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Allergy is an autoimmune disorder described as an undesirable response of the
immune system to typically innocuous substance in the environment. Studies have
shown that the ability of proteins to trigger allergic reactions in susceptible
individuals can be evaluated by bioinformatics tools. However, developing
computational methods to accurately identify new allergenic proteins remains
a vital challenge. This work aims to propose a machine learning model based on
multi-feature fusion for predicting allergenic proteins efficiently. Firstly, we
prepared a benchmark dataset of allergenic and non-allergenic protein
sequences and pretested on it with a machine-learning platform. Then, three
preferable feature extraction methods, including amino acid composition (AAC),
dipeptide composition (DPC) and composition of k-spaced amino acid pairs
(CKSAAP) were chosen to extract protein sequence features. Subsequently,
these features were fused and optimized by Pearson correlation coefficient
(PCC) and principal component analysis (PCA). Finally, the most representative
features were picked out to build the optimal predictor based on random forest
(RF) algorithm. Performance evaluation results via 5-fold cross-validation showed
that the final model, called iAller (https://github.com/laihongyan/iAller), could
precisely distinguish allergenic proteins from non-allergenic proteins. The
prediction accuracy and AUC value for validation dataset achieved 91.4% and
0.97%, respectively. This model will provide guide for users to identify more
allergenic proteins.
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1 Introduction

Allergic diseases are a group of immune-mediated inflammatory response diseases,
including allergic asthma, allergic rhinitis, atopic dermatitis, food allergy. These diseases are
caused by the hypersensitivity of body immune system to normally harmless environmental
substances (Miescher and Vogel, 2002). With the change of worldwide environment, the
incidence of allergic diseases has increased considerably in the past few years. Patients with
allergic diseases often have complex clinical manifestations and a high risk of recurrence
(Wang et al., 2023a). Biomedical researchers are increasingly concerned about these diseases.
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Substances that can induce allergic reactions, typically proteins,
are called allergens (Galli et al., 2008). Allergenic proteins for
humans are often derived from aeroallergens, food allergens,
personal care products and so on. Allergic reactions are generally
grouped into two classes. The well-studied and common class is
mediated by immunoglobulin E (IgE), which is one of the five
primary human immunoglobulins. An IgE-mediated (type I
hypersensitivity) allergy occurs when the body encounter
allergenic proteins containing immunogenic and antigenic
structures. The mechanism is that allergenic proteins enter body
and drive immune cells to produce lots of allergenic protein-specific
IgE antibodies. When the body re-exposure to the allergenic
proteins, these IgEs will bind to them and lead to the activation
of other immune cells as well as the initiation of inflammation
response (Platts-Mills, 2001; Oseroff et al., 2012; Guo et al., 2023).
The specific recognition and interaction for allergenic proteins is
based on their sequences and structures.

The common methods used to determine protein allergenicity
potential are traditional immunochemical, biochemical and
immunological methods (Kimber et al., 2003; Ladics and Selgrade,
2009; Zhou et al., 2023). With the development of bioinformatics
and machine learning algorithms, massive computational strategies
for identifying allergenic proteins have emerged and evolved over
time (Saha and Raghava, 2006; Gupta et al., 2013; Sharma et al.,
2021a; Lathwal et al., 2021). Thereinto, the key idea of early reported
methods is to seek sequence similarity, which is mainly based on the
guidelines about evaluating the potential allergenicity of novel food
proteins proposed by the United Nations Food and Agriculture
Organization (FAO) and the World Health Organization (WHO).
These methods, such as SDAP, Allermatch, AllerTool, AllerHunter,
generally assess protein potential allergenicity by searching for similar
sequences on the basis of local or global sequence alignment algorithms,
such as BLAST, FASTA program, etc (Ivanciuc et al., 2003; Fiers et al.,
2004; Zhang et al., 2007; Muh et al., 2009). Another class of technology
involves the identification of allergen-related motifs by using motif
search tool, such as MEME/MAST. Furthermore, ensemble
approaches, such as proAP and AlgPred 2.0, have also been
developed based on both sequence similarity and motif eliciting
strategy (Soeria-Atmadja et al., 2006; Wang et al., 2013; Sharma
et al., 2021b). In recent years, several feature vector-based approaches
have been reported, including APPEL, AllerTOP, AllergenFP,
AllerCatPro, ProAll-D (Cui et al., 2007; Dimitrov et al., 2013;
Dimitrov et al., 2014; Nguyen et al., 2022; Shanthappa and Kumar,
2022). In general, they take sequence-derived compositional,
evolutionary, structural and physicochemical information into
consideration and achieve allergenic protein classification by using
machine learning or deep learning models (Wang et al., 2021; Ao
et al., 2022; Wu et al., 2023). For example, random forest (RF),
support vector machine (SVM), decision tree (DT), k-nearest
neighbors (KNN) and multilayer perceptron (MLP) were employed
to establish AlgPred 2.0 on the basis of composition/evolutionary
information-based features (Zhang et al., 2007). Different
classification models, including Gaussian Naive Bayes, Radius
Neighbour’s Classifier, Bagging Classifier, ADA Boost, Linear
Discriminant Analysis, Quadratic Discriminant Analysis, Extra Tree
Classifier and Long Short-TermMemory (LSTM), have been considered
in the study of ProAll-D (Cui et al., 2007).

Although there are presently a number of computational
methods for detecting allergenic proteins, due to the limitations
of prediction performance, it is still need to train more effective and
robust allergenic protein classifiers. In this work, we focused on
allergenic proteins for human beings and developed iAller to
distinguish them from non-allergenic proteins. The major
implement procedures have been shown in Figure 1, which
includes 1) constructing a benchmark dataset consisting of
2,210 positive and 2,210 negative sample sequences; 2)
conducting pre-analysis on the whole dataset with iLearnPlus by
combining nine feature descriptors with four machine learning
algorithms; 3) selecting AAC, DPC and CKSAAP feature
extraction methods with excellent performance to encode
sequence samples, as well as RF algorithm to build classifier; 4)
integrating these three types of features and performing feature
selection and dimensionality reduction by using PCC and PCA; 5)
training and determining the optimal classifier on training dataset
through 5-fold cross-validation; 6) assessing the prediction
performance of the optimal RF model on validation dataset. The
high accuracy and AUC value of 91.4% and 0.97 suggest that this
model should be an excellent choice for identifying allergenic
proteins.

FIGURE 1
The frame of establishing the allergenic protein classifier in this
study. Abbreviations: AAC, amino acid composition; DPC, dipeptide
composition; TPC, tripeptides composition; DDE, dipeptide deviation
from expected mean, CKSAAP, composition of k-spaced amino
acid pairs; GAAC, grouped amino acid composition; GDPC, grouped
dipeptide composition; GTPC, grouped tripeptide composition;
CKSAAGP, composition of k-spaced amino acid group pairs; RF,
random forest; LR, logistic regression; SVM, support vector machine;
KNN, k-nearest neighbors, Acc, accuracy; Sn, sensitivity; Sp,
specificity; MCC, Matthews correlation coefficient; AUC, area under
receiver operating characteristic (ROC) curve; AUPRC, area under
precision-recall curve.

Frontiers in Genetics frontiersin.org02

Liu et al. 10.3389/fgene.2023.1294159

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1294159


2 Materials and methods

2.1 Protein sequence benchmark dataset

The main significance of this work is to provide a theoretical
basis for the study of human allergic reactions. Hence, this work
primarily focused on proteins causing allergic reactions in human
beings, excluding other species. The sequence benchmark dataset
was composed of 2,210 non-allergenic proteins and 2,210 allergenic
proteins. These allergenic proteins were originated from various
human allergens, mainly including wheat, rice, seafood product,
pollen, dust and so on. This dataset had been studied by ProAll-D
project and could be freely accessible from https://doi.org/10.17632/
tjmt97xpjf.1. Proteins with high homology had been removed by
CD-HIT program for avoiding sequence redundancy and ensuring
the objectivity of experimental results (Shanthappa and Kumar,
2022).

2.2 Preliminary selection of analysis
methods

For building a machine learning classifier for protein sequences,
it is necessary to convert biological sequence information into
feature vector information that can be processed by computers
(Lu et al., 2022; Wang et al., 2023b; Dao et al., 2023; Le, 2023;
Zhu et al., 2023). Therefore, it is very imortant to select appropriate
feature extraction methods. For the above protein sequence datasets,
we firstly performed pre-experiment by using iLearnPlus (Chen
et al., 2021), a comprehensive and automated machine-learning
platform. This online server could automatically generate and save
evaluation metrics of the selected algorithms according to input data
and parameter settings. Nine feature descriptors, including AAC,
DPC, tripeptides composition (TPC), dipeptide deviation from
expected mean (DDE), CKSAAP, grouped amino acid
composition (GAAC), grouped dipeptide composition (GDPC),
grouped tripeptide composition (GTPC) and composition of
k-spaced amino acid group pairs (CKSAAGP), were applied to
extract sample information of allergenic and non-allergenic
proteins in our work. By comparing the performance of RF,
logistic regression (LR), SVM and KNN classification models
using these features, we finally chose the AAC, DPC, CKSAAP
methods combined with RF algorithm for further detailed analysis.

2.3 Protein sequence features

2.3.1 Amino acid composition (AAC) feature
Amino acids are the basic units of proteins. Twenty types of

amino acids are involved in protein composition, namely, Alanine
(A), Cysteine (C), Aspartic acid (D), Glutamic (E), Phenylalanine
(F), Glycine (G), Histidine (H), Isoleucine (I), Lysine (K), Leucine
(L), Methionine (M), Asparagine (N), Proline (P), Glutamine (Q),
Arginine (R), Serine (S), Threonine (T), Valine (V), Tryptophan
(W), Tyrosine (Y). Among the numerous computational methods
for transforming protein sequences into feature vectors, AAC coding
method is the simplest and most intuitive one. The principle is to
calculate the frequencies of twenty types of amino acids in protein

sequence (Bhasin and Raghava, 2004; Sahoo et al., 2021). Based on
AAC, every allergenic/non-allergenic protein sequence can be
represented with a 20-dimension feature vector, as Formula (1),

V1 � f1f2f3 . . . f20[ ]T (1)
fi � Ai

L
(2)

where T means the transpose of a vector. Ai is the number of i-type
amino acid contained in the protein sequence of interest, L is the
total number of amino acids in the sequence, fi is the proportion of
corresponding amino acid in this protein.

2.3.2 Dipeptide composition (DPC) feature
Feature encoding method based on k-mer composition is to

divide protein sequences into fragments with fixed length of k, and
calculate the frequency of each type k-mer fragment. Such method
can capture information about amino acid composition as well as
local sequence order (Ahmad et al., 2016). When k = 2, namely,
DPC, there are 20 × 20 = 400 kinds of 2-mers. Each protein sequence
will be transformed into a numerical vector with 400 features. The
calculation formula is as following,

V2 � F1F2F3 . . . F20 . . . F400[ ]T (3)
Fi � Di

L − k + 1
(4)

the meaning of T is same as above. L and k indicate the length of a
given protein sequence and the length of small k-mer fragments,
respectively. Di represents the total number of dipeptide i. Fi is the
corresponding proportion.

2.3.3 Composition of k-spaced amino acid pairs
(CKSAAP) feature

Another popular binary encoding strategy similar to DPC is
CKSAAP. The encoding scheme is to count the occurrence times of
400 amino acid pairs separated by any k-mer in a given protein
sequence (Ju and Wang, 2020). For example, when k = 1, a protein
will be encoded to a 400-dimensional numerical vector with each
feature factor being the frequency at which any one 1-spaced amino
acid pair appears. In this work, we set k-spaced amino acid pair to
k = 1, 2, 3 to encode allergenic and non-allergenic protein sequences,
taking into account its prediction accuracy, computational time and
complexity. A total of 1200 CKSAAP features were produced, as
follow:

V3 � NAA1

N1
, . . . ,

NYY1

N1
, . . . ,

NAAk

Nk
, . . . ,

NYYk

Nk
, . . . ,

NAA3

N3
, . . . ,

NYY3

N3
[ ]

20×20×3

(5)
whereNAAk represents the frequency of k-mer separated AA pair in
a protein andNk corresponds to the total number of k-spaced amino
acid pairs.

2.4 Feature fusion, selection and shrinkage

In the field of biomolecule sequence analysis, extracting features
from a single perspective often leads to incomplete sequence
information and low prediction performance of classification
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models. In order to improve this problem, the above AAC, DPC and
CKSAAP three type features were fused together for cc. Every
protein sequence of the benchmark dataset was represented as:

V � V1, V2, V3[ ] (6)
Feature vectors produced by multi-feature fusion methods

were usually high-dimensional and redundant (Han et al., 2022;
Yan et al., 2022; Zhao-Yue ZHANG et al., 2022; Ao et al., 2023).
We further utilized two approaches, PCC combined with
incremental feature selection (IFS) strategy and PCA, to select
more informative features and reduce dimensionality (Karl
Pearson, 1901; Stigler, 1989; Dao et al., 2018). PCC is often
used to measure the strength and direction of a linear
relationship between two variables. It is defined as the
quotient of the covariance and standard deviation between
two variables. A larger absolute value of the Pearson
coefficient indicates a stronger linear relationship between the
two variables. PCA is another common feature extraction and
dimensionality reduction method. Its purpose is to transform a
series of influence factors with correlations into a new set of
mutually independent comprehensive indicators, while
retaining as much information as possible on the original
variables during the transformation. The core idea is to map
the original high-dimensional data into a new low-dimensional
space and to obtain a set of orthogonal basis vectors. PCA
enables the map of raw data on this set vector to be with
maximum variance and preserve the major characteristics.
For example, a raw dataset with p variables will be converted
q comprehensive principal components by a linear combination
of optimally weighted original variables, where q is less than
p. The detailed computation procedures of these methods are
described in iLearnPlus.

2.5 Classifier construction with random
forest (RF)

RF is an ensemble learning algorithm that combines several
base learners into a strong learner by voting or averaging to
improve the robustness and generalization performance
(Breiman, 2001; Wei et al., 2021; Yang et al., 2021; Basith
et al., 2022; Islam et al., 2022; Zhang et al., 2023a). Thus, we
adopted RF algorithm to construct allergenic protein classifier.
The process was as follows: 1) Random sampling: N new datasets
are generated by random sampling with replacement, each of
which has the same size as the original dataset. 2) Building
decision trees: The CART decision tree algorithm is applied to
each new dataset and builds a decision tree. Due to the
characteristics of random sampling, each new dataset might
only contain a part of samples and features of the original
dataset, as well as the predictive ability of each tree might be
different. 3) Integrating: N decision trees are combined into a
strong classifier by voting or averaging. The RF strategy was
involved in random sampling and random feature selection.
Random sampling enables the differences among each new
dataset and avoids model overfitting. Random feature
selection enables the variability among decision trees and
improves the generalization ability of the final model.

2.6 Classifier performance evaluation

For assessing machine learning models more accurately, the
benchmark dataset was split into training and validation datasets
with ratio of 4:1. Five-fold cross-validation was used in model
training. We employed several common indexes to evaluate
model performance (Hasan et al., 2022; Jeon et al., 2022;
Shoombuatong et al., 2022; Thi Phan et al., 2022; Zhang et al.,
2023b), including accuracy (Acc), sensitivity (Sn)/recall, specificity
(Sp), precision, F1-score (F1), Matthews correlation coefficient
(MCC), area under receiver operating characteristic (ROC) curve
(AUC), area under precision-recall curve (AUPRC) (Su et al., 2023;
Yang et al., 2023). The specific equations to calculate these measures
were as follows:

Acc � TP + TN

TP + FN + TN + FP

Sn � TP

TP + FN

Sp � TN

TN + FP

Precision � TP

TP + FP

F1 � 2 × precision × recall( )
precision + recall

MCC � TP × TN − FP × FN��������������������������������������������
TP + FP( ) × TP + FN( ) × TN + FN( ) × TN + FP( )√

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
where TP (true positive) and FP (false positive) denoted the numbers
of sequences correctly and incorrectly classified as allergenic
proteins, respectively. TN (true negative) and FN (false negative)
were the numbers of samples correctly and incorrectly classified as
non-allergenic proteins, respectively. The AUC and AUPRC values
ranged from 0 to 1. Their higher values implied better predictive
ability of models.

3 Results and discussion

3.1 Preliminary analysis results

In order to pick out the most appropriate feature extraction and
model construction methods from the existing numerous
algorithms, as well as to reduce experimental complexity and
workload, we performed pre-analysis on the benchmark protein
sequences by using iLearnPlus tool.

In this experiment part, we firstly chosen AAC, DPC, TPC,
DDE, CKSAAP, GAAC, GDPC, GTPC, CKSAAGP features to build
RF, LR, SVM, KNN classification models with default parameters,
respectively. The prediction performance of these nine type features
were assessed by combining with RF algorithm and shown in
Figure 2. It was obvious that the best-performing feature
extraction methods were CKSAAP, DPC and AAC and have
achieved quite high AUC and AUPRC values of about 0.98. The
performance of these features based on LR, SVM, KNN algorithms
(see Supplementary Figures S1–S3) also indicated that CKSAAP,
DPC and AAC were more preferable methods for encoding
allergenic and non-allergenic protein sequences. Secondly, we
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tested each of the three feature extraction methods on each machine
learning classifier with corresponding optimal parameters. The best
number of decision tree for RF was set as 450, the best values of c and
γ for SVM were 215 and 216, the k parameter for KNN was set as 3.
The 5-fold cross-validation results on the whole benchmark dataset
have been listed in Table 1. The RF classifier also outperformed other
three approaches and could predict allergenic proteins accurately.
Prediction accuracies and AUC values were as high as 92.0%
and 0.97.

Through comprehensively comparing and analyzing the
recognition performance of allergenic protein using different
feature extraction methods and machine learning models, we
selected AAC, DPC, CKSAAP features and RF algorithm with
better performance for further detailed analysis.

3.2 Prediction results of multi-fusion
features

To contain sequence composition information as
comprehensive as possible, we fused AAC, DPC, CKSAAP
features together. Each protein sequence was represented as a
fused vector with 1,620 features. All the features were ranked in
descending order by PCC and the top 200 features were selected
out by using IFS strategy. To construct an effective and robust
allergenic protein identification model, the PCA was used for
further feature shrinkage. The top 100 principal features were
ultimately screened out to build RF model. For determining the
optimal decision tree parameter in RF algorithm, we tried to set
it as 100, 200, 300, 400, 450, 500 with a cut-off value of 0.5. The

FIGURE 2
Performance of nine feature extraction methods based on RF algorithm.

TABLE 1 Performance of each machine learning classifier based on AAC, DPC and CKSAAP features, respectively.

Classifier Feature Sn (%) Sp (%) Pre (%) Acc (%) MCC F1 AUC AUPRC

RF AAC 91.9 93.0 92.9 92.4 0.85 0.92 0.97 0.98

DPC 88.9 94.3 94.0 91.6 0.83 0.91 0.97 0.98

CKSAAP 89.1 96.2 95.9 92.7 0.86 0.92 0.98 0.98

LR AAC 81.0 73.1 75.1 77.0 0.54 0.78 0.85 0.84

DPC 70.6 86.7 84.1 78.6 0.58 0.77 0.86 0.87

CKSAAP 69.0 85.5 82.7 77.3 0.55 0.75 0.86 0.87

SVM AAC 86.0 88.2 88.0 87.1 0.74 0.87 0.94 0.94

DPC 83.0 85.5 85.2 84.3 0.69 0.84 0.92 0.92

CKSAAP 83.7 85.1 84.9 84.4 0.69 0.84 0.92 0.93

KNN AAC 89.4 87.3 87.6 88.4 0.77 0.89 0.95 0.96

DPC 82.6 94.3 93.6 88.6 0.78 0.88 0.95 0.96

CKSAAP 82.6 91.2 90.4 86.9 0.74 0.86 0.93 0.95
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TABLE 2 Prediction ability comparison of random forest models with different number of decision trees.

Number of trees Sn (%) Sp (%) Pre (%) Acc (%) MCC F1

100 88.9 93.0 92.7 91.0 0.82 0.91

200 88.9 93.9 93.6 91.4 0.83 0.92

300 88.5 94.1 93.8 91.3 0.83 0.91

400 88.5 93.0 92.7 90.7 0.82 0.91

450 88.8 93.7 93.3 91.2 0.83 0.91

500 88.2 93.9 93.3 91.1 0.83 0.91

FIGURE 3
The ROC and PRC curves for the optimal RF classifier on training dataset. The blue solid line indicates the overall result of 5-fold cross-validation, the
solid lines in other colors are results of each fold k = 1, 2, 3, 4, 5.

TABLE 3 Performance summary of the optimal RF model testing on training and validation datasets by 5-fold cross-validation.

Dataset Sn (%) Sp (%) Pre (%) Acc (%) MCC F1 AUC AUPRC

Training 88.4 93.6 93.3 91.0 0.83 0.91 0.96 0.97

Validation 88.9 93.9 93.6 91.4 0.83 0.91 0.97 0.98

FIGURE 4
The ROC and PRC curves for the optimal RF classifier on validation dataset.
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prediction results (Table 2) demonstrated that the optimal value
of decision tree should be set as 200, and the corresponding RF
classifier could produce the highest accuracy of 91.4%.

To explore the generalization ability of these fused features,
we constructed the optimal RF model based on the training
dataset via 5-fold cross-validation (see Figure 3; Supplementary
Table S1). Allergenic protein prediction was then conducted on
both training and validation datasets. Performance evaluation
results were enumerated in Table 3. The RF model could
produce good performance on training protein sequences.
The prediction accuracy, Sn, Sp, AUC and AUPRC values
were 91.0%, 88.4%, 93.6%, 0.96 and 0.97, respectively
(Figure 3). In addition, it could also produce pretty good
performance on the validation dataset with the accuracy of
91.4%, Sn of 88.9%, Sp of 93.9%, AUC value of 0.97 and
AUPRC value of 0.98 (Figure 4). All results implied that the
presented RF classifier had good performance on generalization
and robustness.

It is quite crucial to compare with existing methods for
comprehensively evaluating a novel method. Therefore, we
futher compared the prediction performance of our iAller
with that of AlgPred 2.0 web server (https://webs.iiitd.edu.in/
raghava/algpred2/) for testing on the same validation dataset
(Zhang et al., 2007). The prediction accuracy of AlgPred 2.0 with
setting Machine Learning Techique as “Hybrid” was 89.8%,
which was inferior to that of iAller. Moreover, AllergenFP
and ProAll-D servers were established on almost the same
benchmark dataset as that of this work, and the accuracy of
AllergenFP was 87.9%, the best AUC value of ProAll-D was 0.92
(Cui et al., 2007; Wang et al., 2013). It implied that iAller was
superior to these existing tools and could provide reliable results
for researches about allergenic protein predicting.

4 Conclusion

Identification of allergenic proteins from the perspective of
bioinformatics can provide theoretical support for the relevant
biological experimental research. Although many computational
models for allergenic protein prediction have been developed, few of
them have been widely validated and used in related researches.
Improving the accuracy and effectiveness of allergenic protein
prediction remains a challenging problem. This work attempted to
explore more suitable feature extraction and selection methods as
well as machine learning models for identifying allergenic proteins.
After a series of trials and comparative analyses, we established an
effective RF model based on 100 informative fusion features via 5-fold
cross-validation. The accuracy and AUC value of the classifier on
validation dataset reached 91.4% and 0.97. Evaluation results
suggested that this computational model, iAller, was robust and its
generalization ability was superior. It indicates that fusing different types
of protein sequence features is a feasible strategy. However, there is still
room for improvement. In future work, more types of information such
as amino acid physicochemical properties, evolutionary information will
be taken into consideration, and more feature selection methods will be

attempted, as well as a web server shall be constructed for bringing more
convenience to researchers.
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