the call rate screen removed
no SNPs with call rates <95%. The minor allele frequency screen
removed 37,043 SNPs, and the Hardy-Weinberg equilibrium test at
p < 10–25 removed an additional 519 SNPs, which left 515,635 SNPs
after quality control for further analysis.

The genomic inflation factor (lambda) for the overall genome-
wide association analysis was 1.01. Figure 1 shows a Manhattan plot
of genome-wide association, and a quantile-quantile plot is given in
Supplementary Figure S2. Detailed information on the top loci

FIGURE 1
Manhattan plots showing SNP association with footrot. Different
colors indicate various ovine chromosomes. The x-axis shows SNP
position across chromosomes in numerical order, and the y-axis
represents the −log10 (p-values). The upper and lower lines
indicate the genome-wide significant and suggestive thresholds,
respectively.
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demonstrating genome-wide significant associations are highlighted
in Table 1. Additional information on loci with genome-wide
suggestive association are shown in Table 2.

4 Discussion

Since footrot susceptibility is heritable (Parker et al., 1983;
Raadsma et al., 1994; Nieuwhof et al., 2008b; Raadsma and
Conington, 2011), a genetic selection approach may help to
decrease lesion score and the number of animals affected through
selective breeding if loci associated with footrot can be identified.
The aim of the present study was to perform the first GWAS for
footrot in North American wool sheep and also the first GWAS for
hair sheep. Our analysis yielded an appropriate model fit with a
genomic inflation factor of 1.01. We identified 3 genome-wide
significant and 33 genome-wide suggestive loci associated with
ovine footrot susceptibility on 13 different autosomes (Table 1;
Table 2). Below, we explore the regions surrounding these regions,
the potential involvement of nearby genes in ovine footrot, and
compare our results to those identified in other studies to date.

Multiple genome-wide significant positional candidate genes
were identified in the present study with functions in the
immune system (Table 1). First, two genome-wide associate SNPs
(rs421352693; p = 1.08 × 10−9 and rs411314769; p = 3.74 × 10−7;
Table 1) were located in an intergenic region on OAR25. Although
this locus did not contain a positional candidate gene, this region
could affect susceptibility to footrot through the regulation of distant
genes due to the presence of regulatory elements, non-coding RNAs,
or other features (Scacheri and Scacheri, 2015; Georges et al., 2019).
It is interesting that the most significant SNP (rs421352693) was
located less than 10 Kb away from a seven base-pair highly
conserved element from an analysis of 91 eutherian mammal
genomes (Ensembl release 97; Zerbino et al., 2018). The specific
function of this highly conserved element has not been fully
elucidated, but it is located between ARID5B and RTKN2 (Jiang
et al., 2014), both of which have been linked to roles in regulation of
immune responses. ARID5B encodes a DNA-binding protein with
roles in NK cell function (Cichocki et al., 2018), cancers of both B
and T lymphocytes (Healy et al., 2010; Zeng et al., 2014; Leong et al.,
2017), and autoimmune disease (Wang et al., 2012; Yang et al.,
2013). The RTKN2 gene is expressed in lymphocytes (Collier et al.,
2004), induces an NF-kB-dependent hold on apoptosis (Collier
et al., 2009) that can change counts and function of available
immune cells, and has been implicated in autoimmune disease

(Myouzen et al., 2012). In the cases of both of these genes, roles
in immune cells suggest possible immune mechanisms for
differential control of footrot in sheep. There are ongoing efforts
to identify and annotate regulatory elements in sheep and other
ruminants through the Functional Annotation Animal Genomes
(FAANG) consortium, among others (Andersson et al., 2015; Tuggle
et al., 2016). The functional importance of this genome-wide
association may become clearer once data from such annotation
projects are complete.

The guanylate-binding protein 6 (GBP6) gene is located on
OAR1 (Jiang et al., 2014) within a peak defined by two SNPs, one
genome-wide significant (rs159679616; p = 3.91 × 10−7; Table 1) and
one genome-wide suggestive (rs159679642; p = 1.02 × 10−6; Table 2).
Guanylate-binding proteins (GBPs) are abundantly expressed
cellular proteins with seven highly homologous members in
sheep, termed GBP1 to GBP7, expressed in response to
interferon-gamma (IFN-γ) and other pro-inflammatory cytokines
(Olszewski et al., 2006; Kim et al., 2011; Praefcke, 2018). GBP6
stimulates phagocyte oxidase, antimicrobial peptides, and
autophagy effectors in an immune response capable of killing
multiple types of bacteria (Kim et al., 2011). Furthermore, it has
been proposed that GBPs might promote lysis of vacuoles, thereby
triggering detection of pathogen associated molecular patterns
(PAMPs) and further immune responses, as well (Meunier et al.,
2014; Meunier and Broz, 2015).

The SNP association peak on OAR1 was also very near the
trichohyalin (TCHH) gene (Table 1; Table 2). Trichohyalin
crosslinks with keratin intermediate filaments to provide
mechanical strength in hair follicles, as well as hooves (O’Keefe
et al., 1993; Steinert et al., 2003). This could affect hoof formation in
ways that predispose or protect sheep from ovine footrot. Thus, this
most significant pair of SNPs result points to involvement of hoof
structure as well as to stimulation of the immune response as
potential mechanisms for susceptibility to ovine footrot. Other
immune related QTLs have been reported in the literature from
the same region where GBP6 and TCHH are located on OAR1. For
instance, a facial eczema susceptibility QTL has been reported based
on microsatellite marker genotyping on OAR1 (Phua et al., 2009). It
is possible that this association could reflect contributions from both
genes (GBP6 and TCHH) through one or more regulatory elements,
but future work would be required to elucidate the specific
underlying functional mutation(s) in this region.

A cluster of six SNPs spanning just over 100 Kb on
OAR3 included the lowest p-value genome-wide suggestive
association results (Table 2). Of these, the SNP with the lowest

TABLE 1 Genome-wide significant single nucleotide polymorphism (SNP) markers associated with footrot.

Chr refSNP Variant
type

Position
bp

A1 A2 MAF p-value Genes within 100 Kb

1 rs159679616 missense
variant

66,009,064 C+ G 0.024 3.91 × 10−7 Glogin subfamily A member 6-like protein 22 (LOC101114579),
Guanylate-binding protein 6-like (GBP6)

25 rs421352693 intergenic
variant

18,039,266 T+ C 0.024 1.08 × 10−9 No close gene or protein coding sequence

25 rs411314769 intergenic
variant

18,084,729 A+ G 0.038 3.74 × 10−7 No close gene or protein coding sequence

+ represents the favorable host allele against footrot.
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TABLE 2 Genome-wide suggestive single nucleotide polymorphism (SNP) markers associated with footrot.

Chr refSNP Variant type Position bp A1 A2 MAF p-value Genes within 100 Kb

1 rs159679642 downstream gene variant 66,005,263 C+ T 0.052 2.04 × 10−6 Glogin subfamily A member 6-like protein 22
(LOC101114579), Guanylate-binding protein 6-like

(GBP6)

1 rs430349561 intergenic variant 182,882,844 A G+ 0.032 4.70 × 10−6 MYCBP associated and testis expressed 1 (MAATS1),
Nuclear receptor subfamily 1 group I member 2 (NR1I2)

1 rs429765562 intergenic variant 241,551,968 T+ C 0.039 2.60 × 10−6 No close gene or protein coding sequence

3 rs427476105 intergenic variant 140,124,049 T+ G 0.024 1.07 × 10−6 No close gene or protein coding sequence

3 rs430672094 intergenic variant 140,130,660 T+ C 0.024 1.07 × 10−6 No close gene or protein coding sequence

3 rs417462455 intergenic variant 140,150,750 C+ T 0.024 1.07 × 10−6 No close gene or protein coding sequence

3 rs415897197 intergenic variant 140,123,914 A+ G 0.026 7.89 × 10−7 No close gene or protein coding sequence

3 rs415053617 intergenic variant 140,073,084 G+ A 0.024 6.60 × 10−7 Solute carrier family 38 member 2 (SLC38A2)

3 rs426283825 intergenic variant 140,173,114 A+ G 0.029 9.35 × 10−7 No close gene or protein coding sequence

3 rs421757376 intergenic variant 38,174,475 T+ C 0.028 4.96 × 10−6 Poly(rC) binding protein 1 (PCBP1)

3 rs409808538 intron variant 207,436,102 T G+ 0.041 2.12 × 10−6 Lysophosphatidylcholine acyltransferase 3 (LPCAT3),
EMG1 N1-specific pseudouridine methyltransferase

(EMG1), Prohibitin 2 (PHB2), Protein tyrosine phosphatase
non-receptor type 6 (PTPN6), Chromosome

3 C12orf57 homolog (C3H12orf57), Atrophin 1 (ATN1),
Enolase 2 (ENO2)

3 rs159823349 synonymous variant 207,439,936 G+ A 0.042 2.12 × 10−6 Lysophosphatidylcholine acyltransferase 3 (LPCAT3),
EMG1 N1-specific pseudouridine methyltransferase

(EMG1), Prohibitin 2 (PHB2), Protein tyrosine phosphatase
non-receptor type 6 (PTPN6), Chromosome

3 C12orf57 homolog (C3H12orf57), Atrophin 1 (ATN1),
Enolase 2 (ENO2)

3 rs430419641 - - T+ G 0.042 2.12 × 10−6 Not mapped to the genome

3 rs414749931 intergenic variant 79,863,459 G+ A 0.032 5.24 × 10−6 Prolyl endopeptidase like (PREPL)

3 rs426897991 intergenic variant 82,276,667 A G+ 0.033 5.96 × 10−6 No close gene or protein coding sequence

3 rs161809555 missense variant 207,542,450 G A+ 0.051 6.22 × 10−6 Enolase 2 (ENO2), Leucine rich repeat containing 23
(LRRC23), Triosephosphate (TPI1), Ubiquitin specific
peptidase 5 (USP5), Cell division cycle associated 3

(CDCA3), G protein subunit beta 3 (GNB3), Prolyl 3-
hydroxylase 3 (P3H3), G protein-coupled receptor 162

(GPR162), CD4 molecule (CD4)

3 rs424145176 intergenic variant 92,413,143 C+ T 0.081 7.17 × 10−6 Transforming protein RhoA (LOC101106246),
Transforming growth factor alpha (TGFA)

4 rs416121047 intergenic variant 100,351,736 C+ G 0.032 2.84 × 10−6 No close gene or protein coding sequence

4 rs420577155 intergenic variant 108,031,285 A+ G 0.043 7.74 × 10−6 No close gene or protein coding sequence

4 rs418147929 intergenic variant 14,801,187 T+ C 0.030 9.95 × 10−6 No close gene or protein coding sequence

5 rs428564305 intergenic variant 100,414,308 A+ G 0.080 5.20 × 10−6 No close gene or protein coding sequence

8 rs422048023 intergenic variant 43,382,115 G+ A 0.029 7.95 × 10−6 EPH receptor A7 (EPHA7)

8 rs399612094 3 prime UTR variant 67,232,813 T+ C 0.073 6.48 × 10−6 ENSOARG0000002740

11 rs427616272 intergenic variant 7,537,149 T+ C 0.039 9.66 × 10−6 A-kinase anchoring protein 1 (AKAP1)

13 rs419736982 intron variant 2,021,618 G A+ 0.025 5.21 × 10−7 Phospholipase C beta 4 (PLCB4), Lysosomal associated
membrane protein family member 5 (LAMP5), p21(RAC1)

activated kinase 5 (PAK5)

13 rs429709544 synonymous variant 2,045,662 A G+ 0.025 5.33 × 10−6 Lysosomal associated membrane protein family member 5
(LAMP5), p21 (RAC1) activated kinase 5 (PAK5)

(Continued on following page)
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p-value (p = 6.6 × 10−7) was rs415053617 (Table 2), which was
located less than 10 Kb from SLC38A1 (Oguchi et al., 2012). The
SLC38A1 gene encodes a glutamine transporter expressed in hair
cells (Oguchi et al., 2012) and extracellular exosomes (Willms et al.,
2016) and is involved in oxidative stress responses (Ogura et al.,
2011). Taken together, these data suggest SLC38A1might inhibit D.
nodosus and/or F. necrophorum by limiting glutamine nutrient
availability, either before or during infection.

Two GWAS have been performed previously for ovine footrot
susceptibility in sheep with wool. Niggeler et al. (2017) identified the
only other genome-wide association with footrot (aside from the
present work) on OAR2 near the multi-PDZ domain protein 1
(MPDZ) gene in Swiss White Alpine sheep. The genome-wide
associated SNP was rs418747104, and additional genome-wide
suggestive markers nearby included rs426927857 and
rs406749947. However, this locus was not associated with footrot
in our dataset (all p > 0.05). The other prior GWAS for ovine footrot
in sheep with wool (Mucha et al., 2015) identified no genome-wide
associations but did identify chromosome-wise significant
associations on ovine chromosomes 4, 8, 14, 17, 18, 24, and 26.
None of these loci were associated with footrot in this study (all p >
0.05). The non-overlapping associated genomic regions among
different experiments may be caused by differences in pathogen
characteristics on different continents or by breed differences,
especially since this is the first study to include hair sheep.

In addition to GWAS, prior candidate gene studies have been
conducted to identify associations with ovine footrot. Candidate gene
studies have identified associations with footrot inDQA1,DQA2,DQB,
and DRA in the Major Histocompatibility Complex (MHC) on ovine
chromosome 20 (Escayg et al., 1997; Gelasakis et al., 2013). This is a
complex region with paralogs derived from tandem repeats and even
variable numbers of genes (Herrmann-Hoesing et al., 2008; Gao et al.,
2010; Bickhart and Liu, 2014). Haplotypes in this region can be quite
long, and some are ancient in origin (Raymond et al., 2005). The specific
markers used in prior work are difficult to assess in our study because of
the widely differing marker types. However, no markers in that region
on OAR 20 achieved genome-wide significant or genome-wide
suggestive support in this study (Table 1; Table 2).

5 Conclusion

This is the first genome-wide study examining footrot
susceptibility using hair sheep and the first GWAS to identify
multiple genome-wide associations with footrot. These results
provide insight into mechanisms that may affect footrot
susceptibility and resistance. In particular, both genome-wide
significant and genome-wide suggestive associations illustrated
themes of immune function, nutrient availability, and hoof
formation and integrity. Thus, this study met its objective in
improving understanding of host genetics of footrot
susceptibility. In addition to biological insights, these results
provide a foundation for future work developing predictive
genetic marker tests. Such technology offers the possibility of
disproportionate benefits to flock health through selection
against the most susceptible animals before infection, disease,
and transmission to other animals (Galvani and May 2005;
Lloyd-Smith et al., 2005). However, more research is needed
to identify the specific functional mutations in linkage
disequilibrium with the markers in this study. In addition, the
functional mutations will need to be validated and examined for
potential correlated responses to selection, including production
traits (White and Knowles, 2013) such as some already identified
for immune loci in sheep (Cinar et al., 2016; Cinar et al., 2018).
Further, additional animals can be used to examine potential for
genomic selection to leverage these data into additional breeding
applications that may not require identification of causal
mutations. In these ways, sheep production can benefit from
reliable, predictive genetic tests for which selection does not lead
to deleterious effects on other traits.

Data availability statement

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and accession
number(s) can be found below: https://osf.io/, DOI 10.17605/OSF.
IO/FX3ESat.

TABLE 2 (Continued) Genome-wide suggestive single nucleotide polymorphism (SNP) markers associated with footrot.

Chr refSNP Variant type Position bp A1 A2 MAF p-value Genes within 100 Kb

14 rs417508179 intron variant 25,429,390 G+ A 0.045 3.23 × 10−6 Matrix metallopeptidase 15 (MMP15), Cilia and flagella
associated protein 20 (CFAP20), Casein kinase 2 alpha 2

(CSNK2A2)

16 rs409491906 downstream gene variant 35,417,010 C A+ 0.055 3.13 × 10−6 RPTOR independent companion of MTOR complex 2
(RICTOR), Oncostatin M receptor (OSMR)

16 rs411963224 intron variant 36,857,015 A+ G 0.033 3.49 × 10−6 WD repeat domain 70 (WDR70), Nuceloporin 155
(NUP155)

17 rs426749853 intergenic variant 24,462,154 A G+ 0.021 2.08 × 10−6 No close gene or protein coding sequence

19 rs424837077 intron variant 19,106,626 T+ C 0.39 1.23 × 10−6 Glutamate metabotropic receptor 7 (GRM7)

23 rs398222764 intergenic variant 9,724,724 G+ A 0.025 4.42 × 10−6 No close gene or protein coding sequence

25 rs409708600 intron variant 22,379,923 A+ G 0.039 7.50 × 10−6 Catenin alpha 3 (CTNNA3)

+ represents the favorable host allele against footrot.
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