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Reynoutria japonica Houtt. is an important medical plant with a long history of
thousands of years in China, however, its mitochondrial genome (mitogenome)
has not been reported yet. In this work, we reported and analyzed the R. japonica
mitogenome. The main results include: The R. japonica mitogenome was
302,229 bp in length and encoded 48 genes, including 27 protein-coding
genes (PCGs), 3 rRNA genes, and 18 tRNA genes. Repeat sequence analysis
revealed that there were 54 repeat sequences ranging from 193 bp to 1,983 bp
in the R. japonica mitogenome. Relative synonymous codon usage (RSCU)
analysis showed that leucine (900, 11.01%) and serine (732, 8.96%) were the
two most abundant amino acids, and the codons with RSCU values showed
the preference of A or T endingwhen greater than 1. The RNA editing sites of PCGs
in the R. japonica mitogenome were characterized, and 299 RNA editing sites
were found. Extensive sequences transfer between mitochondrion and
chloroplast were found in R. japonica, where 11 complete plastid-derived tRNA
genes stayed intact in the R. japonica mitogenome. Three genes (ccmFC, cox1,
and nad1) were seen to play essential roles in the evolution through selection
pressure analysis. The phylogenetic analysis showed that Fallopia multiflora was
the closest species with R. japonica, in consistency with the results of chloroplast
genome. Overall, the current work presents the first mitogenome of R. japonica
and could contribute to the phylogenetic analysis of the family Polygonaceae.
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1 Introduction

Plant mitochondria are semi-autonomous organelles, possessing relatively independent
genetic systems and contributing to metabolism, energy production and cell homeostasis
(Gualberto et al., 2014). It is generally believed that plant mitochondria were evolved from
free-living bacteria according the endosymbiotic theory (Dyall et al., 2004). The mitochondria
genome (mitogenome) in higher plants are very diversified in size, ranging from 22 Kb in
Avicenniamarina to 11.7 Mb in Larix sibitia (Putintseva et al., 2020; Friis et al., 2021) with distant
genetic relationships, even between closely related species (Sloan et al., 2012; Cole et al., 2018).
Due to the high frequency homologous recombination with foreign DNA, the mitogenomes in
plants are often subject to rearrangement and more complex in size, structure and genes order
(Wu et al., 2020). Note also that the homologous sequences in the seed plant mitogenomes are
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mainly derived from the chloroplast and nucleus (Drouin et al., 2008).
Unlike chloroplast genome which is usually a double-stranded and
circular molecule, plant mitogenome was found in multiple structural
forms rather than the single ring form (Kozik et al., 2019). It is reported
that many plantmitogenomes possess linear and branch structures, and
a lot of smaller circular molecules (Sloan, 2013; Gualberto et al., 2014).
For example, three loops were found in themitogenome ofHemerocallis
citrina and Populus simonii (Bi et al., 2022; Zhang et al., 2022). The
repeat sequences are the main reasons that confused the ultimate
conformation of mitogenome (Li et al., 2022; Yang et al., 2022).
Overall, the plant mitogenome experienced sophisticated changes in
size and structure during evolution, hence recovering the conformation
of plant mitogenome is a both challenging and rewarding task.

Reynoutria japonica Houtt. (Polygonaceae), a well known
traditional Chinese herbal medicine, has been used since ancient
time in China (Peng et al., 2013). The dried root of R. japonica in
combination with other traditional Chinese medicine herbs have
multiple therapeutic uses (Zhang et al., 2013). In this ancient
traditional Chinese medicine plant, the chloroplast genome of
different regions R. japonica has been systematically analyzed (Chen
et al., 2022). But its nuclear genome or mitogenome has not been
published yet. Currently, the mitogenomes of the family Polygonaceae
still remain largely unknown. Although the mitogenomes of Fallopia
multiflora were assembled into two circular chromosomes via Illumina
platform (Kim and Kim, 2018), few species mitogenomes in the family
Polygonaceae are available in NCBI (National Center for Biotechnology
Information) database. Therefore, it is necessary and desirable to attain
the R. japonica mitogenome to enrich the Polygonaceae species
mitogenome for further evolutionary studies. In recent years, an
increasing interest of plant mitogenome is observed largely due to
the advancement of sequencing technology and the reduction of
sequencing costs, in particular, the application of Oxford Nanopore
sequencing technology which has the advantage of long reading
sequences to reduce the hassle caused by repetitive sequences
compared to Illumina reads. Note that the combination of Illumina
and Oxford Nanopore reads, several species mitogenome were
obtained, including Mesona chinensis Benth (Tang et al., 2023),
Abelmoschus esculentus (Li et al., 2022), Hemerocallis citrina (Zhang
et al., 2022), Photinia serratifolia (Wang et al., 2023a), etc. These results
demonstrate it is possible to assemble a complete mitogenome via the
combination of short reads and long reads.

In this study, we sequenced and assembled the mitogenome of R.
japonica via the Illumina short-read and Nanopore long-read
integrated pipeline. The characteristic features of the R. japonica
mitogenome were compared with those published related species.
To our knowledge, this is the first assembly of the R. japonica
mitogenome, which could be used for understanding the evolution
of R. japonica, as well as the molecular biology research of this
medicinal plant.

2 Materials and methods

2.1 Plant materials and genome sequencing

The seeds of R. japonica were collected from the medicinal plant
garden of the Institute of Botany, Chinese Academy of Sciences
(Beijing, China), planted and germinated in the lab and grown in a

climate chamber at the temperature of 24°C ± 2°C with light/dark
cycle of 16h/8 h. The well-grown young leaves were collected for
DNA extraction. Total genomic DNA was isolated using the
modified CTAB method (Arseneau et al., 2017). Then the quality
of the extracted DNA was examined by NanoDrop (Thermo
Scientific, United States), a Qubit fluorometer (Thermo Scientific,
United States), and 0.75% agarose gel electrophoresis, respectively.
The BluePippin system (Sage Science, United States) was used to
recover large DNA fragments. Then the DNA fragments were
treated using damage repair, end preparation, A-tailing, adapter
ligation and the purification of DNA from the previous reaction
using magnetic beads. The purified library was constructed
following the SQK-LSK109 (Oxford, United Kingdom)
sequencing kit protocol and loaded into a Nanopore GridION
Sequencer (ONT, United Kingdom), which carried out at
GrandOmics (Wuhan, China). Effective data were obtained by
filtering adapter and removing low-quality reads. In total,
11.53 Gb of data were generated form 577,047 reads (SRA
accession SRR24988768).

2.2 Genome assembly and annotation

The Oxford Nanopore long reads were assembled into contigs
via NextDenovo v2.5.0 (https://github.com/Nextomics/
NextDenovo). Mitochondrial contigs were identified by the
BLASTn program (Chen et al., 2015) with Fallopia multiflora
(accession number: MF611850, MF611851) mitogenome as
references. And the self-loop candidate contigs were found and
polished by Pilon v1.23 (Walker et al., 2014) using Illumina Novaseq
sequencing reads, which has been used to assemble the R. japonica
chloroplast genome before (Chen et al., 2022). Finally, one circular
structure of the R. japonicamitogenome was obtained. The self-loop
mitogenome of R. japonica was annotated via online tool GeSeq
(Tillich et al., 2017) with the mitogenome of F. multiflora (accession
number: MF611850, MF611851), and the preliminary annotation
was further redressed with the mitogenome of Fallopia aubertii
(accession number: MW664926). In order to test the credibility of
the mitogenome, BWA 0.7.17-r1188 (Li and Durbin, 2009) and
samtools v1.9 (Danecek et al., 2021) were used to calculate the
sequencing depth of each locus. Finally, the mitogenome map of R.
japonica was drawn using OGDRAW (Greiner et al., 2019).

The dispersed repeat sequences were analyzed by the online
REPuter software (https://bibiserv.cebitec.uni-bielefeld.de/reputer)
with the parameter of minimal repeats set to 50 bp, and hamming
Distance to 3 (Kurtz et al., 2001). The repeat sequences in the R.
japonica mitogenome were visualized via Circos v0.69-8
(Krzywinski et al., 2009). The relative synonymous codon usage
(RSCU) of the unique protein coding genes (PCGs) of R. japonica
mitogenome was calculated by CodonW v1.4.4. For the RNA editing
sites analysis of the unique PCGs, the RNA-seq data released by our
laboratory (PRJNA626400 and RPJNA623335) in the early stage
were first filtered via fastp v0.23.2 (Chen et al., 2018), and then
mapped to the PCGs of R. japonicamitogenome via Bowtie2 v2.3.5.1
(Langmead and Salzberg, 2012). And the possible RNA editing sites
were identified via bcftools v1.9 (Danecek et al., 2021) according to
the mapping results, and the locations with a coverage depth of more
than 10× were selected.
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2.3 Plastid-like sequences in the
mitogenome

The R. japonica mitogenome was compared with its chloroplast
genome (GenBank accession number: OP583946) by BLASTn with
E value less that 1e-5, and visualized via Circos v0.69-8 (Krzywinski
et al., 2009).

2.4 Selection pressure analysis of PCGs

The PCGs were selected to estimate the selection pressure during
the evolution of R. japonica. Nonsynonymous (Ka) and synonymous
(Ks) substitution rates of the 25 unique PCGs were calculated for R.
japonica and other three species (Polygonum aviculare, Fallopia
aubertii, and Fallopia multiflora). ParaAT2.0 was used to align and
format the PCGs with default parameters (Zhang et al., 2012). The
Ka, Ks, and Ka/Ks values were calculated via KaKs_Calculator
v3.0 following the YN method (Zhang, 2022).

2.5 Phylogenetic analysis

The conserved mitogenomes PCGs of R. japonica and other ten
plant species were identified by BLAT (Kent, 2002). The ten plants,
including F. multiflora (MF611850 and MF611851), F. aubertii
(MW664926), P. aviculare (OW204033), Nepenthes X ventrata
(MH798871), Chenopodium quinoa (MK182703), Beta vulgaris
(NC_002511), Silene vulgaris (JF750427), Arachis hypogaea
(MW448460), Vitis vinifera (NC_012119), and Arabidopsis
thaliana (NC_037304) were downloaded from the NCBI. Twelve
PCGs (atp8, atp9, cox1, cox2, nad1, nad3, nad4, nad4L, nad5, nad6,
nad7, and nad9) were aligned by MAFFT v7.520 (Katoh and
Standley, 2013). And GTR + I + G4 model was selected by
ModelTest-NG (Darriba et al., 2020) according to Bayesian
information criterion scores. Then maximum likelihood (ML)
phylogenetic tree was constructed by RAxML-NG v0.9.0 (Kozlov
et al., 2019) with 1000 bootstrap replicates.

3 Results and discussion

3.1 Mitogenome assembly and genomic
features

The R. japonica mitochondrial genome (mitogenome) was first
assembled with Oxford Nanopore reads, and then polished with
Illumina reads due to the short reads possessing higher base
recognition accuracy than long-read sequencing (Delahaye and
Nicolas, 2021). This is a common strategy when combining short
reads and long reads. By this way, 112 contigs were assembled via
NextDenovo. And a self-loop contig was obtained with length of
335,479 bp that can be mapped with the mitogenome of F.
multiflora. To detect whether it is a circular one, the alignment
against itself was performed. Surprisingly, a large fragment was
found at the beginning and end, with 99.10% similarity
(Supplementary Figure S1) which verifies its circular nature. By
removing the tail almost identical sequence, a finally circular

structure with 302,229 bp in size was obtained and submitted to
NCBI under accession OR228435 (Figure 1). And the average depth
was 253× (long reads) and 570× (short reads), respectively
(Supplementary Figure S2). The depth of long reads ranging
from 3× to 5,212×, achieved all sites of the R. japonica
mitogenome and made up for the shortcomings of Illumina reads
(Supplementary Table S1; Supplementary Figure S2), indicating that
the gap-free R. japonica mitogenome was obtained. In addition,
other 4 contigs, including 3 linear and 1 loop molecular, were also
mapped to the F. multiflora mitogenome. However, the 3 linear
contigs failed to be annotated as mitogenome, and the loop contig
was more like a plastid genome than a mitogenome (Supplementary
Figure S3).

The base composition of the R. japonica mitogenome was A
(27.80%), T (27.63%), G (22.32%), and C (22.25%). The
mitogenome contained 53 genes, representing 48 unique genes,
including 27 protein-coding genes (PCGs), 18 tRNA genes, and
3 rRNA genes (Table 1). The 27 PCGs consisted of 9 NADH
dehydrogenase genes (nad1, nad2, nad3, nad4, nad4L, nad5,
nad6, nad7, and nad9), a transport membrane protein (sdh4),
3 cytochrome C oxidase genes (cox1, cox2, and cox3), 2 ATP
synthase genes (atp8 and atp9), a maturase (matR), 4 cytochrome
C biogenesis genes (ccmB, ccmC, ccmFc, and ccmFn), a large
ribosomal protein (LSU) gene (rpl16) and 5 small ribosomal
proteins (SSU) genes (rps3, rps4, rps7, rps12, and rps13). The
total length of these 27 PCGs was 24,678 bp, accounting for
8.17% of the R. japonica mitogenome. And the length of tRNA
and rRNA genes accounted for 0.56% and 1.71%, respectively. The
intergenic region reached a proportion of 89.47%. In the R. japonica
mitogenome PCGs, only nad4L had two copies, and the rest are all
single copy. There were 7 unique PCGs containing introns in the R.
japonica mitogenome (nad1, nad2, nad4, nad5, nad7, ccmFC, and
rps3). Additionally, three trans-spliced introns were found in nad1,
nad2, and nad5. Four genes, namely, mttB, rpl16, nad1, and nad4L
were observed with RNA editing in start codon. A total of 22 tRNAs
represented by 18 tRNAs were found, specifying 16 amino acids.
And trnL and trnS possessed two copies, while trnM contained five
copies (Table 1). By performing the syntenic regions between R.
japonica and F. multiflora, the final mitogenome of R. japonica
appeared of high similarity to F. multiflora (Supplementary Figure
S4). Compared with the mitogenome of F. multiflora, the R. japonica
mitogenome has lost several PCGs (namely, atp1, atp4, atp6, cob1,
rpl5, rps1, and rps14). It was reported that somemitochondrial genes
were lost or transferred to the nucleus during the evolution (Adams
et al., 2002). The PCGs failed to be screened in the R. japonica
mitogenome and the 112 assembly contigs might be either lost
during the evolution or transferred to the nuclear genome as its
nuclear genome is not published yet.

3.2 Repeat sequence analysis of R. japonica
mitogenome

Repeat sequences are the core factor result in the size expansion
of plant mitogenome (Alverson et al., 2010). In this study, a total of
54 pairs of repetitive sequences were identified, ranging from 193 bp
to 1,983 bp in the R. japonica mitogenome (Supplementary Table
S2). Seven large repeat sequences were found bigger than 1 kb, which
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FIGURE 1
Circular map of the R. japonica mitogenome.

TABLE 1 Gene composition of the R. japonica mitogenome.

Group of genes Name of genes

Complex I (NADH dehydrogenase) nad1a, nad2a, nad3, nad4a, nad4L (2), nad5a, nad6, nad7a, nad9

Complex II (succinate dehydrogenase) sdh4

Complex IV (cytochrome c oxidase) cox1, cox2, cox3

ATP synthase atp8, atp9

Maturases matR

Cytochrome c biogenesis ccmB, ccmC, ccmFCa, ccmFN

Ribosomal protein rpl16, rps3a, rps4, rps7, rps12, rps13

Transport membrane protein mttB

Ribosomal RNAs rrn5, rrn18, rrn26

Transfer RNAs trnV-GAC, trnL-CAA, trnM-CAU(5), trnL-UAA, trnD-GUC, trnY-GUA, trnN-GUU, trnC-GCA, trnK-UUU, trnI-GAU, trnA-UGC,
trnR-ACG, trnH-GUG, trnS-GGA, trnP-UGG, trnF-GAA, trnS-GCU, trnW-CCA

aLabeled intron containing genes, and bracketed numbers represent copy number of each gene.
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may participate in intramolecular recombination (Bi et al., 2016). It
was reported that the repeat fragments could mediate the
homologous recombination in the plant mitogenome, such as
sweet potato (Yang et al., 2022) and Scutellaria tsinyunensis (Li
et al., 2021). And the repeats in R. japonica mitogenome may also
form multiple circular molecules. All the repeats were present
primarily as forward or palindromic repeats, and we showed this
with different color lines in R. japonica mitogenome. As shown in
Figure 2, most of the repeat sequences were located in intergenic
region, and mainly between nad7/nad3, atp8/trnY-GUA, matR/
rrn18, rps7/nad4L, and nad4L/cox1. The repeat sequences in the
R. japonica did not involve any gene, indicating the genes in the R.
japonica mitogenome are very conservative.

3.3 RSCU and RNA editing sites analysis of
PCGs

To investigate the codon preferences of PCGs in the R. japonica
mitogenome, the RSCU analysis was performed. Most PCGs used
ATG as the start codon, except mttB (ATA), nad1 (ACG), nad4L
(ACG), and rpl16 (GTG). By connecting the 27 unique PCGs with

only one start codon (ATG) and a stop codon, a total of 8,174 codons
were found in the R. japonica mitogenome. Leucine (900, 11.01%)
and serine (732, 8.96%) were the two most amino acids, while
cystine (124, 1.52%) was the least (Supplementary Table S3). And
the most preferentially used codons in the R. japonica mitogenome
were A-ended or U-ended codons that have RSCU values greater
than 1, being consistent with Hemerocallis citrina (Zhang et al.,
2022), with the exception of threonine (ACC) and leucine (UUG)
(Supplementary Figure S5; Supplementary Table S3).

RNA editing events are widespread phenomenon in plant
mitogenome, and have significant impacts on the changes in
amino acids (Maier et al., 1996; Grewe et al., 2009). In this
study, 299 RNA editing sites were found in the R. japonica
mitogenome (Supplementary Table S4). Briefly, except for the
3 PCGs (atp8, atp9, and cox1), the remaining 24 PCGs
possessed RNA editing sites. And nad4 had the most RNA
editing sites, followed by nad2, nad5, and nad7 with 34, 29,
25 and 25, respectively (Figure 3A). Of the five types of RNA
editing in R. japonica mitogenome, C to T editing had the highest
number of occurrences (294 times, 98.33%) and exited in all the
24 PCGs (Figure 3B). C to A editing was only found in rps4, and C
to G editing was found in both nad4 and nad5. In addition to C to T

FIGURE 2
The forward (green) and palindromic (red) repeats in the R. japonica mitogenome.

Frontiers in Genetics frontiersin.org05

Chen et al. 10.3389/fgene.2023.1289811

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1289811


FIGURE 3
Prediction of RNA editing sites in the R. japonica mitogenome. (A) Number of RNA editing sites in PCGs. (B) RNA editing types and their numbers
identified in the R. japonica mitogenome.

FIGURE 4
Plastid-like sequences in the R. japonicamitogenome. RjCP: the chloroplast genome of R. japonica. RjMT: the mitogenome of R. japonica. The red
arcs represent 100% similarity, the blue arcs represent the similarity between 90% and 100%, the orange arcs represent the similarity between 80% and
90%, and the green arcs represent the similarity between 70% and 80%.
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editing, nad4 also had C to G, G to T, and G to C editing. As the
center of plant energy metabolism, mitochondrion is known as the
power house. Base substitution in the sequence of editing key genes
may affect plant growth and metabolism. The development of base
editor in plant mitogenome (Nakazato et al., 2022) and the
mechanism of plant mitogenome editing (Wang et al., 2023b)
will help to uncover the mystery of plant mitogenome. The
assembly and annotation of R. japonica mitogenome will
establish a solid foundation in the field about mitochondrial
function research.

3.4 Horizontal transfer of sequences from
the chloroplast genome

The phenomenon of plant mitogenome containing plastid-like
fragments is common in most plant species. It was reported that
23,368 bp in the Salix wilsonii mitogenome (accounting for 3.28%)
were derived from the chloroplast genome (Han et al., 2022). A total
of 21,542 bp in theAbelmoschus esculentusmitogenome (accounting
for 4.07%) were homologous with its chloroplast genome (Li et al.,
2022). In the present study, the plastid-like sequences in the R.
japonica mitogenome were identified. A total of 17 DNA fragments
with a total length of 26,123 bp were similar to chloroplast genome
(Supplementary Table S5), accounting for 8.64% of the R. japonica
mitogenome. Specifically, the plastid-like fragments ranged from
36 bp to 9,402 bp, containing 11 complete tRNA genes (trnV-GAC,
trnL-CAA, trnM-CAU, trnD-GUC, trnN-GUU, trnI-GAU, trnA-
UGC, trnR-ACG, trnH-GUG, trnS-GGA, and trnW-CCA)
(Figure 4). Additionally, our results demonstrated that the largest
plastid-like fragments in the R. japonica mitogenome were derived
from the inverted repeat region (IRA and IRB, Figure 4) in
chloroplast genome. Apart from tRNA genes, the plastid-like
sequences mainly located in non-functional fragments which
consistent with most other land plants (Straub et al., 2013). The
rrn18 gene in the R. japonica mitogenome may migrate from
chloroplast genome due to the partial similarity in sequence, and
undergo some integration during the evolutionary process.

3.5 Selection pressure analyses of
mitochondrial PCGs

In order to estimate the selection pressure of R. japonica
mitochondrial PCGs, a total of 25 shared PCGs were employed to
compute the Ka/Ks ratios among the mitogenome of R. japonica, P.
aviculaare, F. aubertii, and F.multiflora. Themost of the pairwise Ka/Ks
ratios were smaller than 1 (Figure 5), indicating that most PCGs were
under purifying selection during the evolution of R. japonica. And they
may play important roles in stabilizing and maintaining the essential
function of mitogenome. However, ccmFC, cox1, and nad1 were found
with Ka/Ks ratios bigger than 1, suggesting that these three genes were
subject to positive selection during evolution. Note also that the cox1
gene had an extremely high Ka/Ks ratio (R. japonica vs. F. multiflora:
2.83), indicating strong positive selection during the evolution of R.
japonica and F. multiflora.

3.6 Phylogenetic analysis

The mitogenome is an important tool for developing
phylogenetic research. Due to the extensive variations in different
plants, the shared conserved PCGs are usually used to conduct
phylogenetic analysis. In this study, the maximum likelihood (ML)
method was used to construct the phylogenetic tree based on the
twelve homologous mitogenome PCGs from eleven species. The
results showed that the position of R. japonica stayed closest to F.
multiflora, which is consistent with those based on chloroplast
genome (Chen et al., 2022). As shown in Figure 6, the ML tree
was divided into two clades, one belongs to the order Caryophyllales
and others as outgroup. The species in the family Polygonaceae (R.
japonica, F. multiflora, F. aubertii, and P. aviculare) were separated
from the other families in the order Caryophyllales, indicating that
the mitogenome genes are reliable. The low bootstrap value of R.
japonica and F. multiflora may be due to the high similarity of the
mitogenomes (Supplementary Figure S4), indicating a close
kinship. And the R. japonica mitogenome could provide a kind
of reference for further phylogenetic studies.

FIGURE 5
Ka/Ks ratio analysis of the R. japonica mitogenome.
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4 Conclusion

This work presented the first mitogenome assembly and
annotation of R. japonica. The main results include: The R.
japonica mitogenome was 302,229 bp in length and encoded
48 unique genes, including 27 PCGs, 18 tRNA genes, and
3 rRNA genes. In total, 8,174 codons were encoding the PCGs in
the R. japonica mitogenome. The noncoding sequences accounted
for 89.47% of the R. japonica mitogenome where the repeat
sequences mainly located. In addition, 11 plastid-like tRNA genes
were identified in the R. japonicamitogenome, and almost all PCGs
were subject to purification selection, except for ccmFC, cox1 and
nad1 which were subject to positive selection. In a word, the current
study provided valuable genomic resources for further
understanding and utilizing R. japonica in the future.
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