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Background: Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease
characterized by a diverse tumor microenvironment. The heterogeneous
cellular composition of PDAC makes it challenging to study molecular features
of tumor cells using extracts from bulk tumor. The metabolic features in tumor
cells from clinical samples are poorly understood, and their impact on clinical
outcomes are unknown. Our objective was to identify the metabolic features in
the tumor compartment that are most clinically impactful.

Methods: A computational deconvolution approach using the DeMixT algorithm
was applied to bulk RNASeq data from The Cancer Genome Atlas to determine the
proportion of each gene’s expression that was attributable to the tumor
compartment. A machine learning algorithm designed to identify features most
closely associated with survival outcomes was used to identify the most clinically
impactful metabolic genes.

Results: Two metabolic subtypes (M1 and M2) were identified, based on the
pattern of expression of the 26 most important metabolic genes. The
M2 phenotype had a significantly worse survival, which was replicated in
three external PDAC cohorts. This PDAC subtype was characterized by net
glycogen catabolism, accelerated glycolysis, and increased proliferation and
cellular migration. Single cell data demonstrated substantial intercellular
heterogeneity in the metabolic features that typified this aggressive
phenotype.

Conclusion: By focusing on features within the tumor compartment, two novel
and clinically impactful metabolic subtypes of PDAC were identified. Our study
emphasizes the challenges of defining tumor phenotypes in the face of the
significant intratumoral heterogeneity that typifies PDAC. Further studies are
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required to understand the microenvironmental factors that drive the appearance
of the metabolic features characteristic of the aggressive M2 PDAC phenotype.

KEYWORDS

pancreatic ductal adenocarcinoma, pancreatic cancer, metabolism, deconvolution,
prognosis

Introduction

Pancreatic adenocarcinoma (PDAC) is highly lethal, with a
5 -years survival <5% in unresectable cases. Even after curative
intent resection, tumor recurs in the majority of instances. While
there have been advances in systemic therapies for PDAC, only a
small impact on clinical outcomes has been realized. To better
understand PDAC biology, several groups have described
molecular subgroups with unique clinical and biological
features (Collisson et al., 2011; Moffitt et al., 2015; Bailey
et al., 2016; Raphael and Cancer Genome Atlas Research
Network, 2017; Cao et al., 2021). Most of these efforts have
employed bulk (whole tumor) analysis (Collisson et al., 2011;
Bailey et al., 2016; Raphael and Cancer Genome Atlas Research
Network, 2017; Cao et al., 2021). However, PDAC
characteristically has a prominent stromal component
consisting of diverse cellular populations including fibroblasts,
stellate cells, acinar cells, endothelial cells, and immune cells. The
situation is further complicated by highly variable stromal
features. While this can be technically addressed by single cell
analyses, so far series describing single cell analyses have been too
small to provide insight on the effects of individual cellular
components on clinical outcomes (Wang et al., 2021; Fang
et al., 2022).

It is well known that PDAC afflicts the host with significant
metabolic perturbations manifested as impaired glycemic control
(Alpertunga et al., 2021; Jeon et al., 2021) and cachexia (Rupert et al.,
2021; Zhong et al., 2022). Studies on the circulating metabolome
demonstrate distinct features in comparison to controls (Bathe et al.,
2011; Mayers et al., 2014), although so far metabolomic subtypes
based on the circulating metabolome have not been described. Three
metabolic subtypes based on metabolomic profiles have been
described in cell lines, including glycolytic and lipogenic subtypes
and a subtype with reduced proliferative capacity (Daemen et al.,
2015). The metabolic subtypes had differential sensitivities to
inhibitors of glycolysis and glutaminolysis. Based on these
findings, Karasinska et al. (2020) evaluated the association of
glycolytic and cholesterogenic gene expression levels on survival.
This targeted analysis demonstrated that glycolytic tumors had the
shortest median survival, and cholesterogenic PDACs had the
longest survival.

While each of these studies has shed light on very important
metabolic features, it is unclear what metabolic features specifically
in tumor cells are most impactful on the biology and clinical
behavior of PDAC. We postulated that subsets of PDAC had
metabolic features that were clinically impactful and potentially
actionable from a therapeutic perspective. To separate the effects of
the tumor cell compartment from the stromal compartment, we
employed a computational deconvolution approach. The most
clinically impactful metabolic features of PDAC were identified

using a proprietary machine learning algorithm (HighLifeR™)
(Craig et al., 2022) designed to expose features that were most
closely associated with survival outcomes.

Materials and methods

Patient samples and data acquisition

In this study, PDAC cases annotated by The Cancer Genome
Atlas (TCGA) (N = 142) were used as discovery cohort. The
normalized RSEM RNASeq data were downloaded from
firebrowse.org, and related clinical information was obtained
from the Genomic Data Commons Data portal (GDC PDAC).
To derive gene expression levels in the tumor compartment, bulk
RNASeq data from TCGA were submitted to computational
deconvolution. A two-compartment model was employed using
the R package DeMixT (Wang et al., 2018; Cao et al., 2022). The
discovery cohort consisted of 12,635 protein-coding genes,
including 1,499 metabolic genes. The metabolic gene list was
aggregated from the Reactome Pathway Database Vol 77. Genes
belonging to “Metabolism; Id: R-HAS-143072B.10, Species: Homo
sapiens.” Data on mutations and copy number variations (hg38)
were downloaded using the TCGAbiolinks package in R. Previously
defined hypoxia scores of PDAC bulk tumors were downloaded
from cBioPortal.

To validate the findings from the discovery cohort, HTSeq RNAseq
data and clinical information were obtained from CPTAC (using the R
package TCGAbiolinks from the GDC portal), ICGC (from the ICGC
Data Portal), and from the COMPASS trial (Aung et al., 2018; Zhang
et al., 2019; Cao et al., 2021). Each dataset was independently
normalized using the median of ratios, and z-scores of all genes
were calculated using the scale function in R. A prediction model
based on the prognostic metabolic genes was generated using the
WEKA software (Witten et al., 2017). The multilayer perceptron
(MLP) algorithm, a form of artificial neural network (Murtagh,
1991), demonstrated the highest accuracy on internal validation.

Identification of prognostic genes using
HighLifeR™

HighLifeR™ (Qualisure Diagnostics Inc., Calgary, Canada)
facilitates the interrogation of highly dimensional datasets with
relatively limited sample size, to identify features that are most
closely associated with survival events. HighLifeR™ employs partial
Cox regression using predictions from the latent components
method introduced by Li and Gui (2004). The algorithm involves
the recursive application of Cox proportional hazards estimates,
testing a multitude of genes and patient combinations in a
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supervised machine learning context. It also employs randomization
of training samples into “virtual cohorts” for 20 testing cycles, each
including roughly 70% of patients, with resampling to minimize
outlier effects. The HighLifeR™ statistical mechanism includes: a)
extensive combinatorial iterations to establish gene prognosis in
variable space; b) selection of the most highly ranked genes with
respect to their association with survival; c) development of a
combined prognostic rating model. Prognostic genes are chosen
based on their recurring top-200 ranking and prognostic influence
(Wald statistic) exceeding half of the maximumWald statistic in the
training set (>4.7). Broad utilization of randomization (including in
sample distribution for testing and validation, and in combination
sequences) reduces the chance of identifying a sample set-bound
prognostic pattern.

Identification of metabolic subgroups

Selected prognostic metabolic genes (N = 26) identified using
HighLifeR™ were submitted to unsupervised analysis to uncover
underlying patterns. The k-means clustering algorithm was utilized
using the Euclidean distance metric in conjunction with the complete
linkage clusteringmethod, with the number of clusters (k) ranging from
2 to 6. Finally, k = 2 clusters were selected to define the metabolic
subtypes, denoted as M1 and M2. For visualization, Euclidean distance
metric with complete linkage clustering was employed using the
ComplexHeatmap package in R. To conduct the survival analysis,
Kaplan-Meier plots were generated usingGraphPad PRISM version 8.0.

Mutation and copy number variation analysis

Mutational and copy number variation analysis was carried out
using the R package “maftools.” For somatic copy number variations,
GISTIC2.0 was used to download the relevant data. A Fisher’s exact test
was used to comparemutation frequencies and copy number variations
between groups. To account for multiple comparisons, p-values were
adjusted using the Benjamin-Hochberg method.

Differentially expressed genes analysis

Differentially expressed genes (DEGs) were identified using the
limma-voom function in R (Law et al., 2014). Briefly, data were
transformed to log2 counts per million reads (CPM). Genes with less
than 1 CPM were excluded from the analysis of differentially
expressed genes. The metabolic subtype with better survival (M1)
was used as the reference group. We adjusted for multiple
comparisons using the Benjamini-Hochberg method. The
significance threshold for this analysis was an adjusted p-value
of ≤0.05 and log fold changes of ≥±1. Ultimately, 551 DEGs
were identified based on these criteria.

Gene set enrichment and pathway analysis

Gene set enrichment analysis (GSEA) was performed using
version 4.1.0 of the Broad Institute GSEA software. Using all

protein coding genes, the 50 Hallmarks version 7.5 gene sets
from the Broad Institute were interrogated. Then a focused
evaluation for enrichment of metabolism-related pathways was
performed, limiting the input to the 1,499 metabolic genes
present in the expression dataset from the discovery cohort. The
46 pathways dedicated to metabolism were sourced from the
Reactome database (data available at https://reactome.org/
PathwayBrowser/#/R-HSA-1430728). We determined significance
levels through a permutation-based approach and adjusted for
multiple testing using the Benjamini-Hochberg method to
calculate the false discovery rate (FDR). The enrichment score
was computed using a ranking-based metric, which measures the
cumulative distribution of genes within a gene set relative to the
entire dataset. Results with a significance cutoff of p < 0.05 and an
FDR threshold of <25% were considered statistically significant.

For the IPA (Ingenuity Pathway Analysis) analysis, a total of
551 DEGs, along with their adjusted p-values and fold changes,
were used as input. The IPA analysis was conducted using the
Qiagen IPA platform (https://digitalinsights.qiagen.com/
products-overview/discovery-insights-portfolio/analysis-and-
visualization/qiagen-ipa/). Fisher’s exact test was utilized to
assess the statistical significance of pathway and function
enrichment. We controlled for multiple testing using the
Benjamini-Hochberg correction and calculated activated
z-scores to predict the likely activation state of biological
processes based on DEGs. A significance cut-off of nominal
p-value 0.05 was applied for the canonical pathways, while a
Benjamini-Hochberg (BH) p-value of 0.05 was used for the
functional analysis. Pathway visualizations were generated
using various R packages.

Single cell analysis

To explore single-cell characteristics of PDAC primary
tumors and metastasis samples, we retrieved the NCBI-GEO
dataset with the ID GSE154778 (Lin, W. et al., 2020). The
dataset included single cell RNASeq data from 10 primary
PDACs and 6 samples from metastases. The RNA-seq data for
each sample were obtained following the methodology described
in the study. The focus of the downstream analysis was on
epithelial tumor cells (ETCs) to validate the presence of inter-
tumor heterogeneity. Classification of ETCs was based on marker
genes, including EpCAM and KRT19. Log-normalized data and
z-scores for prognostic metabolic genes were calculated for each
tumor sample.

Drug sensitivity testing

Pharmacogenomic profiles from drug screening studies of
PDAC cell lines from CCLE and gCSI were downloaded from
Orcestra.ca (https://orcestra.ca/pset). Using the MLP model, cell
lines were classified as M1 or M2. The data from CCLE and gCSI
were not combined to mitigate potential confounding factors
such as variations in drug concentration range or cell viability
assay methods. To compare the drug sensitivity status between
the two subtypes, the Wilcoxon signed-rank test was used to
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compare the distribution of the area above the dose-response
curve (AAC) values per drug across the subtypes. p-values were
adjusted using the Benjamini-Hochberg method to account for
multiple testing.

Additional statistical details

In addition to the analyses described above, continuous variables
were compared using the Student’s t-test, and the Mann-Whitney U

FIGURE 1
Prognostic tumormetabolic subtypes in pancreatic ductal adenocarcinoma (PDAC). (A)Unsupervised clustering (k = 2) illustrating distinctmetabolic
subgroups in the TCGA PDAC cohort (N = 142). The heatmap depicts expression levels of prognostic metabolic genes within the identified subtypes,
highlighting both “lower-risk” (M1) and “high-risk” (M2) groups. (B,C) Kaplan-Meier plot displaying the overall and progression-free survival of the
metabolic subtypes in the discovery cohort, demonstrating significant differences in survival outcomes. (D−F)Overall survival analysis of resectable
PDAC patients: International Cancer Genome Consortium (ICGC, n = 172), Clinical Proteomic Tumor Analysis Consortium (CPTAC, n = 140), and
unresectable patients from the COMPASS cohort (n= 272) stratified according to predictedmetabolic subtypes. (G,H) Bar chart presents the responses to
the first line treatment in COMPASS cohort. M1 subtype exhibits stable and partial responses to both FOLFIRINOX and Gemcitabine/Nab-paclitaxel. On
the contrary, M2 group shows poor response to gemcitabine and combined therapy. Log-rank and Chi-square p-values are shown in the figure.
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test was used for non-parametric data. Proportions were compared
using the chi-square test. Log-rank tests were used to compare
survivals between groups. Statistical analyses were executed using
RStudio, GraphPad PRISM version 8.0, and SPSS version 26.

Results

Identification of two prognostic metabolic
phenotypes

We used data from The Cancer Genome Atlas (TCGA) PDAC
cohort consisting of 142 patients as our discovery dataset. The

majority of the TCGA PDAC samples were resected, and
RNASeq was performed in bulk samples from primary tumors.
The DeMixT algorithm was applied to determine the expression
level of each gene that was attributable to the tumor compartment.
HighLifeR™, a proprietary machine-learning algorithm designed to
identify features that most strongly contribute to survival outcomes,
was applied to the deconvolved tumor-specific expression of
1,499 genes with a known metabolic function. Briefly,
HighLifeR™ calculates the Cox proportional hazards in an
exhaustive series of permutations consisting of combinations of
genes and patients. A set of 26 genes was identified as most
consistently and significantly associated with overall survival
(OS). Genes had diverse metabolic functions, including roles in

TABLE 1 Patient characteristics in TCGA cases with each metabolic subtype phenotype.

Characteristics PDAC tumor metabolic subtypes p-value

M1 (Lower-risk) No (n = 104) (%) M2 (High-risk) No (n = 38) (%)

Age (years) 0.440

Mean ± SD 64.54 ± 10.633 66.58 ± 10.892

Sex 0.684

Female 48 (46.2) 19 (50.0)

Male 56 (53.8) 19 (50.0)

Race 0.761

Asian 5 (5.0) 3 (7.9)

African American 4 (4.0) 1 (2.6)

White 91 (91.0) 34 (89.5)

Histologic Grade 0.219

G1 16 (15.4) 4 (10.5)

G2 60 (57.7) 19 (50.0)

G3 28 (26.9) 14 (36.8)

G4 0 (0.0) 1 (2.6)

Tumour Stage 0.717

T1 2 (1.9) 1 (2.7)

T2 13 (12.5) 3 (8.1)

T3 87 (83.7) 33 (89.2)

T4 2 (1.9) 0 (0.0)

Lymph Node Stage 0.459

N0 28 (27.2) 8 (21.1)

N1 75 (72.8) 30 (78.9)

Metastatic Stage 0.871

M0 47 (94.0) 19 (95.0)

M1 3 (6.0) 1 (5.0)

Smoking History Category 0.538

1 33 (38.8) 17 (51.5)

2 12 (14.1) 5 (15.2)

3 21 (24.7) 4 (12.1)

4 14 (16.5) 6 (18.2)

5 5 (5.9) 1 (3.0)

Alcohol History 0.830

No 37 (38.1) 13 (36.1)

Yes 60 (61.9) 23 (63.9)

Diabetes History 0.270

No 61 (70.9) 29 (80.6)

Yes 25 (29.1) 7 (19.4)
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carbohydrate, amino acid, and lipid metabolism (Supplementary
Table S1). Interestingly, dihydropyrimidine dehydrogenase
(DPYD), the rate-limiting enzyme responsible for the metabolism
of 5-fluorouracil, emerged in the list of prognostic metabolic genes.
Tumor expression of DPYD has been linked to resistance to
fluoropyrimidines (Gustavsson et al., 2009; Zhang et al., 2017).
Upon searching the Human Protein Atlas, six of these genes
(SPTLC3, PYGL, GMPS, ACSF3, SLC16A1, and PGM1) were
confirmed to be prognostic in PDAC, based on expression at the
protein level.

An unsupervised analysis focused on the 26 prognostic genes
revealed a pattern of co-expression. Two clusters were apparent
(M1 and M2; Figure 1A). In the largest subgroup (M1), which
consisted of 104 patients (74.2%), most genes were relatively
downregulated. In the M2 subgroup, which comprised
38 patients (26.8%), the prognostic genes were frequently
overexpressed, with the exception of SCLY and ACSF3. This
latter subgroup had a significantly truncated overall survival (OS)
in comparison to the M1 subtype (log-rank p-value 0.001;
Figure 1B). Similarly, we observed a shorter progression-free
survival (PFS) in the M2 subtype (p = 0.011; Figure 1C).
Interestingly, the clinical features in the two metabolic subtypes
were indistinguishable, including features that were known to
influence survival (Table 1). Information on diabetes status was
available for 122 patients. In patients with the M1 phenotype, 25 of
86 (29.1%) patients had diabetes. In the M2 phenotype, 7 of 34
(20.5%) patients had history of diabetes. This was not significantly
different.

A predictive model based on the multilayer perceptron
(MLP) classifier was generated for validation studies. The
accuracy of this model on internal validation was 95.8% ±
0.8%. RNASeq data were acquired from three different cohorts
to validate our findings. These included the ICGC study (N =
172), an analysis of tumor cells enriched by laser capture
microdissection (LCM) from surgical patients; the COMPASS
trial (N = 272) (Aung et al., 2018), LCM-enriched tumor cells
from unresectable PDAC (Zhang et al., 2019); and the CPTAC
study (N = 140), a bulk analysis of mostly surgical patients (Cao
et al., 2021). The MLP classifier was based on gene expression
z-scores, facilitating the classification of metabolic phenotype,
including in bulk transcriptomes. The proportions of each cohort
that consisted of the M2 phenotype were approximately the same
in each cohort: 23.8% in the ICGC cohort; 23.2% in the
COMPASS cohort; and 30.0% in the CPTAC cohort
(Supplementary Figure S1). However, in the COMPASS study,
a larger proportion of patients with documented metastatic
PDAC (54 of 219; 24.7%) were M2 in comparison with the
fraction of locally advanced cases that were M2 (2 of 28;
7.1%) (p = 0.01).

In each validation cohort, cases with the M2 phenotype had
the shortest overall survival (Figures 1D–F). In cases from the
COMPASS trial that consisted of patients on palliative
chemotherapy, the metabolic subtype also conferred
differences in chemotherapy response rates. Specifically,
following treatment with FOLFIRINOX (FFX), disease
progression was more commonly reported in M2 tumors
(48.0% vs. 20.4%; p = 0.014), and response rate was higher in
M1 tumors. Similarly, progressive disease (PD) was more

common in patients with M2 tumors treated with
gemcitabine/nab-paclitaxel (37.5% vs. 12.7%; p = 0.067)
(Figures 1G, H).

Metabolic subtypes and PDAC molecular
subtypes

The metabolic subtypes were evaluated in the context of
molecular subtypes described by Collisson et al., 2011; Moffitt
et al., 2015; Bailey et al., 2016. Of note, the Moffit subtypes were
also derived from a computational deconvolution method. Using
this approach, two tumor phenotypes (classical and basal-like) were
identified, and the phenotype of the stromal compartment could also
be dichotomized (normal and activated), each with prognostic
significance. The relationship of other molecular subtypes with
our metabolic subtypes is illustrated in Figures 2A–C. In each
case, there were significant differences between M1 and
M2 tumors. M2 tumors (with the worst prognosis) were most
frequently Moffit basal-like. In comparison to the M1 subtype,
M2 tumors were more frequently Collisson quasimesenchymal
and Bailey squamous. The Moffit basal-like, Collisson
quasimesenchymal and Bailey squamous subtypes reportedly
have the worst prognosis.

Recently, using pan-cancer data from 33 diverse tumor types,
Thorsson et al. identified six immune subtypes based on the
composition of the immune infiltrate and expression of
immunomodulatory genes (Thorsson et al., 2018). Immuno-
inflammatory patterns differed significantly in M1 and
M2 tumors (p-value < 0.001; Figure 2D). Specifically, M1 tumors
were comprised of more inflammatory (C3) and TGF-beta
dominant (C6) immune subtypes; M2 tumors were almost all
wound healing (C1) and IFN-gamma dominant (C2) subtypes,
although 8.1% were also TGF-beta dominant subtype. C1 tumors
have increased expression of angiogenic genes and a Th2 cell bias in
their adaptive immune cell infiltrate. C2 tumors have a strong
CD8 signal, but high T cell receptor diversity. In the pan-cancer
paper by Thorsson et al., C1 tumors and C2 tumors had a worse
prognosis than C3 tumors, and C4 and C6 tumors had the worst
survival outcomes.

Biological features of metabolic subtypes

There were no significant differences between M1 and
M2 tumors in mutation frequency or copy number variations.
To gain an understanding of the biological features that
characterized our two metabolic subtypes, we first performed a
gene set enrichment analysis (GSEA), focusing first on the
50 hallmark gene sets in MSigDB. Using deconvolved gene
expression levels from the tumor compartment from the
TCGA dataset, pathways with the most significant enrichment
in the poor prognosis M2 subtype included protein secretion, UV
response, mammalian target of rapamycin 1 (mTORC1)
signaling, and heme metabolism (Table 2). Metabolic
pathways that did not quite reach significance included
glycolysis, androgen response, angiogenesis and adipogenesis.
A similar analysis was performed on the two datasets derived
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from physically enriched tumor cells. In the ICGC dataset,
protein secretion, oxidative phosphorylation, MYC targets and
DNA repair were enriched. In the COMPASS dataset, protein

secretion andMYC targets were enriched. Finally, using bulk data
from CPTAC, protein secretion, MYC targets and DNA repair
pathways were enriched.

FIGURE 2
Association of identified metabolic subtypes with PDACmolecular subtypes and immune subtypes. (A) Stacked bar charts depicting the distribution
of patients in the M1 and M2 PDAC tumor metabolic subtypes, alongside their intersection with previously reported PDAC molecular subtypes (Collison
et al., 2011; Moffit et al., 2015; Bailey et al., 2016). (B) Proportions of immune subtypes as described by Thorsson et al. (2018) are presented within the
identified tumor metabolic subtypes. Chi-square p-values are provided to assess the significance of associations.

TABLE 2 Gene set enrichment analysis in M1 and M2 subtype in the TCGA cohort (the discovery cohort) using the Broad Institute 50 Hallmarks gene sets.

Enriched Hallmark functions Normalized enrichment score (NES) Nominal p-value FDR (q-value)

Protein secretion* 1.85 0.000 0.214

UV response* 1.62 0.015 0.228

mTORC1 signaling* 1.67 0.022 0.211

Heme metabolism* 1.52 0.039 0.228

Unfolded protein response 1.69 0.020 0.383

DNA repair 1.56 0.022 0.282

MYC targets 1.68 0.035 0.259

Glycolysis 1.45 0.069 0.232

Androgen response 1.47 0.071 0.231

Angiogenesis 1.47 0.083 0.250

Adipogenesis 1.44 0.087 0.229

Peroxisome 1.39 0.097 0.253

G2M checkpoint 1.55 0.105 0.228

E2F targets 1.52 0.127 0.209

* = Significant based on both nominal p-value (≤0.05) and FDR (≤0.25).
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To derive a deeper understanding of the potential biological
features distinguishing the two metabolic subtypes, we applied a
knowledge-based approach using Ingenuity Pathways Analysis
(Qiagen, Redwood City, CA). There were 551 differentially
expressed genes (adjusted p-value 0.05 and Log2fold changes
equal or greater than ± 1) that informed the analysis (Figure 3A,
Supplementary Data Sheet S1). Topmolecular and cellular functions
positively enriched in M2 tumors included cell migration, invasion,
angiogenesis, proliferation, and inflammation (Figure 3B).

Canonical pathways that were significantly enriched included
fibrosis signaling, the tumor microenvironment pathway,
estrogen receptor signaling, TREM1 signaling, ID1 signaling,
STAT3 signaling, and HIF1 signaling (Figure 3C). Interestingly,
ID1 expression leads to IL-6 production, activating STAT3 (Meng
et al., 2020), which is known to drive tumor associated macrophages
toward an immunosuppressive phenotype, also promoting
angiogenesis, invasion and epithelial-mesenchymal transition
(EMT) (Chang et al., 2013). TREM1 similarly appears to amplify

FIGURE 3
Altered canonical pathways and functions linked to the high-risk (M2) subtype. (A) Volcano plot demonstrating the differentially expressed genes
(n = 551) between the identified metabolic subtypes. Statistical significance is represented by BH adjusted p-value of 0.05 and a Log2 fold change
threshold of ±1. (B) Ingenuity Pathway Analysis (IPA) of the differentially expressed genes reveals that the high-risk subtype is positively enriched in cellular
proliferation, migration, and invasion. The enrichment analysis yields adjusted p-value less than or equal to 0.05. (C) Disrupted canonical pathways
associatedwithM2metabolic subtype encompass crucial signaling pathways. Fisher’s exact test results indicate a significance level of less than or equal to
0.05. The x-axis represents the activated z-score with sizes indicating the level of significance (right side of the plot). (D) The box plot illustrates the
hypoxia scores associated with the identified metabolic subtypes. Based on previous studies (Winter et al., 2007; Buffa et al., 2010; Ragnum at el., 2014)
patients with the M2 phenotype exhibits higher scores than M1 phenotype. The statistical significance of these comparisons was assessed using the
Mann-Whitney U test, with a p-value threshold set at 0.05 or less.
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the inflammatory response, including production of IL-6; blockade
of TREM1 has reportedly attenuated tumor growth in an
experimental PDAC model (Shen and Sigalov, 2017).

To further dissect the metabolic features that characterized our
two metabolic subtypes, we performed a GSEA using only genes
with a known metabolic function. The high-risk M2 subtype had
significant enrichment in glucagon signaling, glycogen metabolism,
and regulation of insulin secretion. Other enriched metabolic
pathways (but to a lesser degree) included sphingolipid and
triglyceride metabolism (Table 3).

Seemingly, the findings related to carbohydrate metabolism
were contradictory. Firstly, in M2 PDACs, glucagon signaling,
which promotes gluconeogenesis and glycogen synthesis, was
enriched. On the other hand, while the enrichment of glycolysis
was not statistically significant (nominal p = 0.07, FDR 0.23),
virtually all of the key genes corresponding to enzymes
promoting glycolysis were elevated. Secondly, there was evidence
of both glycogen synthesis (NES 1.50, nominal p = 0.075, FDR =
0.054) and glycogenolysis (NES 1.74, nominal p = 0.009, FDR =
0.013) (Supplementary Figures S2A, B). The rate limiting enzymes
involved in both of these processes are both increased in M2,
although there was a 2-fold upregulation of PYGL (promoting
glycogenolysis); GYS1 (encouraging glycogen synthesis) was
increased by less than 10%. Of note, in cell lines in hypoxic
conditions, there is an initial rapid increase in glycogen synthesis
catalyzed by GYS1 followed by PYGL-dependent glycogen
breakdown (Favaro et al., 2012). The expression of GYS1 is
HIF1α-dependent, but PYGL is not consistently HIF1α-
dependent; PYGL depletion impairs tumor growth, as glycogen
breakdown is integral to tumor cell function and growth.

Metabolic phenotype as a function of
hypoxia

To explore the potential role of hypoxia, we compared the
hypoxia scores between M1 and M2 PDACs using three
previously described methods (Winter et al., 2007; Buffa et al.,
2010; Ragnum et al., 2014). In this analysis using bulk
transcriptomic data, M2 tumors had significantly higher hypoxia
scores (Figure 3D). However, when a focused GSEA on the
transcriptome ascribed to the tumor compartment was
performed using hypoxia-related gene sets obtained from the

Broad Institute MSigDB (Hallmark Hypoxia) and Reactome
(Cellular Response to Hypoxia), there was no significant
enrichment (nominal p-value 0.11). This suggests that any
hypoxia in the tumor microenvironment predominantly affects
the stromal compartment rather than the tumor compartment.
Other studies have similarly suggested that there is considerable
intratumor heterogeneity of hypoxia in human and murine PDAC
tumors (Dhani et al., 2015; Lee et al., 2016). Moreover, inflammatory
cancer-associated fibroblasts (iCAFs) preferentially localize in
hypoxic regions (Mello et al., 2022).

Hypoxia is thought to stem from the desmoplastic stroma of
PDAC, possibly by contributing to increased intratumoral pressures,
compressing tumor cell vasculature (Chauhan et al., 2014). In that
same vein, we evaluated related factors in the two metabolic
subtypes. Tumor size was considered, as we postulated that larger
tumors would be more susceptible to hypoxia. Neither tumor size
nor T-stage were significantly different betweenM1 andM2 tumors.
Angiogenesis is a known consequence of hypoxia (Pugh and
Ratcliffe, 2003). Indeed, IPA analysis demonstrated enrichment
in genes involved with angiogenesis in M2 tumors. Finally, the
proportion of tumor that consists of stromamay also reflect the state
of tumor oxygenation. Previously, in PDAC, it was reported that
HIF-1α activation by tumor hypoxia causes secretion of sonic
hedgehog (SHH) by cancer cells, which stimulates deposition of
fibrous tissue by stromal fibroblasts (Spivak-Kroizman et al., 2013).
However, in contrast to that observation, tumor content was
significantly greater in the putatively hypoxic M2 tumors,
whether estimated histologically (tumor nuclei count), or by
ABSOLUTE or DeMixT (Supplementary Figure S3).

Upstream regulators associated with the
high-risk metabolic subtype

We took a causal analysis approach using the IPA advanced
network tool to infer the identity of upstream regulatory molecules
and associated mechanisms related to our two metabolic subtypes
(Krämer et al., 2013). Based on the upstream regulator analysis using
the differentially expressed genes, we identified a number of
upstream regulators that were activated in the high-risk
metabolic subtype, including AGT (z-score 4.115), TGFβ1
(z-score 3.734), SMARCA4 (z-score 3.66), NFkB (z-score 3.238),
STAT1 (z-score 3.106), and VEGF (z-score 3.084). There were also a

TABLE 3 Metabolism-focused gene set enrichment analysis of M1 and M2 subtypes.

Enriched metabolic pathways Normalized enrichment score (NES) Nominal p-value FDR (q-value)

Glucagon signaling in metabolic regulation* 2.08 0.000 0.002

Glycogen metabolism* 1.79 0.006 0.094

Regulation of insulin secretion* 1.55 0.039 0.251

Metabolism of water-soluble vitamins and cofactors 1.57 0.017 0.267

Sphingolipid 1.59 0.026 0.321

Phase II conjugation of compounds 1.50 0.031 0.292

Triglyceride metabolism 1.46 0.045 0.312

* = Significant based on both nominal p-value (≤0.05) and FDR (≤0.25).
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number of inhibited upstream regulators associated with the
M2 phenotype, including IKZF1 (z score −2.82), IKZF3
(z-score −2.442), EWSR1-FLI1 (z-score −2.236), GMNN
(z-score −2.236), and TAF4 (z-score −2.186).

Angiotensinogen (AGT), a substrate for angiotensin II, the
primary peptide for the renin-angiotensin system (RAS) was
predicted to directly control the expression of 43 DEGs in our
dataset: 34 of them were activated, and 9 of them were inhibited
(overlap p-value 6.33E-07, BH p-value 2.72E-05). Evidence
suggested that stimulation of local RAS induces VEGF
expression, promoting PDAC tumor growth (Anandanadesan
et al., 2007).

TGFβ1 was associated with 62 upregulated DEGs (overlap
p-value 4.97E-06, BH p-value 6.91E-05), of which 21 overlapped
with the AGT network. Angiotensin II (ANG II) increases the
expression of TGFβ-1 (Weigert et al., 2002). In PDAC, TGFβ
encourages tumor growth by regulating EMT through SMAD4. It
has been previously reported in different types of cancer that cellular
proliferation, migration, and angiogenesis could also be influenced
by TGFβ, partially mediated by VEGF (Li et al., 2005; Ferrari et al.,
2009). TGFβ is also a prominent mediator of NFκB activation and
PTEN suppression in pancreatic cancer (Chow et al., 2010).
SMARCA4 is associated with mitotic spindle, apical junction,
and PI3/AKT/mTOR signaling pathways; it is increased in many
types of cancer and is reportedly associated with the poor prognosis
in other cancers (Peng et al., 2021; Guerrero-Martínez and Reyes,
2018). In all, the aggressive M2 phenotype has a number of
potentially causative pathways, some of which may be interrelated.

Single cell studies

While this study described metabolic phenotypes in the tumor
compartment (and therefore differed from bulk transcriptomic
studies), in effect the deconvolved gene expression data that
comprised the M1 and M2 phenotypes are the product of the
average gene expression values in tumor cells. The question
remained whether tumor cells existed in a uniform metabolic
state within a tumor, or whether there was phenotypical diversity
at the single cell level. To explore this, we accessed data from a single
cell RNA-Seq studies on 16 tumors (10 primary tumors and
6 metastases) (Lin, W. et al., 2020). Epithelial tumor cells were
identified, and expression levels for each of the metabolic genes
associated with PDAC prognosis were determined for each
individual tumor cell. Samples with at least 100 epithelial tumor
cells (ETCs) were used in this analysis. One metastasis sample
(MET03) and three primary tumors (P01, P02, and P03) were
excluded from analysis because of insufficient numbers of cells.
Supplementary Figure S4 shows the degree of heterogeneity within
each tumor. For ease of comparison, the gene order on the heatmap
is the same as in Figure 1A.

There were several interesting observations. First, there was
significant diversity in the expression of prognostic metabolic
genes between cells within any individual tumor. Second, the
proportion of tumor cells with greater similarity to M1 or
M2 phenotype varied little. Third, the genes that were
characteristically upregulated in M2 PDACs were not as closely
co-related at the single cell level. Finally, there were individual

tumors where more of the prognostic metabolic genes were
upregulated in more cells. Likely, these types of tumors
represented PDACs that would be recognizable as M2 PDACs in
the bulk analysis.

Potential drug targets

We used the PharmacoGx platform to determine some potential
drug targets that might particularly target the high-risk M2 subtype.
Initially, we obtained two different PDAC cell line datasets including
the Cancer Cell line Encyclopedia (CCLE, n = 41) (Cancer Cell Line
Encyclopedia Consortium, Genomics of Drug Sensitivity in Cancer
Consortium, 2015), and the Genetech Cell Line Screening Initiative
(gCSI, n = 35) (Klijn et al., 2014). The multilayer perceptron
classifier was applied to cell lines to classify metabolic phenotype.
Of the CCLE PDAC cell lines, 9 (22.0%) had the M2 phenotype;
10 of the gCSI cell lines (28.6%) wereM2 (Supplementary Figure S5).
In the CCLE collection, there was no differential drug sensitivity
between M1 and M2 cell lines. In gCSI cell lines, based on the
nominal p-value, M2 cell lines were more sensitive to docetaxel and
erlotinib (p = 0.048 and p = 0.019, respectively). However, following
correction for multiple comparisons, this was not significant
(Supplementary Figure S6).

Discussion

Metabolic reprogramming is one of the hallmarks of cancer
(Hanahan and Weinberg, 2011). As with other hallmarks of cancer,
metabolic reprogramming confers a growth advantage to malignant
cells. Metabolic derangements are potentially attractive therapeutic
targets, especially perturbations that adversely affect patient health
and survival. We have identified two novel metabolic subtypes based
onmetabolic genes most closely associated with survival events. One
of these phenotypes (M2) has a significantly worse prognosis. The
M2 phenotype has a significant overlap with the poor prognosis
molecular subtypes described by Collisson et al., 2011; Moffitt et al.,
2015; Bailey et al., 2016. The pattern of immune infiltrate or
M2 tumors differs from M1 tumors. In addition to biological
features that would encourage tumor growth, M2 PDACs appear
to be hypoxic (in the stromal compartment) and have increased
glycogen turnover.

Others have described metabolic subtypes of PDAC (Daemen
et al., 2015; Peng et al., 2018; Karasinska et al., 2020). The approach
taken by others has involved identifying tumors based on selective
metabolic pathway genes. Our approach was different. Instead of
evaluating known metabolic pathways as a whole, we took an
unbiased approach to identify metabolic genes that most
consistently associated with survival events. The result was a list
of 26 genes with diverse functions; their pattern of expression
dictated one of two metabolic phenotypes with distinct biological
and clinical features.

One challenge in the study of PDAC is its cellular heterogeneity.
PDACs vary considerably in their composition, some containing
large numbers of tumor cells and others dominated by desmoplastic
stroma. The stromal constituents are similarly diverse. As a result,
there are limitations in how one may interpret molecular studies
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from bulk samples. To address this, we used a computational
deconvolution method to determine the proportion of expression
of each gene that could be ascribed to the tumor compartment. A
simple two-compartment model was applied using DeMixT. There
are numerous other approaches to computational deconvolution,
many capable of deconvolution to many cell types (Newman et al.,
2015; Avila Cobos et al., 2020). Technical and biological biases can
affect the accuracy of any deconvolution technique (Vallania et al.,
2018). The metabolic subtypes we described in deconvolved data
were observable in samples derived from physical enrichment, by
laser capture microdissection (LCM). LCM too has limitations: it is
virtually impossible to isolate an entirely pure population of tumor
cells, and thermal injury to cells may alter any gene expression
measurements. However, it was reassuring that the model built from
computational deconvolution could be replicated in physically
enriched tumor cells.

Even in a pure tumor cell population isolated from a PDAC, it
is likely that there is significant heterogeneity in cells from the
same tumor. Therefore, the metabolic features attributable to our
two metabolic subtypes represent an average of what may be
present throughout the entire tumor sample. Indeed, using sc-
RNASeq data, we found that there is substantial cell-to-cell
diversity in the expression levels of the individual genes
within any single PDAC. Further studies will be required
using high resolution spatial transcriptomics methods to
identify the determinants of intratumoral heterogeneity in
biological processes such as metabolism. However, current
methods may not have sufficient resolution at the cellular
level, and gene representation of any single cell analysis
technique is still not comprehensive.

Unlike previous studies (Daemen et al., 2015; Peng et al.,
2018), we did not specifically evaluate any drugs targeting
metabolic pathways. Rather, we evaluated the clinical and
in vitro responses to chemotherapies currently in clinical use.
In the COMPASS cohort, M1 tumors had a higher rate of PR and
SD in response to FOLFIRINOX; a trend toward higher response
rate was seen in M1 tumors treated with gemcitabine + paclitaxel.
In vitro, M2 tumors were slightly more sensitive to docetaxel,
another taxane. We view the in vitro data as weak, as only one of
the cell line collections demonstrated a slight difference in
sensitivity, and this could not be replicated in the other cell
line collection. Another reason for this discrepancy may be the
inclusion of a fluoropyrimidine (5-FU) in FOLFIRINOX and
gemcitabine in paclitaxel-gemcitabine; high DPYD expression in
M2 tumors confers resistance to fluoropyrimidines and
gemcitabine (Gustavsson et al., 2009; Zhang et al., 2017;
Tsukahara et al., 2022). Our in silico experiments were limited
by statistical power. Further studies would be required to explore
the utility of our metabolic classification in treatment selection,
especially as it pertains to drugs interfering with specific
metabolic functions.

Perhaps the most well described feature of cancer cells is their
high rate of glycolysis followed by lactic acid fermentation even in
normoxic conditions, known as theWarburg effect. One particularly
intriguing feature of M2 tumors was the simultaneous upregulation
of genes related to glycogen synthesis, glycogenolysis, and glycolysis.
Under nutrient deprivation, cancer cells exploit glycogen
metabolism for optimal glucose utilization. Different in vitro

studies have demonstrated glycogen accumulation without
inhibiting or interfering with the breakdown process (Favaro
et al., 2012; Pelletier et al., 2012).

Glycogen accumulation and breakdown have been variably
observed under hypoxic conditions. The relative rates of those
opposing pathways changes with the chronicity of hypoxia,
where there is early glycogen accumulation followed by a gradual
decline (Favaro et al., 2012). GYS1 induction (and therefore
glycogen accumulation) is dependent on HIF1α, a central factor
in the response to hypoxia. Indeed, M2 tumors may be a result of a
hypoxic microenvironment. Using previously validated gene panels
on bulk samples, hypoxia scores were higher in M2 tumors.
Consistent with this, angiogenesis-related genes were upregulated.
On the other hand, specifically in the tumor compartment, only
32 of 212 hypoxia related genes were dysregulated. This suggests that
changes in hypoxia-related genes mostly resided in the stromal
compartment, which is consistent with previous report (Mello et al.,
2022).

Finally, the potential role of the renin-angiotensin in
M2 tumors was interesting. The local RAS system encourages
tumor cell proliferation and angiogenesis by upregulating EGFR
and VEGF expression (Anandanadesan et al., 2007) and RAS
inhibition induces apoptosis in pancreatic cancer cells (Gong
et al., 2010). In a murine model of PDAC, gemcitabine and the
angiotensin receptor blocker (ARB) losartan synergistically
inhibit tumor growth via VEGF suppression (Noguchi et al.,
2009). There have been clinical reports of survival benefits in
PDAC patients receiving RAS inhibitors who were treated with
gemcitabine (Nakai et al., 2010) and with resection (Cerullo et al.,
2017). A large retrospective study of 8,158 PDAC patients
reported survival benefits related to RAS inhibition, more
pronounced with ARBs than angiotensin I converting enzyme
(ACE) inhibitors (Keith et al., 2022). Further studies will be
required to determine whether our metabolic subtypes confer
differential sensitivity to RAS inhibition.

In conclusion, we have described two metabolic subtypes
based on gene expression in tumor cells. Our unbiased approach
in identifying the clinically most impactful genes unveiled novel
phenotypes. We are unable to discern whether there are host
factors that contribute to the metabolic phenotypes. The
incidence of diabetes was similar in patients with M1 and
M2 tumors, but BMI data were lacking. Race distribution was
similar in patients with M1 and M2 tumors, but the majority of
patients were white. Further studies in patients who are not white
are warranted. We have not yet identified how our tumor
classification is relevant to therapeutic decisions. Indeed, none
of the molecular subtypes described for PDAC have yet proven
relevant to clinical decision-making. However, some interesting
biological phenomena have been uncovered that warrant further
investigation. Geospatial studies would be particularly
informative in this regard.
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SUPPLEMENTARY FIGURE S1
Visualization of predicted metabolic subtypes in all validation cohorts.
The heatmaps exhibit the expression of 26 prognostic metabolic genes
across the identified metabolic subtypes within each validation cohort.
The proportion of patients belong to each subgroup are shown in the
figures. The gene order follows the same order as depicted in the
discovery cohort. Expression of identified prognostic metabolic genes
are similar to the discovery set and highlight noticeable differences
between groups.

SUPPLEMENTARY FIGURE S2
Glycogen metabolism related gene expression in identified metabolic
subtypes. (A) Gene set enrichment analysis focussed on glycogen
metabolism, showing enrichment of glycogen catabolism in the
M2 phenotype accompanied by enrichment of glycogen synthesis pathways.
(B) Scatter plot shows expression levels of regulators involved in glycogen
synthesis and degradation process. Mann- Whitney U tests p values are
shown at the top of the plots.

SUPPLEMENTARY FIGURE S3
Tumor cell composition in metabolic subtypes. Three different methods
were applied to estimate the proportion of tumor that is comprised of tumor
cells: Absolute purity, DeMixT and tumor nuclei counts. Violin plots show
higher tumor content in the M2 phenotype and the differences in tumor
content are significantly different between M1 and M2 based on
p-value <0.05.

SUPPLEMENTARY FIGURE S4
Expression of prognostic metabolic genes at a single cell level. Single cell
data were used to determine the expression of prognostic genes in
malignant epithelial cells. Each heatmap represents gene expression of
prognostic metabolic genes in a single tumor. The x-axis depicts data from
individual epithelial tumor cells, and the y-axis depicts data from the
26 prognostic metabolic genes.

SUPPLEMENTARY FIGURE S5
Predicted metabolic phenotypes in PDAC cell lines. The heatmap shows two
distinct groups based on the 26 prognostic metabolic gene expressions in
individual PDAC cell line cohorts (CCLE and gCSI). In each cell line
collection, the proportion of cells with each metabolic subtype are similar.

SUPPLEMENTARY FIGURE S6
Drug target analysis of PDAC cell lines. Sensitivity to antineoplastic drugs was
assessed in cell lines identified as M1 and M2 cell lines. Each box plot shows
area above the drug-response curve (AAC) values for drug screening in
CCLE and gCSI cohorts, respectively. The p-values based on the Wilcoxon
test are indicated on the top of box plots.

SUPPLEMENTARY TABLE S1
Prognostic metabolic genes, and summary of functions.

SUPPLEMENTARY DATA SHEET S1
Prognostic metabolic genes and differentially expressed genes list.
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