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Background: Linear dimensionality reduction techniques are widely used in many
applications. The goal of dimensionality reduction is to eliminate the noise of data
and extract the main features of data. Several dimension reduction methods have
been developed, such as linear-based principal component analysis (PCA),
nonlinear-based t-distributed stochastic neighbor embedding (t-SNE), and
deep-learning-based autoencoder (AE). However, PCA only determines the
projection direction with the highest variance, t-SNE is sometimes only
suitable for visualization, and AE and nonlinear methods discard the linear
projection.

Results: To retain the linear projection of raw data and generate a better result of
dimension reduction either for visualization or downstream analysis, we present
neural principal component analysis (nPCA), an unsupervised deep learning
approach capable of retaining richer information of raw data as a promising
improvement to PCA. To evaluate the performance of the nPCA algorithm, we
compare the performance of 10 public datasets and 6 single-cell RNA sequencing
(scRNA-seq) datasets of the pancreas, benchmarking our method with other
classic linear dimensionality reduction methods.

Conclusion: We concluded that the nPCA method is a competitive alternative
method for dimensionality reduction tasks.

KEYWORDS

linear dimensionality reduction, neural principal component analysis, single-cell RNA
sequencing, multilayer perceptron, activation function

1 Introduction

The dimensionality reduction method produces a low-dimensional linear mapping of
the original high-dimensional data, and it can be used for visualizing data, denoising or
compressing scRNA-seq data, and extracting meaningful feature spaces (Zebari et al., 2020).
The dimensionality reduction methods are commonly divided into linear and nonlinear
approaches (Van Der Maaten et al., 2009). Several classical and representative linear
dimensionality reduction methods are widely used in biological data analysis, including
independent component analysis (ICA) (Stone, 2002), multidimensional scaling (MDS)
(Hout et al., 2013), factor analysis (FA), and principal component analysis (PCA) (Wold
et al., 1987). In addition, nonlinear methods, such as t-distributed stochastic neighbor
embedding (t-SNE) (Van der Maaten and Hinton, 2008) and uniform manifold
approximation and projection (UMAP) (McInnes et al., 2018), are also widely used in
processing biological big data. Each method has its own features and limitations.
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PCA is a widely used linear dimensionality reduction algorithm
(Wold et al., 1987) that calculates the first principal component with
the largest variance and then seeks the second component in the
same manner, which is uncorrelated with the first component and
accounts for the next largest variance (Xiang et al., 2021).
Furthermore, the autoencoder (AE) is a nonlinear generalization
of PCA that uses a multilayer encoder network to transform the
high-dimensional data into a low-dimensional code and a similar
decoder network to recover the data from the code (Hinton and
Salakhutdinov, 2006). Therefore, in order to combine the advantages
of a linear encoder and nonlinear decoder, we developed the neural
principal component analysis (nPCA) method, which is a linear
dimensionality reduction algorithm using the deep learning method
(multilayer perceptron). We also list a comparison of encoding and
decoding modalities between different methods (Table 1). The
nPCA algorithm is more like a transition between linear and
nonlinear methods. It uses the nonlinear decoder approach but
holds the linear encoder (linear projection of raw data).
Furthermore, when the dimensionality reduction results are
produced after training, the nonlinear decoder will be discarded.
In other words, nPCA is another linear dimensionality reduction
method that is an upgrade to PCA.

Considering that PCA determines the projection direction with
the largest variance, it is not the projection direction that retains the
most information from the original data. In order to solve this
problem, nPCA uses the deep learning method to gradually correct
the projection matrix to achieve this goal. In this paper, we
compared the performance of nPCA with that of PCA, using
10 publicly available datasets (mostly related to biology), to verify
that nPCA holds richer information of raw data than PCA. Then, the
performance of nPCA and three other linear dimensionality
reduction methods were tested on six single-cell RNA-seq
datasets of the pancreas.

2 Materials and methods

2.1 Methodological framework of nPCA

We propose an nPCA approach to hold richer structural
information of the raw data than PCA. The proposed approach
is based on a multilayer perceptron (MLP), which is a type of
artificial neural network (ANN) (Mac et al., 2022). The nPCA we
designed comprises an input layer, three hidden layers, and an
output layer. The number of neurons in the input and output layers
is the same as the dimension of the original data, and the first hidden
layer has two neurons, and the remaining two hidden layers have d
neurons each (we use 32 neurons for nPCA). The activation function
plays an important role in ANNs because it is directly linked with

obtained success rates (Ertugrul, 2018). However, in nPCA, we
remove the activation function of the first hidden layer to ensure
that the neurons of the first layer are only the linear projection of the
original data, and the following layers act as a nonlinear decoder for
these two neurons (Figure 1). The definition of the loss function
comprising the output layer (y) and input layer (x) is as follows:

E � 1
2
∑n
i

yi − xi( )2.
We then use the stochastic gradient descent (SGD) (Bottou,

2012) to minimize E in backpropagation. When the value of E
decreases to the minimum, the training is terminated.

The two neurons of the first hidden layer are the two principal
components generated by nPCA. Similar to the traditional linear
dimensionality reduction method, a linear transformation is carried
out on the raw data, but due to the existence of the nonlinear
decoder, nPCA will retain more information on the original data.

Given an n × m data matrixAwith n samples andm features, we
first perform singular value decomposition (SVD) on this matrix A,
using the two eigenvectors of matrix U to initialize the weights
between the input layer and the first hidden layer (Figure 1). The
selected eigenvectors correspond to the two largest eigenvalues in
matrix Σ, which is the dimensionality reduction method of PCA.
Other weights are randomly initialized.

2.2 Benchmarking

We benchmarked five linear dimensionality reduction methods:
ICA, MDS, FA, PCA and nPCA. Our nPCA and PCA methods are
implemented using our own C++ code, and these two methods are
used in public datasets. The other two methods are implemented
using a Python package sklearn. In addition, the comparison of the
four methods is performed in single-cell datasets. Since our original
intention of designing nPCA is to upgrade PCA, we use the same
multilayer perceptron structure for PCA training in order to confirm
that nPCA retains more information than PCA. However, the
difference is that in the PCA network, we always fix the weight
of the first layer to be the linear dimensionality reduction parameter
of PCA, that is, the weight of the first layer is not updated when SGD
is used every time. This facilitates to achieve the result that after
training if the loss of nPCA is less than that of PCA, it proves that
nPCA retains more raw data information than PCA. Benchmarking
was performed on a desktop PC equipped with an Intel Core i7-
11700 CPU and 32 GB of memory.

2.3 Benchmarking public dataset study

Overall, 10 public datasets were included: housing (Belsley et al.,
2005), bike sharing (Fanaee-T and Gama, 2014), Anuran calls
(Colonna et al., 2015), telemonitoring of Parkinson’s disease
(Tsanas et al., 2009), QSAR biodegradation (Mansouri et al.,
2013), Indian liver patient (Ramana et al., 2012), blood
transfusion service center (Yeh et al., 2009), iris (Fisher, 1936),
seed (Charytanowicz et al., 2010), and cervical cancer behavior risk
(Sobar and Wijaya, 2016).

TABLE 1 Modalities of the encoder and decoder in three methods.

Method Encoder Decoder

PCA Linear Linear

nPCA Linear Nonlinear

Autoencoder Nonlinear Nonlinear
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2.4 Application to scRNA-seq dataset study

To evaluate the performance of nPCA, we applied each of the
aforementioned methods to the six single-cell gene expression
datasets of the pancreas (Baron et al., 2016), which included four
human and two mouse datasets.

Before using the scRNA-seq data, a Python package Scanpy was
used to preprocess the data and quality control. The first step in
preprocessing involves filtering out the weakly expressed genes and
low-quality cells and removing those genes expressed in less than
three cells and cells that expressed less than 200 genes (Vasighizaker
et al., 2022). Second, because mitochondrial genes do not carry
important information required for downstream analysis (Ilicic
et al., 2016), those cell samples with mitochondrial genes are
removed, accounting for more than 95%. Furthermore, in order
to remove the influence of potential variation, we screen out those
cell samples with more than 2,500 expressed genes (Vasighizaker
et al., 2022). Third, since scRNA-seq data are expressed at a different
level, we normalize the data using the following formula:

readsMappedToGene ×
1

totalReads
× 104

and use the logarithmic transformation on the normalized data:

f x( ) � log10 x + 1( ).

In the end, the three subsets of 200, 500, and 1,000 features were
extracted in one dataset by highly variable genes.

We performed four linear dimensionality reduction
methods, namely, ICA, MDS, PCA, and nPCA, to reduce the
original data (n × m matrix) to two-dimensional data (n × 2
matrix). First, in the case of not providing the real label but
providing the number of categories, we apply the popular
clustering technique, k-means, to the data after
dimensionality reduction and calculate the mean silhouette
coefficient (SH) (Řezanková, 2018) of all samples to evaluate
the quality of the clustering effect. SH for one sample can be
defined as follows:

SH xi( ) � b xi( ) − a xi( )[ ]
max a xi( ), b xi( )[ ],

where a(xi) is the intra-cluster dissimilarity: the average value of
dissimilarity between the sample xi vector and other samples in the
same cluster; b(xi) is the inter-cluster dissimilarity: the minimum
value of the average dissimilarity between the sample xi vector and
other clusters. Then, the true label is provided and the adjusted Rand
index (ARI) (Sundqvist et al., 2022) is calculated to compare the
performance of four linear dimensionality reduction methods.
Given two clustering groups X and Y, the following four
quantities are defined:

FIGURE 1
Structure of nPCA.
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a: the number of objects in a pair placed in the same group in X
and in the same group in Y.
b: the number of objects in a pair placed in the different group in
X and in the different group in Y.
c: the number of objects in a pair placed in the same group in X
and in the different group in Y.
d: the number of objects in a pair placed in the different group in
X and in the same group in Y.

Then, ARI is proposed in the form of

ARI �
n
2

( ) a + b( ) − a + b( ) a + c( ) + c + d( ) b + d( )[ ]
n
2

( ) − a + b( ) a + c( ) + c + d( ) b + d( )[ ]
.

At last, the dimensionality-reduced data were further visualized
using t-SNE to compare the four methods.

3 Result

3.1 Results from public datasets

Table 2 shows the loss values at the completion of training for
PCA and nPCA on 10 public datasets. nPCA performs better in 8 of
the 10 datasets. We calculate the variance captured using the
following formula:

Vaeiance captured � 1 − 2 × E( ) × 100%.

Here, E is the loss value after training. Because we use the
L2 loss function, if PCA and nPCA dimension reduction results
contain more information of the original data, the lower
loss value (higher variance captured) is obtained after it
propagates through the same network. So this result has
proven that nPCA can retain more information of the
original data than PCA.

TABLE 2 Variance captured (loss) of PCA and nPCA on 10 datasets. Values in bold indicate the first-place result of the two methods compared.

Dataset Sample Feature Variance captured of PCA (%) Variance captured of nPCA (%)

Housing 506 14 79.63 87.30

Bike 17,379 16 42.52 57.00

Anuran calls (MFCCs) 7,195 22 62.05 70.78

Telemonitoring of Parkinson’s disease 5,875 21 71.92 73.11

QSAR biodegradation 1,055 41 48.89 54.82

Indian liver patient 582 10 92.43 95.87

Blood transfusion service center 748 4 97.81 97.48

Iris 150 4 99.75 99.82

Seeds 210 7 98.64 98.19

Cervical cancer behavior risk 72 19 96.90 97.26

FIGURE 2
Two-dimensional PCA and nPCA projection of the Anuran calls (MFCCs) dataset colored by a real label (family of Anuran).
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Figure 2 shows the results of PCA and nPCA of the Anuran
calls (MFCCs) dataset. We can see that the Dendrobatidae family
is not separated in PCA but separated from other families in
nPCA. From the numerical results and figures, it is proved that
nPCA retains more original data information than PCA while
guaranteeing a linear dimensionality reduction method.
Visualization results for the rest of the data are shown in the
Supplementary File.

Since there is a training process in nPCA, we also saved the
results of the training process of the Anuran calls (MFCCs) dataset
to generate 90 pictures of the process and made a GIF animation
(Supplementary File). Thus, nPCA is a competitive method for
linear dimensionality reduction tasks.

3.2 Results from scRNA-seq datasets

We benchmarked four linear dimensionality reductionmethods,
namely, ICA, MDS, PCA, and nPCA, in the scRNA-seq dataset.

Table 3 shows the adjusted Rand score with ground truth labels
and the silhouette score without ground truth labels after using four
linear dimensionality reduction methods and k-means clustering
(with the number of categories of real data) on 18 datasets (each
dataset is divided into three sub-datasets by highly variable genes).
Similarly, there is a comparison of loss between PCA and nPCA after

training. This table shows that comparing the adjusted Rand score,
nPCA performs best on seven datasets, MDS on five, PCA on four,
and ICA only on two. Comparing the silhouette score, nPCA
performs optimally on 16 datasets and PCA performs best on
two datasets. Through a comprehensive comparison of internal
and external clustering evaluation metrics, we observed that
among all linear dimensionality reduction methods, nPCA
demonstrates outstanding performance in clustering. Utilizing
internal evaluation metrics (silhouette score) and external
evaluation metrics (adjusted Rand score), nPCA consistently
outperforms the other three linear dimensionality reduction
methods. This result strongly supports the superior performance
of nPCA in these tasks. In addition, the value of loss also proves that
nPCA retains more raw data information than PCA on
these datasets.

In order to further visualize the results, we used t-SNE to cluster
the two-dimensional result data that were outputted using four
linear dimensionality reduction methods. Figure 3A shows the result
of t-SNE. It can be clearly seen that the effect of dimensionality
reduction of nPCA is better than the other three methods. Figure 3C
shows the results of four methods for the Baron_human1 dataset of
1,000 highly variable genes. Figure 3B shows an enlarged part of the
dotted box in Figure 3C. In the enlarged figure, we can see the
categories that are not distinguished in the other three methods, but
nPCA can achieve a better discrimination effect.

TABLE 3 Adjusted Rand score (with k-means and true label) and silhouette score (with k-means) of four linear dimensionality reduction methods on 18 datasets.
Variance captured (loss) of PCA and nPCA. Significant values are represented in bold (HVG, highly variable gene).

— Adjusted Rand score Silhouette score Variance
captured

Database name HVG ICA MDS FA PCA nPCA ICA MDS FA PCA nPCA PCA nPCA

Baron_human1 200 0.253 0.195 0.235 0.352 0.373 0.437 0.335 0.503 0.465 0.773 40.21% 41.92%

500 0.258 0.208 0.255 0.376 0.35 0.397 0.372 0.475 0.72 0.776 33.46% 40.92%

1,000 0.298 0.248 0.33 0.384 0.57 0.396 0.377 0.514 0.67 0.577 26.77% 33.42%

Baron_human2 200 0.224 0.305 0.188 0.218 0.168 0.593 0.36 0.68 0.477 0.825 45.79% 55.37%

500 0.219 0.292 0.221 0.225 0.583 0.37 0.351 0.448 0.401 0.61 37.62% 40.05%

1,000 0.292 0.371 0.249 0.255 0.246 0.359 0.352 0.445 0.423 0.858 31.11% 35.93%

Baron_human3 200 0.208 0.202 0.159 0.175 0.176 0.521 0.382 0.646 0.64 0.559 24.94% 35.94%

500 0.406 0.394 0.191 0.234 0.615 0.402 0.352 0.65 0.427 0.521 20.97% 29.31%

1,000 0.336 0.39 0.363 0.421 0.663 0.358 0.383 0.487 0.491 0.582 21.26% 25.46%

Baron_human4 200 0.205 0.156 0.151 0.236 0.06 0.472 0.363 0.648 0.635 0.928 35.93% 56.61%

500 0.217 0.242 0.235 0.221 0.612 0.357 0.357 0.501 0.386 0.567 41.46% 42.77%

1,000 0.372 0.303 0.243 0.254 0.237 0.355 0.376 0.419 0.454 0.806 28.42% 31.26%

Baron_mouse1 200 0.194 0.371 0.243 0.276 0.257 0.383 0.364 0.676 0.433 0.842 44.25% 44.75%

500 0.373 0.394 0.283 0.372 0.684 0.457 0.372 0.543 0.491 0.716 29.21% 36.61%

1,000 0.399 0.32 0.428 0.523 0.483 0.427 0.375 0.523 0.454 0.651 22.25% 27.34%

Baron_mouse2 200 0.287 0.188 0.28 0.353 0.194 0.479 0.318 0.732 0.465 0.834 50.13% 55.80%

500 0.252 0.391 0.287 0.289 0.304 0.452 0.342 0.809 0.834 0.878 34.80% 43.62%

1,000 0.209 0.324 0.294 0.298 0.235 0.435 0.361 0.826 0.839 0.859 31.84% 32.22%
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In addition, on the Baron_human1 dataset of 200 highly variable
genes, no significant difference is observed in the visualization
results of the four methods. On the 500 highly variable genes,
nPCA gradually shows better results than the other three
methods, but the effect is most obvious when there are
1,000 highly variable genes. The aforementioned results and the
remaining data (in Table 3) are shown in the Supplementary File.

Overall, using the linear dimensionality reduction method on
scRNA-seq requires adequate features to obtain valid results. In
addition, nPCA, under the same conditions, provides better
projection results than the existing linear dimensionality
reduction methods. Although the evaluation index of nPCA was
not suitable for all datasets, it was the top performer in both the
public and scRNA-seq datasets.

4 Discussion

With the technological advances in scRNA-seq, the analysis
methods applied to it are also constantly updated (Chen et al., 2019).
However, most of the methods revolve around the aspect of
clustering (e.g., t-SNE), which performs a nonlinear
transformation on the data. The recent dimension reduction
methods used for scRNA-seq include SinNLRR (Zheng et al.,
2019), SIMLR (Wang et al., 2017), and ssPCA (Liu, 2020). Most
of these are nonlinear methods. Newer linear dimensionality
reduction methods in processing scRNA-seq datasets are scarce.
A linear transformation of the original data matrix leads to
separation and stretching of the raw data. The advantage of it is
that the linear relationship between variables in the original data can
be preserved. Therefore, we propose a linear method, nPCA, to
upgrade PCA.

nPCA outperforms PCA by using the deep learning method.
PCA calculates the projection matrix through SVD at one time,
while nPCA continuously corrects the projection matrix through
SGD in the backpropagation algorithm. Furthermore, nPCA did not
perform well in public datasets (like blood transfusion service center
and seeds, Table 2), but the performance gap is not large compared
with PCA. The reason could be that the projection direction with the
largest variance in these datasets is the direction that contains the
most information. In addition, nPCA, like PCA, is also sensitive to
outliers and missing values.

In scRNA-seq datasets, the losses of nPCA are all better than
those of PCA. Due to big data, nPCA has sufficient training samples
to achieve the best results. However, because of the existence of the
neural network, nPCA is time-consuming to a certain extent. At the
cost of time-consuming operations, nPCA achieves a good
dimensionality reduction effect. Figure 2 and Figure 3 show that
nPCA has the ability to separate the categories that are mixed
together in other methods.

5 Conclusion

In this study, we introduced nPCA, which is a novel linear
dimensionality reduction technique using a multilayer
perceptron. nPCA outperformed traditional PCA and similar
methods in our extensive tests across various datasets,
particularly in single-cell RNA sequencing data, where it
demonstrated superior variance capture and clustering
capabilities. Our work demonstrated that it is time to consider
a modernization of PCA with the advances in the field of science
and technology, and it offers a valuable tool for biological data
analysis that combines deep learning benefits with linear
methods’ simplicity and interpretability.
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FIGURE 3
Visualization for Baron_human1 of 1,000 highly variable genes.
(A) Comparison of four linear methods using t-SNE; (B) partially
enlarged view of (C); (C) comparison of four linear methods. Each
point represents a cell and is colored by the real label.
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