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Local sheep in the northeastern Tarim Basin can adapt to dry and low-rainfall
regional environments. In this study, three local sheep breeds in the
northeastern Tarim Basin, LOP (LOP) sheep, Bayinbuluke (BYK) sheep, and
Kunlun (KUN, also known as the Qiemo sheep) sheep, and three introduced
sheep breeds, Suffolk (SUF) sheep, Dorset (APD) sheep, and Texel (TEX) sheep,
were analyzed for genetic diversity, population structure, and selective
signature using the Illumina OvineSNP50K BeadChip. We found that LOP,
BYK, and KUN had lower observed heterozygosity and expected
heterozygosity than TEX, SUF, and ADP, which were differentiated based on
geographic distribution. We performed fixation index (FST) analysis on three
local sheep breeds in the northeastern Tarim Basin (LOP, BYK, and KUN) and
introduced sheep breeds (TEX, SUF, and ADP) to measure genetic
differentiation. Nucleotide diversity (PI) analysis was performed on single-
nucleotide polymorphism (SNP) data of LOP, BYK, and KUN. A total of
493 candidate genes were obtained by taking the intersection at a threshold
of 5%. Among them, SMAD2, ESR2, andHAS2were related to reproductive traits.
PCDH15, TLE4, and TFAP2B were related to growth traits. SOD1, TSHR, and
DNAJB5 were related to desert environmental adaptation. Analyzing the
genetic patterns of local sheep in the northeastern Tarim Basin can protect
the germplasm resources of local sheep and promote the development and
utilization of sheep genetic resources.
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1 Introduction

Sheep were domesticated in the Fertile Crescent approximately 11,000 years ago to
provide humans with meat, milk, skin, and wool (Zeder, 2008). Adaptation to different
agricultural environments and various production goals produced genetic variation in
different directions (Kijas et al., 2012). Genome-wide genetic variation markers allow
selective intervention in breeding and evaluation at an early stage with great accuracy so
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that good production traits in sheep can be better transmitted to
their offspring (Hayes et al., 2013). Through genome sequencing,
Rupp et al. (2015) discovered that SOCS2 is mediated by the JAK/
STAT signaling pathway, which affects inflammatory responses,
growth, and milk production. Zhao et al. (2022) identified that
the genes HBB, PRDX2, GPX1, GSTA1, COL14A1, and LTBP4
contributed to the adaptation of Tibetan sheep to the hypoxic
environment of the plateau. Li et al. (2014) identified genes
(TYRP, ASIP, and MITF) associated with sheep coat color
using a combination of whole-genome association analysis and
selective scanning. The study was conducted on 99 Finnsheep
with different coat colors (white, black, gray, and brown). Xu
et al. (2023) modeled a regulatory network regulating adipose
homeostasis in the tail of sheep using a genome-wide selective
signature and obtained adipocyte-associated genes, namely,
BMP2, PDGFD, and VEGFA. Zhao et al. (2020) screened
73 candidate genes associated with tail fat formation,
reproduction, and growth traits using three local Chinese
sheep breeds based on the selective signature using the Ovine
Infinium HD SNP BeadChip. The Illumina OvineSNP50K
BeadChip has been widely used to study genetic diversity and
the development of economically important traits in
sheep. Ghoreishifar et al. (2019) studied that the genetic
diversity of Iranian Zandi sheep is relatively low. Baazaoui
et al. (2021) identified candidate genes, such as CDS2,
PROKR1, and BMP2, associated with tail fat in sheep from
semi-arid regions through the reduction of heterozygosity
(ROH) and fixation index (FST) analysis.

The northeastern part of the Tarim Basin, located around the
Taklamakan Desert, is characterized by significant temperature
fluctuations, long sunlight exposure, low rainfall, and complex
terrain (Sweet-Jones et al., 2021). Under these unique
geographical and cultural conditions, excellent local breeds
(LOP, BYK, and KUN) have emerged. These breeds exhibit
traits such as resistance to stress and disease, growth, and
reproduction (such as estrus period, ovulation rate, mating
conception rate, birth weight of lambs, vitality, and survival
rate) even in extreme desert environments, making them
highly valuable for research purposes. In this study, genomic
selection markers were used to detect genomic differences
between three local sheep breeds (LOP, BYK, and KUN) in
the northeastern part of the Tarim Basin and three introduced
sheep breeds (SUF, APD, and TEX). The aim of this study was to
explore the genetic diversity and population structure of local
sheep in the Tarim Basin and identify molecular markers that are
well suited for adaptation to desert environments. This research
reveals the genetic imprints left in the sheep genome, providing a
theoretical basis for the conservation and development of local
sheep in the Tarim Basin.

2 Materials and methods

2.1 Animal care

This work was conducted following the specifications of the
Ethics Committee of the Tarim University of Science and
Technology (SYXK 2020-009).

2.2 Animal collection

A total of 465 samples from six sheep breeds were selected for this
study. Among them, 62 samples were collected from local sheep in the
northeastern Tarim Basin, including 27 KUN samples (from the
conservation farm in Zhema County, Bayinbuluke Region, Xinjiang),
20 BYK samples (from the conservation farm in Bayinbuluke Region,
Xinjiang), and 15 LOP samples (from the conservation farm in
Bayinbuluke, Bayinbuluke Region, Xinjiang), and 403 samples were
collected from the International Sheep Genomics Consortium (ISGC)
(http://www.Sheephapmap.org), including 152 SUF samples from
Australia and Ireland, 148 TEX samples from New Zealand,
Germany, and Scotland, and 103 APD samples from Australia.

2.3 Genotyping and data quality control

Blood samples were collected using blood collection tubes
containing EDTAK2, and DNA samples were extracted using a
DNA kit (TIANGEN, Beijing, China). The DNA samples were
genotyped using the Illumina OvineSNP50 BeadChip at Beijing
Compassion Agricultural Science and Technology Co. Quality
control of single-nucleotide polymorphism (SNP) genotype data
was performed using PLINK v.1.9 to remove unqualified SNPs from
the samples (individual detection rate > 0.95, SNP detection rate >
0.95, Hardy–Weinberg equilibrium (HWE) p-value ≥ 10−6, minor
allele frequency (MAF) < 5%, and call rate < 90%).

2.4 Genetic diversity and population
structure

PLINK v.1.90 (Purcell et al., 2007) was used to calculate the
observed heterozygosity (HO), expected heterozygosity (He), and
inbreeding coefficient (F). After quality control, principal
component analysis (PCA) was conducted on the SNP data. The
genetic distances of the six sheep breeds were calculated to observe the
clustering of the samples and explore the effects of genetic differences
and geographic differences on the populations. VCF2Dis (https://
github.com/BGI-shenzhen/VCF2Dis) was used to calculate the
P-distance matrix. Based on this matrix, the neighbor-joining tree
(NJ tree) phylogenetic relationships were constructed using ATGC:
FastME. Such phylogenetic relationships were visualized and analyzed
using the iTOL tool (Letunic and Bork, 2016). Ancestral component
analysis was performed using ADMIXTURE (Patters et al., 2012),
where population stratification can be calculated based on genome-
wide genetic variation and the proportion of the genome accounted
for by the variation in each individual from each of the K ancestors.

2.5 Selective signature

In this study, FST analysis was performed on the SNP data of the
three local sheep in the northeastern Tarim Basin (LOP, BYK, and
KUN) and introduced sheep breeds (TEX, SUF, and ADP) (in
sliding 50-kb windows with 20-kb steps). The FST analysis was
performed using VCFtools 0.1.13 (Danecek et al., 2011; Shen et al.,
2020). In each comparison, the top 5% genomic regions with the
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highest scores overlapped were considered to be potential selective
signatures.

FST � MSP −MSG
MSP + nc − 1( )MSG

.

Here, MSP represents the observed mean square errors for the
three local sheep in the northeastern Tarim Basin (LOP, BYK, and
KUN) and introduced sheep breeds (TEX, SUF, and ADP), which is
calculated as follows:

MSP � 1
S − 1

∑s

i
ni PAi − �PAi( )2.

MSG represents the observed mean square errors for loci within
sheep populations, which is calculated as

MSG � 1

∑S
i�1ni − 1

∑
S

i

niPAi 1 − PAi( ).

In the aforementioned equations, i is the subpopulations (where
i = 1,···, s), ni is the sample size in subpopulation i, PAi is the
frequency of the SNP allele A in the ith subpopulation, and nc is the
mean sample size across samples (Nosrati et al., 2019).

Nucleotide diversity (PI) analysis is an essential measure of
population diversity. PI was calculated separately for the LOP, BYK,
and KUN sheep populations. Finally, the 5% high-ranking values
were taken in ascending order to intersect with the FST results. The
loci were annotated concerning the sheep genome Ovis Oar_v4.0
(http://www.ncbi.nlm.nih.gov/gene). Gene function annotations
were prepared using the NCBI and OMIM databases (http://
www.ncbi.nlm.nih.gov/omim).

PI � ∑
S

j�i
hj,

where S denotes the number of segregating loci and hj denotes
the heterozygosity of the j segregating locus.

2.6 Enrichment analysis for candidate genes

First, PI and FST results were selected for crossover analysis and
subsequently annotated with the sheep genome Ovis Oar_v4.0
(Conway et al., 2017). Finally, Gene Ontology (GO) enrichment
analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analysis were performed on the crossover genes using g:
Profiler (https://biit.cs.ut.ee/). Among them, GO enrichment was
used to predict and elucidate gene products in terms of molecular
functions, biological processes, and cellular components (Ashburner
et al., 2000). KEGG pathway enrichment was used to identify the
major biochemical and signaling pathways in which genes are
involved (Kanehisa et al., 2016).

3 Results

3.1 SNP statistics

A total of 493 individuals and 48,889 SNPs were selected for
downstream analysis. Among them, there were 48,198 informative

SNPs in the BYK breed, 47,530 informative SNPs in the KUN breed,
48,001 informative SNPs in the LOP breed, 49,873 informative SNPs
in the SUF breed, 49,766 informative SNPs in the TEX breed, and
48,795 informative SNPs in the APD breed.

3.2 Genetic diversity

Genetic diversity analysis (Table 1) revealed that the three local
sheep breeds in the northeastern Tarim Basin, KUN, BYK, and LOP,
showed inbreeding coefficients (F) ranging from −0.0906 (KUN) to
0.0072 (BYK), with an average value of −0.0365. Ho ranged from
0.5576 (KUN) to 0.5864 (BYK), with a mean value of 0.5695. He
ranged from 0.5739 (LOP) to 0.5881 (KUN), with a mean value of
0.5819. F of sheep breeds in other countries ranged from −0.0384
(APD) to 0.0180 (SUF), with a mean value of −0.0128. Ho ranged
from 0.6012 (APD) to 0.6160 (TEX), with a mean value of 0.6108.He
ranged from 0.6088 (SUF) to 0.6223 (TEX), with a mean value of
0.6151.

3.3 Population structure

The SNP data of 465 sheep were subjected to PCA (Figure 1).
The results showed that six sheep breeds were categorized into four
subgroups, in which Xinjiang local sheep BYK, KUN, and LOP
were clustered together. BTK, LOP and KUN were partially mixed,
and KUN extend outwards. Considering the evolutionary process
among varieties, we further analyzed the population structure of
different populations using ADMIXTURE software (Figure 2).
When K = 2–6, LOP, BYK, and KUN sheep all had similar
ancestral components, unlike TEX, SUF, and ADP. When K =
6, KUN had a more independent ancestral component, and the
BYK and LOP ancestral components were more similar. When K =
6, the Cross Validation (CV) value is the lowest, which can best
explain the mixed results. We constructed an NJ tree based on the
six sheep breeds (Figure 3). The NJ tree could distinguish between
local sheep in the northeastern Tarim Basin and TEX, SUF, and
ADP based on the geographic distance, and the results were
consistent with the PCA results.

3.4 Selective signature

According to the descending order of FST values, the 5% high-
ranking values were regarded as the selection region, and a total of
3,173 genes were obtained after FST screening (Figure 4;
Supplementary Table S1). The PI values were in ascending
order, and the 5% high-ranking values were regarded as the
selection region. The LOP, BYK, and KUN PI values screened
2,825, 2,767, and 2,813 candidate genes, respectively (Figure 5;
Supplementary Tables S2–S4). After the deletion of duplicate
genes, the genes screened by PI and FST were taken for
intersection, and a total of 493 genes were obtained (Figure 6).
These genes include SMAD2, ESR2, andHAS2, which are related to
reproductive traits. PCDH15, TLE4, and TFAP2B are related to
growth traits. SOD1, TSHR, and DNAJB5 are related to desert
environmental adaptation.
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3.5 Enrichment analysis for candidate genes

A total of 493 candidate genes were analyzed for GO
enrichment and KEGG pathway analyses. GO analysis
revealed that 20 genes were enriched in biological processes,
12 genes were enriched in molecular functions, and 10 genes were
enriched in cellular components (Figure 7; Supplementary Table
S5), including the positive regulation of ATP biosynthetic
process, GABAergic synapse, negative regulation of
interleukin-2 production, CD4-positive, alpha–beta T-cell
activation, negative regulation of transcription from the RNA
polymerase II promoter, and chemorepellent activity. The KEGG

pathway analysis revealed that eight pathways (Table 2),
including metabolic pathways, axon guidance, and cell
adhesion molecules, were enriched.

4 Discussion

4.1 Genetic diversity and population
structure

We selected the genetic patterns of LOP, BYK, and KUN for
analysis to conserve and develop the genetic resources of indigenous

TABLE 1 Location information and genetic diversity of six sheep breeds.

Breed Collection
region

Number
(only)

Observed
heterozygosity (Ho)

Expected
heterozygosity (He)

Inbreeding
coefficient (F)

BYK Bayinbuluke (China) 20 0.5864 0.5838 0.0072

LOP Bayinbuluke (China) 15 0.5645 0.5739 −0.0262

KUN
(Qiemo)

Bayinbuluke (China) 27 0.5576 0.5881 −0.0906

SUF Australia 98 0.6153 0.6088 0.0180

Ireland 54

APD Australia 103 0.6012 0.6141 −0.0384

TEX Germany 46 0.616 0.6223 −0.0180

Scotland 78

New Zealand 24

FIGURE 1
Principal component analysis of six sheep breeds (X-axis represents PC1, and Y-axis represents PC2).
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sheep germplasms in the northeastern margin of the Tarim Basin.
The results showed that the inbreeding coefficients and
heterozygosity of the three indigenous sheep in the northeastern
margin of the Tarim Basin were lower than those of TEX, SUF, and
ADP. The reason for this was that the indigenous sheep lived in the
hinterland of the desert environment, where transportation was
inconvenient and there was little communication with the outside
world. Introducing other breeds was more expensive, leading to less

crossbreeding between other sheep breeds and the indigenous sheep
of northeastern Xinjiang, resulting in a low degree of heterozygosity.
Therefore, we suggest that, in the subsequent breeding of breeds, the
local area needs to develop a scientific breeding plan to introduce
other good genes to improve genetic diversity. Population structure
analysis showed that Xinjiang native sheep were genetically distant
from other sheep. The three native sheep in the northeastern margin
of the Tarim Basin were close to each other and separated from TEX,

FIGURE 2
ADMIXTURE analysis of six sheep breeds. The results of the inferred numbers of clusters K = 2–6 are shown. Distinct colors represent different
ancestral components.

FIGURE 3
Results of the NJ tree of six sheep breeds. The indigenous sheep breeds in Xinjiang could be distinguished from those in other countries, and the
relationships between BYK and LOP were the closest.
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SUF, and ADP. Themain reason was that LOP, BYK, and KUN lived
in desert environments and had long been geographically distant
from the introduced sheep breeds. There was a genetic isolation
phenomenon, and there were also breed protection effects. PCA and
NJ trees could differentiate sheep breeds of different regions
according to geographic distances. The results of ADMIXTURE
showed that when K = 4–6, BYK and LOP sheep in the northeastern
edge of the Tarim Basin are more closely related, mainly because
they have similar ancestral components and genetic distances. This
result is consistent with the findings of PCA and the
evolutionary tree.

4.2 Selection sweep methods

The genome-selective sweeping method detects the origin
evolution and gene exchange of species (Li et al., 2020) and
explores the genetic mechanism of livestock in environmental
change. Different sheep breeds have different molecular genetic
markers, and molecular markers with specific significance can be
obtained using genome-selective sweeping methods. Native sheep
in the northeastern margin of the Tarim Basin have environmental
adaptations different from those of sheep in other regions living
under extreme desert conditions, and their outstanding advantage
over other sheep is their resistance to hot temperatures, humidity,
disease, parasites, and food shortages. In this study, SNP data of
three indigenous sheep breeds in the northeastern Tarim Basin
(BYK, LOP, and KUN) and introduced sheep breeds (SUF, APD,
and TEX) were analyzed using the genome-selective scanning
(GSS) method. PI analysis was performed on BYK, LOP, and
KUN. A total of 493 genes were obtained under 5% threshold
conditions, and the biology of these genes was revealed. The
enrichment results showed genetic evidence and physiological
mechanisms for the adaptation of sheep to desert environments
in the northeastern margin of the Tarim Basin. The following
section discusses only the leading candidate genes and their

potential roles in desert adaptation and immune and
reproductive traits.

4.3 Reproduction-related genes

The reproduction-related trait is one of the most important
economic traits in sheep, including follicular development, ovulation,
fertilization, embryonic development, and other physiological processes
regulated by several factors and genes, and its underlying mechanism is
very complex. Sheep from the northeastern margin of the Tarim Basin
have undergone natural and artificial selection in the Taklamakan
Desert to develop a stable reproductive capacity. Through selective
scanning analysis, we identified some candidate genes related to
reproduction, including SMAD2, ESR2, HAS2, DMC1, GRM1, and
TSHR. SMAD2 is an important transcription factor downstream of
the TGF-β/Smad pathway and is highly expressed in uterine and ovarian
tissues. SMAD2 mediates various physiological processes and is a
significant candidate for influencing litter size traits in Tibetan
sheep. Genes can be used as molecular genetic markers to assist in
selecting improved reproductive characteristics in the initial stages of
sheep breeding (Li et al., 2022). Maintaining the survival of dilated
oocytes through SMAD2 improves the fertilization and subsequent
development of closed oocytes during oocyte–oocyte complex (COC)
maturation, thereby enhancing maternal reproductive performance
(Wu et al., 2021). Estrogen receptor 2 (ESR2) is an essential gene
involved in the expression of estrogen receptors, which is expressed in
the hypothalamus–pituitary–ovary axis of sheep. The
hypothalamus–pituitary–ovarian axis and its expression in single-
lamb populations were higher than those in multi-lamb populations.
Based on the dose effect of ESR2, it was hypothesized that
overexpression of the ESR2 gene in pituitary tissues inhibits LH
release, affects follicle development and maturation, and promotes
reproductive performance in sheep (Sánchez-Criado et al., 2012;
Khristi et al., 2018; Xu et al., 2018). Disrupted meiotic cDNA1
(DMC1) controls ovarian meiosis and follicular development in

FIGURE 4
FST detection results for six sheep breeds. The black line represents the 5% threshold line.
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sheep (Mandon-Pépin et al., 2003), and hyaluronan synthase 2 (HAS2)
is present in dominant follicles in mammals and affects the expansion of
the oocyte mound cells to promote oocyte maturation (Zhang et al.,
2018). Native sheep utilize these genes, directly and indirectly, to
increase reproductive rates and achieve multiple fecundities, which is
essential for population continuation in harsh environments. Our study
is consistent with that of Luna-Nevárez et al. (2021) who found that the
thyroid-stimulating hormone receptor (TSHR) gene affects heat
tolerance in pregnant Columbia–Rambouillet ewes in a desert
environment (Luna-Nevárez et al., 2021). However, there are also
unique genetic mechanisms for reproductive traits in native sheep in
the Tarim Basin. Liu et al. (2022) identified the TSHR gene as a
candidate gene for litter size in twin-bearing Pishan sheep in
Xinjiang. Ming Li et al. (2023) suggested that the 29-bp nucleotide
sequence variation within the TSHR gene may be a candidate for
improving reproductive traits in sheep through marker-assisted
selection (MAS). Zhu et al. (2022) also suggested that GRM1 was the
dominant genotype for litter size in Kazakh, Chinese Merino, and Lake
sheep and was significantly associated with lambing traits. Native sheep

have evolved a more unique and stable reproductive system to ensure
pregnancy stability in harsh desert environments.

4.4 Fat- and growth-related genes

We also identified some genes related to lipid metabolism, which
has been reported to be essential for maintaining energy balance in
thermoregulatory responses and is a critical biological process in the
immune system under heat stress (Das et al., 2016). Sheep exposure
to hyperthermia could regulate body temperature more efficiently
and survive heat stress (Romero et al., 2013). Several KEGG
pathways of interest related to energy homeostasis and lipid
metabolism were significantly enriched in our study, such as
energy metabolism and the tricarboxylic acid cycle. These
pathways include CERS6, SUCLG2, MGAT2, PRDM16, and
PPARGC1A genes. Ceramide synthase 6 (CERS6) alleviates
insulin resistance, increases systemic energy expenditure, and
maintains glucose homeostasis by improving β-oxidation capacity

FIGURE 5
PI analysis results of LOP, BYK, and KUN.
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in liver and brown adipose tissues (Raichur et al., 2019). Succinate-
CoA ligase (SUCLG2) regulates the conversion of propionate to
pyruvate, promotes gluconeogenesis via PGC-1α, and maintains

glucose homeostasis in hepatic gluconeogenesis (Wang et al., 2022a).
Monoacylglycerol acyltransferase 2 (MGAT2) is a crucial enzyme
highly expressed in the human small intestine and liver and regulates
triglyceride uptake and homeostasis (Cheng et al., 2022). The
peroxisome proliferator-activated receptor gamma coactivator
1 alpha (PPARGC1A) has been associated with obesity and
related metabolic disorders, affecting adipocyte differentiation
and lipid metabolism (Zhang et al., 2022). In practice, these
adaptive genes induce energy homeostasis in response to
relatively high energy demands under heat stress conditions.
They regulate hypothermia caused by significant diurnal and
nocturnal colds, making it easier for sheep to adapt to harsh
desert environments.

Our study also identified some genes related to meat
production. Zlobin et al. (2023) identified protocadherin 15
(PCDH15), a gene associated with meat productivity, between
domesticated sheep (Ovis aries) and pan sheep (Ovis ammon),
which is consistent with a super-dominant model of inheritance.
Kizilaslan et al. (2022) studied the genetic structure of growth- and
linear-type traits in Akkaraman sheep and proposed 22 genes,
among which transducin-like enhancer of split-4 (TLE4) and
transcription factor AP-2 β (TFAP2B) were same as the genes
found in this study (Kizilaslan et al., 2022). Abousoliman showed
that the activation rate of muscle stem cells is determined by the

FIGURE 6
Venn diagrams for KUN, BYK and LOP shared and unique genes.

FIGURE 7
GO analysis of 493 genes obtained by intersection of FST and PI results.
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level of paired box 3 (Pax3), and alternative polyadenylation
of Pax3 controls muscle stem cell fate and muscle function
(de Morree et al., 2019). Genome-wide analysis for early
growth-related traits of the locally adapted Egyptian Barki
sheep revealed 10 genes related to early growth traits, among
which SLC16A7 and TFAP2B were same as the genes found in
our study (Abousoliman et al., 2021).

4.5 Genes related to desert adaptation

Recently, it has been shown that functional genes play a role in
epigenetic temperature regulation mechanisms that lead to heat
adaptation-mediated adaptive behaviors and protective responses in
cells (Akerman et al., 2016) and that the foremost adaptation of the
desert environment is the heat stress response. Four genes associated
with heat stress were identified in our study. Superoxide dismutase 1
(SOD1) is a gene that regulates heat tolerance and maintains cellular
oxidative homeostasis from superoxide radicals generated by stress
in desert environments, such as heat and humidity (Khan et al.,
2020). The DnaJ (Hsp40) homolog subfamily Bmember 5 (DNAJB5)
gene affects heat tolerance in Dolan sheep, which is consistent with
our study results. The DNAJB5 gene chaperone complex controls
polarized growth by repressing Hsf1-driven heat stress-associated
transcription (Vjestica et al., 2013; Wang et al., 2019). The TSHR
gene regulates HSPs, which are believed to function as cellular
thermometers for environmental adaptation in heat-stressed
small ruminants (Luna-Nevárez et al., 2021). The
phosphatidylinositol-4-phosphate 3-kinase catalytic subunit type
2 beta (PIK3C2B) gene is categorized in a cluster of genes
compatible with the PI3K isoform. This subtype induces
energetic homeostasis in response to high energy demands under
heat stress conditions and is significantly related to avian
mechanisms of acclimation to heat stress (Kim et al., 2017). Xie
et al. (2023) concluded that the PIK3C2B gene is involved in
glycerophospholipid biosynthesis, lipid modification,
phospholipid biosynthesis, and phosphatidylinositol metabolism.
It is more abundantly expressed in the function and pathway of
lipids, and the PIK3C2B gene is one of the critical genes affecting fat
deposition or lipid metabolism of swine (Xie et al., 2023). By
combining the aforementioned ideas, we suggest that the
PIK3C2B gene may maintain energy homeostasis by affecting fat
metabolism, maintaining energy balance, and regulating body
temperature, which in turn enables sheep to adapt better to the
heat stress environment and maintain energy homeostasis.

Sheep are subjected to various diseases and parasites in their
natural wild environment. Our study detected that genes such as
CCL26, CTLA-4, PTPN13, PKHD1, ICOS, and ARPP21 are
associated with immunity, and genes such as WNT5A, TIMP3,
and BIN1 are associated with parasite resistance. C–C ligand 26
(CCL26) protects against localized infections, participates in the
immune response, and plays a role in resistance to tick infestation
and disturbance (Thutwa et al., 2021). Mature eosinophils are
activated by CCL26 and migrate to the infection site, acting as an
immunizing agent (E et al., 2019). In in vitro, when B7 molecules on
the surface of antigen-presenting cells bind to cytotoxic
T-lymphocyte-associated antigen 4 (CTLA-4) on the surface of
T cells, a cost stimulus signal for T-cell activation is generated,TA

B
LE

2
D
et
ai
ls

of
th
e
en

ri
ch

m
en

t
p
at
h
w
ay

s
of

49
3
g
en

es
ob

ta
in
ed

b
y
th
e
in
te
rs
ec
ti
on

of
FS

T
an

d
PI

re
su
lt
s.

C
at
eg

or
y

Te
rm

G
en

es
FD

R

1
M
uc
in
-t
yp
e
O
-g
ly
ca
n
bi
os
yn
th
es
is

G
C
N
T
3,

G
C
N
T
4,

G
A
LN

T
L6

,
ST

3G
A
L1

,
an
d
G
A
LN

T
8

0.
77
41
3

2
C
it
ra
te

cy
cl
e
(T
C
A

cy
cl
e)

P
D
H
A
2,

SU
C
LG

2,
A
C
O
1,

an
d
SU

C
LG

1
1

3
P
ro
pa
no

at
e
m
et
ab
ol
is
m

B
C
K
D
H
B
,
SU

C
LG

2,
SU

C
LG

1,
an
d
H
IB
C
H

1

4
A
rr
hy
th
m
og
en
ic

ri
gh
t
ve
nt
ri
cu
la
r
ca
rd
io
m
yo
pa
th
y

G
JA
1,

SG
C
D
,
C
A
C
N
A
2D

3,
C
A
C
N
A
1D

,
C
T
N
N
A
2,

an
d
A
C
T
B

1

5
C
el
l
ad
he
si
on

m
ol
ec
ul
es

P
T
P
R
D
,
N
T
N
G
2,

C
D
H
4,

C
A
D
M
1,

SL
IT
R
K
1,

C
N
T
N
1,

C
D
28
,
SL
IT
R
K
5,

C
LD

N
16
,
LR

R
C
4C

,
IC
O
S,

an
d
C
LD

N
1

0.
16
42
2

6
A
xo
n
gu
id
an
ce

N
T
N
G
2,

SE
M
A
6A

,
SE

M
A
3D

,
SE

M
A
3A

,W
N
T
5A

,
C
X
C
R
4,

U
N
C
5C

,
E
FN

A
5,

SH
H
,
R
A
SA

1,
B
M
P
R
1B

,
LR

R
C
4C

,
an
d
E
P
H
A
3

0.
16
42
2

7
P
ur
in
e
m
et
ab
ol
is
m

H
D
D
C
2,

P
D
E
10
A
,
P
D
E
1A

,
P
C
D
H
15
,
T
LE

4,
T
FA

P
2B

,
E
N
P
P
3,

P
D
E
7B

,
A
D
C
Y
8,

A
K
8,

an
d
P
G
M
1

0.
87
94
1

8
M
et
ab
ol
ic

pa
th
w
ay
s

H
D
D
C
2,

P
IG

O
,
P
LO

D
1,

H
N
M
T
,
P
IK
3C

2B
,
B
3G

A
LT

2,
K
Y
N
U
,
P
C
D
H
15
,
T
LE

4,
T
FA

P
2B

,
M
A
N
1A

1,
E
N
P
P
3,

P
G
M
1,

H
IB
C
H
,
G
A
LN

T
8,

N
U
D
T
12
,C

E
R
S6
,B

C
K
D
H
B
,I
N
P
P
4B

,U
G
D
H
,M

T
H
FD

1,
C
H
D
H
,D

P
Y
D
,S
U
C
LG

2,
SU

C
LG

1,
P
D
E
1A

,T
Y
R
P
1,

H
SD

17
B
4,

A
D
C
Y
8,

LI
A
S,

A
K
8,

U
Q
C
R
H
,
IN

P
P
5A

,
P
R
D
M
16
,
C
H
ST

10
,
G
C
N
T
3,

G
C
N
T
4,

M
G
A
T
2,

ST
3G

A
L1

,
K
L,

P
D
H
A
2,

T
P
K
1,

A
SS
1,

SG
P
P
1,

G
A
LC

,
P
D
E
10
A
,

E
T
N
K
1,

A
C
O
1,

G
A
LN

T
L6

,
PD

E7
B
,
LP

IN
1,

G
C
LM

,
an
d
P
FK

P

1

Frontiers in Genetics frontiersin.org09

Wang et al. 10.3389/fgene.2023.1281601

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1281601


which affects the humoral immune response in the body (Linsley
et al., 1992). In a study on lambs in Spain, it was found that
temperature and humidity affected the infectivity of Mycoplasma,
with higher temperatures and lower humidity resulting in higher
infection rates. This is quite similar to our environment, and the
same protein tyrosine phosphatase non-receptor 13 (PTPN13) gene
has been found in the immune function pathway (Fernández et al.,
2016; Mousel et al., 2021). Polycystic kidney and liver disease 1
(PKHD1), inducible T-cell co-stimulatory factor (ICOS), and cAMP-
regulated phosphoprotein 21 (ARPP21) enhance mastitis resistance.
Innate and acquired immune responses trigger the production of
T-assisted type 2 cytokines (Th2), which participate in the immune
response. Benavides et al. described that they play multiple roles in
innate and acquired immune response mechanisms and cytokine
signaling, engage in hemostatic regulation and mucosal defense, and
are essential for protecting sheep against parasitic invasion
(Benavides et al., 2016; Banos et al., 2017; Gutiérrez-Gil et al.,
2018; Öner et al., 2021).

5 Conclusion

In this study, we analyzed the genetic patterns and genomic
differences between native sheep breeds in the northeastern
Tarim Basin and introduced sheep breeds by genome-selective
scanning. In addition, a genomic selection signaling map of the
native sheep population in the Tarim Basin was constructed,
revealing the genes and their network regulatory mechanisms
associated with stress and disease resistance, growth, and
reproductive traits. This study will help improve the
production capacity of sheep and provide theoretical support
for the conservation and development of sheep germplasm
genetic resources in extreme desert environments.
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