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Congenital heart disease (CHD) are genetically complex and comprise a wide
range of structural defects that often predispose to - early heart failure, a common
cause of neonatal morbidity and mortality. Transcriptome studies of CHD in
human pediatric patients indicated a broad spectrum of diverse molecular
signatures across various types of CHD. In order to advance research on
congenital heart diseases (CHDs), we conducted a detailed review of
transcriptome studies on this topic. Our analysis identified gaps in the
literature, with a particular focus on the cardiac transcriptome signatures found
in various biological specimens across different types of CHDs. In addition to
translational studies involving human subjects, we also examined transcriptomic
analyses of CHDs in a range ofmodel systems, including iPSCs and animal models.
We concluded that RNA-seq technology has revolutionized medical research and
many of the discoveries from CHD transcriptome studies draw attention to
biological pathways that concurrently open the door to a better understanding
of cardiac development and related therapeutic avenue. While some crucial
impediments to perfectly studying CHDs in this context remain obtaining
pediatric cardiac tissue samples, phenotypic variation, and the lack of
anatomical/spatial context with model systems. Combining model systems,
RNA-seq technology, and integrating algorithms for analyzing transcriptomic
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data at both single-cell and high throughput spatial resolution is expected to
continue uncovering unique biological pathways that are perturbed in CHDs, thus
facilitating the development of novel therapy for congenital heart disease.

KEYWORDS

pediatric congenital heart disease, RNA sequencing, transcriptomes, animal model, iPSC
models, gene expression, noncoding transcriptomes

1 Introduction

With a prevalence of 6–13 in 1,000 newborn babies and
approximately 261,247 infant deaths recorded globally, congenital
heart diseases (CHDs) remain the most common and severe birth
defect (Hoffman and Kaplan, 2002; Reller et al., 2008; Leirgul et al.,
2014; GBD, 2017 Congenital Heart Disease Collaborators, 2020;
Bakker et al., 2019; Liu et al., 2019). Based on their clinical
manifestation, there are three types of CHDs: left-sided
obstruction defects, septation defects, and cyanotic heart disease
(Li et al., 2014). Left-sided obstructive lesions include hypoplastic
left heart syndrome (HLHS), mitral stenosis, aortic stenosis, aortic
coarctation, and IAA. Septation defects mainly affect the separation
of the atria (atrial septal defects, ASDs), the ventricles, (ventricular
septal defects, VSDs), or both (atrioventricular septal defects,
AVSDs). Cyanotic heart diseases include Tetralogy of Fallot
(TOF), transposition of the great arteries (TGA), tricuspid
atresia, pulmonary atresia, Ebstein’s anomaly of the tricuspid
valve, DORV, persistent truncus arteriosus (PTA) and anomalous
pulmonary venous connection (Bruneau, 2008).

Diagnostic capabilities and advanced surgical intervention
during infancy have dramatically improved over the past decades,
improving survival for several patients with CHD who survive into
adulthood (McCraken et al., 2018). However, those patients have an
increased risk of heart failure and other non-cardiac mortality such
as diabetes and cancer through poorly understood mechanisms
(Hsu and Pearson, 2009; Ntiloudi et al., 2016; Barrett-Connor
et al., 2018; Friedberg and Reddy, 2019).

Next-generation sequencing (NGS) technologies have
revolutionized medical research and drastically improved our
understanding that genetics has a crucial role in the pathogenesis
of CHDs. Whole-genome and exome sequencing analyses facilitated
the identification of myriads of genes encoding transcription factors
and regulatory genes related to cardiac development (Fahed et al.,
2013; Morton et al., 2022). Multiple lines of evidence have also
provided a robust indication that a diverse array of genes and genetic
aberrations are the main drivers of a majority of CHDs (Iascone
et al., 2012; Theis et al., 2015a; Theis et al., 2015b; Zaidi and
Brueckner, 2017). The complex anatomy and physiology of
CHDs have hindered the development of animal models of
CHDs which in turn has hampered progress in the development
of novel therapies and explicitly understanding the biological
mechanisms of CHDs. Even so, by combining powerful genetic
tools with animal models, coupled with the need for more in-depth
molecular studies, researchers have and still are uncovering
multigenetic backgrounds and complex molecular networks
underlying the pathogenesis of CHD. As an illustration, the first
study to simulate HLHS, the most severe type of CHD, deployed a
mouse-forward genetic screen approach to isolate mutant mice with

a hypoplastic LV. In this study, mutations not previously identified
were validated by CRISPR–Cas9 genome editing in both mice and
zebrafish. Further, RNA-seq analysis of the hypoplastic LV from
these mice found changes in gene expression patterns related to
metabolism and mitochondrial pathways, calcium signaling, cardiac
muscle contraction, and dilated/hypertrophic cardiomyopathy,
similar to what has been shown in human SV myocardium-based
analysis, advancing our understanding of the complex genetics and
mechanisms associated with SV physiology (Liu et al., 2017).

With the popularity of NGS technologies, bulk RNA sequencing
(bulk RNA-seq) has generated a huge amount of data about
transcriptomic alterations in congenital heart diseases (Kaynak
et al., 2003; Bittel et al., 2011; Grunert et al., 2016; Zhang et al.,
2021). Recently, by deploying a multi-omics approach (single-cell
RNA sequencing and single nucleic RNA sequencing), the
pioneering study of Hill and others discovered distinct
transcriptomes from 10 pediatric CHD donor tissues, providing
more insight into understanding cardiac tissue molecular biology
(Hill et al., 2022). Despite several efforts in understanding the
cardiac transcriptomes even at the cellular level, only a subset of
CHDs transcriptomes has so far been characterized, and many
particularly, the non-coding transcriptomes exhibit high spatial
and temporal expression patterns and are emerging as key
drivers, regulators of differentiation, development, and disease
pathology. Such important spatial and temporal expression
patterns are better explored and delineated by deploying even
more advanced transcriptome sequencing technology such as
spatial transcriptomic sequencing (Zhu, 2016; Rao et al., 2021).

In this article, we review transcriptome studies of CHDs in
humans and a variety of model systems, pinpointing promising
transcriptomes that are potential diagnostic biomarkers and
therapeutic targets while identifying gaps in the literature for
future studies. We highlight the potential of advanced
transcriptome sequencing technology in studying key functional
biological mechanisms in CHDs and propose perspectives for future
multi-omics work that could uncover novel treatment options for
CHDs. Delineating the transcriptome in CHDs in finer resolution
and defining them would improve our understanding of the
morphological consequences of damaging variants and the
cellular deficits that contribute to lifelong adverse events in
patients with CHD, and also provides the opportunity to select
new, specific, and more effective therapy to treat CHDs.

2 Role of genes in the development
of CHD

Congenital heart diseases arise from abnormal heart
development during embryogenesis. The earliest cardiac
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progenitors arise from lateral plate mesoderm and are controlled by
a cascade of interacting transcription factors (Srivastava, 2006).
Some notable genes expressed during heart field development
include: NKX2-5, TBX, HAND, NOTCH, and GATA family, and
several FOX transcription factors (Figure 1). NKX2-5 is expressed at
the earliest stages of cardiogenesis before the onset of myogenic
differentiation, regulating cardiomyocyte differentiation and
proliferation (Komuro and Izumo, 1993). NKX2-5 mutations are
known to be associated with AV block and ASD (Benson et al.,
1998). GATA4 and GATA6, are expressed broadly in the primitive
streak mesoderm (Heikinheimo et al., 1994), while GATA5 has a
more restricted expression pattern in the precardiac mesoderm
(Morrisey et al., 1997). Most heart defects associated with
impaired conduction are observed in individuals with mutations
in GATA6, whereas GATA4 mutations more often result in septal
defects and endocardial cushion defects, but not issues with
conduction (Ang et al., 2016). The TBX transcription factors are
expressed throughout the developing heart, especially in the
developing inflow tract, atrial wall, atrial septa, and
atrioventricular (AV) endocardial cushions and they play a key
role in regulating cardiomyocyte identity (Li et al., 1997). Mutations
in TBX20 have also been associated with CHD such as TOF. Several
forkhead box (FOX) transcription factors also play important roles
in heart development, with mutations leading to vascular and
cardiac defects and embryonic lethality in mice and are also
commonly associated with the clinical processes of congenital
heart in humans (Zhu, 2016). Mutations in FOXF1, FOXC2, and
FOXL1 are well-characterized causes of TOF and HLHS
(Stankiewicz et al., 2009). HAND1 and HAND2 are basic
helix–loop–helix (bHLH) transcription factor genes that are
excellent ventricular identity markers; their expression changes
correlate with altered cardiac morphogenesis (George and Firulli,
2019). A mutation in HAND2 has been associated with VSD. Many

other transcription factors have also been shown to cause CHD
when mutated, and the phenotypes resulting from this mutation
have been reviewed here (Williams et al., 2019).

3 Model systems for recapitulating
human CHD

Following the widespread acceptance of the genetic theory of
diseases, the presumption that diseases and specific traits are caused
by genetic variations has remained one of the most firmly upheld
doctrines of medicine. The central dogma of molecular biology
which suggested that genetic information flows primarily from
nucleic acids in the form of DNA and RNA to functional
proteins has brought light to the mechanisms governing the
specification and transmission of genetic traits (Crick, 1970).
Over the past decade, there has been an increasing interest in
understanding the role of genetic variation in complex traits and
human disease. However, the molecular mechanisms by which this
genetic variation predisposes individuals to disease are still limited,
impeding the development of therapeutic interventions. Modeled
after the Human Genome Project, the NIH Genotype-Tissue
Expression (The GTEx Consortium Science, 2015) Project was
designed to explicitly delineate the molecular biology of tissues
including genetic variation, gene expression, and other molecular
phenotypes in multiple human tissues thus providing useful insights
into understanding the role of transcriptomes across various
mammals and pinpointing the functional interpretation and
insights into disease etiology in a large scale (GTEx Consortium,
2013). The National Human Genome Research Institute (NHGRI)
Mouse Transcriptome Project and Mammalian Gene Collection
initiative focused on generating transcriptomes and a reference
expression database for the C57BL/6 J mouse further describing

FIGURE 1
Role of genes in the development of congenital heart disease. (A) GATA4 and GATA6 are broadly expressed in the primitive streak mesoderm,
mutations of GATA4 and GATA6 are a well-characterized cause of VSD (B) GATA5 is broadly expressed in the precardiac mesoderm, mutation in
GATA5 have been associated with BAV and AV block (C) Cardiac mesoderm speciation give rise to first cardiac progenitors (D) First cardiac progenitors,
NKX2-5, HAND1 and TBX5 are expressed at the earliest stages of cardiogenesis before the onset of myogenic differentiation, mutation in these
genes during early cardiogenesis result is associated with ASV, VSD and TOF respectively (E) FOX transcription factors and TBX20 are expressed in the
second heart field progenitor and throughout the developing heart, mutation of FOXF1, FOXC2 and TBX20 is associated with HLHS, and TOF.
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the important role of animal model in understanding biological
complexities of diseases (Strausberg et al., 1999; Li et al., 2017).
Transcriptomic analysis of cardiovascular disease has been
described in a variety of model systems ranging from iPSCs,
rodents (Rao et al., 2022), pigs, non-human primates, chicken
embryos, and zebrafish. In recent years, the development of a
variety of model systems for CHD has opened up novel frontiers
in understanding the molecular basis of CHDs. Human CHDs can
never be perfectly emulated in pre-clinical animal models, however
since early heart failure is a common long-term complication of
several types of CHDs. Animal models of right heart failure, cardiac
hypertrophy, and right ventricle pressure overload are often utilized
to study CHD development (Diller et al., 2015; Liu et al., 2017). For
instance, murine models of RV hypertrophy and chronic RV volume
overload have improved our understanding of RV-specific adaptions
and single ventricle-CHDs (Urashima et al., 2008; Reddy et al., 2012;
Reddy et al., 2013; Blakeslee et al., 2017). In a pulmonary blood
(PBF) shunt ovine model of CHD, Tian, and others traced
“angiogenesis burst” between 1 and 4 weeks of age and described
how disordered angiogenesis is implicated in pulmonary vascular
remodeling secondary to congenital heart diseases (CHD) (Tian
et al., 2011). Mouse models of CHD represent many aspects of
human cardiac development as these models maintain the
anatomical arrangement of the heart, and thus provide incredible
insight into the role of specific genes and cell types that contribute to
proper cardiogenesis. However, mutations modeled in mice often do
not recapitulate many aspects of the human phenotype. Drosophila
is another animal model of choice for human cardiac disease gene

testing (Schroeder et al., 2019; Vissers et al., 2020; Souidi and Jagla,
2021) because of its low cost and high throughput. However, the
classical fly mutants from forward genetic screens are typically loss-
of-function alleles therefore fly mutations or some transcriptional
factors may not be precise representations of human mutant
transcripts (Koon and Chan, 2017). hPSC-based CHD models are
highly scalable human cellular models of CHD used to study the
mechanisms underlying cellular defects occurring in CHDs.
However, while hPSC-based CHD models are highly scalable
human cellular models of CHD, which are more likely to capture
human-specific biology they lack anatomical structure, these models
are two-dimensional and lack the spatial context of the human heart,
which is critical for studying structural defects of CHDs (Figure 2).
Though expensive large animal models such as pig and non-human
Primates provide a more promising and more efficient mammalian
in vivo model system to identify key genes and mechanisms critical
for heart development and function that served as prototypes for
mammalian studies due to the high degree of conservation of genetic
pathways and reduced genetic complexity. In particular, non-human
Primates because of their evolutionary proximity to humans, the
similarity of the two species’ cardiovascular systems can be
considered a better candidate to model heart disease. Many
CHDs are caused by mutations in early cardiac TFs such as
GATA4, TBX5, and NKX2-5, which steer broad gene expression
programs leading to changes in cell identity. Understanding how
these transcriptional changes from various models’ systems can alter
the transcriptional and epigenomic landscape requires multi-omic
approaches, such as single-cell RNA-seq, single nucleus, and total

FIGURE 2
Induced pluripotent stem cell (iPSc) model in understanding congenital heart disease (A). Induced pluripotent stem cell (iPSc) model allows for large
scalability of cardiomyocytes andmimics human biological mechanism but they are two dimensional and lacks spatial context (B). Cardiomyocytes (CM)
cells from HLHS patients are generated and expanded from induced pluripotent stem cells (iPSc) via standardized protocol utilizing broad-spectrum
pharmacological inhibitors (C). Extraction of RNA, total/bulk RNA or single cell sequencing of cardiomyocytes. (D). RNA sequencing analysis capable
of identifying functional, biological pathway and signaling transduction involved in regulating mitochondria function and endoplasmic stress. (E).
Reduction in Optic atrophy 1 (OPA1) expression (a mitochondria fusion protein) results in increased apoptosis (an important mechanism of cell death in
heart failure (HF), redox stress and endoplasmic reticulum stress which predisposes to adult heart failure.
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and spatial transcriptomes which are described in subsequent
sessions.

4 Transcriptomes in congenital heart
diseases

4.1 Transfer RNA fragments: a predictive
biomarker for CHD

The rapid development of high-throughput sequencing
technologies has revealed that most regulatory RNAs function
without involvement in protein translation (Li and Liu, 2019).
Beyond the central dogma of molecular biology lies the
noncoding transcriptome, in which, unlike messenger RNA
(mRNA), transcribed RNA is not translated into protein. Such
noncoding RNAs (ncRNAs) comprise a sizable fraction of
transcriptome by mass and play crucial roles in human
biology and disease (Pallazo and Lee, 2015). Coding RNAs/
mRNA encodes protein to act as various components
including enzymes, cell structures, and signal transductors.
Transfer RNA (tRNA) are 76–90 nucleotides, that serve as the
physical link between transcriptome and proteome (the mRNA
and the amino acid sequence of proteins respectively) decoding
information present in mRNA sequences into specific proteins
(Peng et al., 2022). In cardiovascular diseases, a wide range of
RNA modifications including m6A (N6-adenosine methylation),
m5C (5-methylcytidin), Nm (2′-O-ribose-methylation),
(pseudouridine), m7G (N7-methylguanosine), and m1A (N1-
adenosine methylation) have been found in tRNA, rRNA,
mRNA which are involved in metabolic syndrome, heart
failure, coronary heart disease, and hypertension (Wu et al.,
2019). Transfer RNAs (tRNA) are involved in gene expression
regulation, protein synthesis, inhibiting translation, and signal
transduction ((Xie et al., 2020). tRNA was first thought to be
stable, however, recent developments in unbiased high-
throughput sequencing facilitated the discovery of a new class
of tRNA: tRNA halves (31–40 nucleotides) and tRNA-derived
fragments (tRFs, 14–30 nucleotides) (Cole et al., 2009; Lee et al.,
2009; Liao et al., 2010). While our current understanding of the
functional role of transfer RNA fragment (tRF) in CHD is still in
its infancy, the pioneering study of Lu et al., 2023 has shown that
distinct tRNA fragments might serve as a biomarker for accurate
diagnosis of CHD during pregnancy. Here, 18 tRFs/tiRNAs were
selected as predictive biomarkers of CHDs. By further analysis,
tRF-58:74-Gly-GCC-1 and tiRNA-1:35-Leu-CAG-1-M2 were
validated as promising biomarkers of CHD (Lu et al., 2023).
The onset and progress of CHD, mainly in early pregnancy, is a
complex and relatively long-term process involving many genetic
and epigenetic alterations. The recent study of Li and others is the
only study that has explored tFRNA in CHD, future studies with
large sample sizes would add another dimension to this concept
and open up a new perspective to understanding the relationship
between the change of tRFs/tiRNAs expression level and the time
of pregnancy, the causal relationship between tRFs/tiRNAs
expression level and the occurrence of CHD. Thus, additional
evidence of the role of transfer RNA fragments in the
pathogenesis of CHD is warranted.

4.2 Small nucleolar RNAs in congenital heart
disease

Small nucleolar RNAs (snoRNAs) represent a class of regulatory
RNAs responsible for telomerase activity and posttranscriptional
maturation of ribosomal RNAs (rRNAs) (Caveille et al., 1996;
Ganot et al., 1997). RNAs that are highly similar in structure and
function to snoRNAs are the so-called small cajal body associated
RNAs (scaRNAs), which assemble in cajal bodies to modify
spliceosomal small nuclear (sno)RNAs (Jady et al., 2003; Cao et al.,
2018; Bergstrand et al., 2022). Failure of sno/scaRNAs has been
implicated in pathologies such as congenital heart anomalies,
neuromuscular disorders, and various malignancies. More
precisely, scaRNA has been shown to have a role in splicing, and
defects in splicingmay contribute to severe congenital heart anomalies
(Patil et al., 2015). Current information on the functional role of sno/
sna RNA in CHDs is thus scarce and only a short list of reports has
provided evidence of the involvement of sno/sna in CHDs. The first
attempts by Obrien et al., show that in TOF samples, the targeted
nucleotides of differentially expressed snoRNAs were concentrated in
the 28S, 18S ribosomal RNAs, and 2 spliceosomal RNAs (U2 and U6)
(Obrien et al., 2012). They further observed splicing variants in 51% of
genes in the myocardium from children with TOF, which are critical
for cardiac development (Obrien et al., 2012). Using RNA-seq, Patil
et al., identified 12 scaRNAs downregulated in the right ventricle of
infants with TOF. However, these 12 scaRNAs affected targeted only
U2 and U6 snRNAs (Patil et al., 2015). Consistent with this, the
snoRNAs that were downregulated in TOF samples in the work of
Ciao and others targeted the spliceosomal RNAs of the
U2 spliceosome (Cao et al., 2018). Small Nucleolar RNA have
been identified in CHDs caused by septation defects with a high
incidence reported in VSD. Small Nucleolar RNA Host Gene 6
(SNHG6) is highly expressed in fetal cardiac tissues of VSD
patients (Jiang et al., 2019). While experimentally testing
differentially expressed genes they demonstrate that SNHG6 gain-
of-function simultaneously blocked cardiomyocyte proliferationwhile
enhancing apoptosis. Although the mechanism by which
SNHG6 blocks cardiomyocyte proliferation is not known with
certitude, SNHG6 contributes to ventricular septal defect formation
via negative regulation of miR-101 and activation of Wnt/β-catenin
pathway, suggesting a plausible mechanistic link between
SNHG6 upregulation, impaired miR-100 expression, Wnt/β-
catenin activation and the formation of VSD. Overall, these
observations suggested a link between levels of snoRNA that target
spliceosomal RNAs, spliceosomal function, and heart development
and translation of developmentally important gene that possibly
contributes to the cardiac defect.

4.3 Long noncoding RNA in congenital heart
disease

Long-noncoding RNA is a heterogeneous group of non-coding
transcripts more than 200 nt long that are involved in many biological
processes. This class of ncRNA makes up the largest portion of the
mammalian non-coding transcriptome (Mercer et al., 2009). Recent
studies suggest that circulating plasma lncRNAs have significant
potential as a novel diagnostic biomarker in predicting CHDs. Gu
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et al. (2016) identified five differentially expressed lncRNAs-
ENST00000436681, ENST00000422826, AA584040, AA709223, and
BX478947 across fetal CHD samples and controls suggesting that
circulating plasma lncRNA may serve as novel biomarkers for CHD
diagnosis (Gu et al., 2016). As aptly demonstrated (Figure 3), another
line of evidence supporting the role of lncRNAs as promising
biomarkers for CHDs is the detection of the high expression level of
HOTAIR in right atrial biopsies of patients with ASD and VSD (Jiang
et al., 2019), the validation of two candidate lncRNAs,
ENST00000513542 and RP11-473L15.2 significantly associated to
VSD and ASD (Song et al., 2013), and more recently the
identification of a MALAT1 polymorphism associated to VSD and
ASD (Li et al., 2018). Besides the role of lncRNAs in cardiac septal
defect, it is hypothesized that high HA117 expression is associated with
adverse outcomes in TOF patients (Wang et al., 2018). However, the
mechanism of action of HA117 in TOF remains unclear. Additional
studies are required to fully elucidate the functional relevance of

lncRNAs in this context. Interestingly a novel lncRNA, SAP30-2:
1 with an unknown function was significantly downregulated in
damaged cardiac tissues from patients with CHD. Further, the
knockdown of SAP30-2:1 decreased the expression of the
HAND2 gene suggesting that SAP30-2:1 may be involved in heart
development by targeting HAND2 and may thus represent a novel
therapeutic target for CHD (Ma et al., 2021). More work is required to
understand the function mechanism of lncRNA SAP30-2:1 in TOF.

4.4 Micro RNA in congenital heart disease

miRNAs are small ncRNAs of 21- to 23-nucleotide that mediate
post-transcriptional gene silencing by controlling the translation of
mRNA into proteins through binding to complementary sites
predominantly in the 3’ untranslated regions (UTR) of pre-
messenger RNA (mRNA, protein-coding) (He and Hannon, 2004;

FIGURE 3
Non-coding Transcriptomes in Congenital Heart Disease. Colored boxes indicate class of non-coding RNA across each type of CHD as represented
on the key (A) Left-sided obstructive lesions CHD (B) Septation defects CHD (C) Cyanotic heart diseases CHD. Blue arrow describes transfer RNA, Piwi
RNA, Circular RNA, long noncoding RNA and small nucleolar RNA associatedwith all types of CHD including left-sided obstructive lesions CHD, septation
defects CHD and cyanotic heart diseases CHD. Red an-ow indicates circular RNA, long noncoding RNA and small nucleolar RNA associated with
septation defect CHD. Green arrow indicates circular RNA, long noncoding RNA and small nucleolar RNA associated with Cyanotic heart diseases CHD.
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Mendell, 2005; Treiber et al., 2019). A concise summary of micro-RNA
in congenital heart disease has been reviewed elsewhere (Duenas et al.,
2019). The majority of microRNA have been implicated in left-sided
obstruction defects especially hypoplastic left heart syndrome
(Figure 4), yet a reference micro-RNA diagnostic biomarker has not
been confidently used in the clinical setting due to a limited
understanding of the functional mechanism. In HLHS, three
microRNA species (miR-99a, miR-100, and miR-145a) were
downregulated immediately after the stage 1 operation of the
Norwood procedure while values returned to control levels after
stage 3 operation, indicating a strong influence of altered blood flow
conditions on microRNA expression. Further, the downregulation of
micro RNAs in the RV of HLHS patients, directly regulate the
expression of FOG2 that modulates the expression of GATA4,
GATA5, and GATA6, key players in cardiac development (Sucharov
et al., 2015) Themost relevant microRNA in CHDs is miR-1 (van Rooij
and Olson, 2007; Wei et al., 2014). miR-1 simultaneously targets the
cardiac transcription factor HAND2 to negatively control
cardiogenesis and also targets histone deacetylase (HDAC) 4 to
inhibit downstream MEF2 and several other regulators of cardiac
growth during development leading to complex heart defects (van
Rooij and Olson, 2007; Bruneau, 2008; Wei et al., 2014). In addition to
experimental evidence, microRNAs are attractive clinical biomarkers as
they remain stable in blood, urine, and other biological fluids and evade
RNA-degrading enzymes. By identifying four significantly upregulated
microRNAs (miR-19, miR-22, miR-29c, and miR-375) in mothers
carrying fetuses with CHD. Yu et al. (Yu et al., 2011; Zhu et al.,
2013., demonstrated, that microRNAs in maternal serum are candidate
biomarkers for prenatal detection of fetal CHD in early pregnancy. Both
studies also demonstrated that miR-19b andmiR-29c were significantly
upregulated in VSDs and all four microRNAs upregulated in TOF.

Several studies have shown there is a genetic association between
microRNA and the occurrence of TOF (Bittel et al., 2011; Obrien
et al., 2012; Zhang et al., 2013; Liang et al., 2014; Huang et al., 2015; Low
et al., 2015; AbuHalima et al., 2017; Lai et al., 2017; Grunert et al., 2019),
however, the functional mechanism by which these micro-RNAs are
upregulated in TOF remains to be elucidated.

4.5 Circular RNA in congenital heart disease

Similar to miRNAs and long noncoding RNAs (lncRNAs),
circRNAs are becoming a new research hotspot in the field of RNA
and could be used as a predictive tool to understand the biological
mechanism of several CHDs. CircRNAs are single-stranded and created
by back splicing of 3′-5′ linear coding or non-coding RNAs, forming
covalently closed loops (Carrara et al., 2018). Seminal studies in VSD
and TOF patients identified CircRNAs as biomarkers supporting their
use as predictive tools. Liu and others identified 20 differentially
expressed circRNAs in VSD and recommended 5 circular RNAs
differentiated expressed in VSD myocardial tissues compared with
controls. hsa_circRNA_002086 was highly expressed and hsa_
circRNA_007878, hsa_circRNA_100,709, hsa_circRNA_101,965,
hsa_circRNA_402,565 were underexpressed in VSD samples (Liu
et al., 2018). Yu et al. provided a comprehensive understanding of
the circular RNAnetwork involved in the biology of TOF. In their work,
276 differentially expressed circRNAs; 214 upregulated and
62 downregulated circRNAs were identified in TOF samples.
Additional assay validated hsa_circRNA_0007798 as a significant
biomarker and therapeutic target for TOF (Yu et al., 2021). Seven
differentially expressed circRNAs were identified in CHD patients.
Among these 7 circRNA, hsa_circRNA_004183, hsa_circRNA_

FIGURE 4
Micro RNA in Congenital Heart Disease. Micro-RNA species in CHDs could be potential biomarker for treatment. 74 unique microRNA species have
been reported in HLHS, 58 unique microRNA species have been reported in TOF, 29 unique microRNA species have been reported in VSD, 4 micro-RNA
species are commonly shared across CHD associated with septation defect and cyanotic heart disease (TOF and VSD), 3 micro-RNA species are
commonly associated with HLHS and VSD, 2 micro-RNA species are commonly associated with HLHS, TOF and VSD.
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079265, and hsa_circRNA_105,039 were under-expressed in plasma
from children with CHD (Wu et al., 2019). These circRNAs may be
crucial in the development of CHD and may serve as novel non-
invasive biomarkers for the diagnosis of CHD in children. Interestingly,
individual circRNAs have a unique characteristic of inhibiting
microRNAs (miRs), by binding/sponging microRNAs, thereby
regulating the corresponding miR target genes (Hansen et al., 2013;
Morten et al., 2022). In a recent study, hsa_circ_105,039 acted as a
sponge for miR-17. miRNAs possess positive effects on the progression
of CHDs, therefore by acting as a sponge for miR-17, hsa_circ_
105,039 may be a promising biomarker for prognosis and
therapeutic target for CHD (Yu t al., 2021). Most recently, hsa_circ_
0003416 was found to be significantly downregulated in children with
pulmonary arterial hypertension associated with congenital heart
disease (PAH-CHD), through a poorly understood mechanism
(Huang et al., 2022). Collectively, these studies provide some
fundamental data that suggest the important role of circRNAs in
heart development and their potential as promising predictive tools
and therapeutic targets for CHD. Additional studies are needed to
elucidate the functional and biological mechanism of circRNAs in the
development of CHDs.

4.6 PIWI-interacting RNAs in congenital
heart disease

PIWI-interacting RNAs (piRNAs) are small RNAs,
24–31 nucleotides in length with big functions, they associate with
PIWI proteins to form the Piwi-piRNA pathway which mediates
epigenetic programming and posttranscriptional regulation (Iwasaki
et al., 2015). To date, only a limited number of reports have provided
evidence of the differential expression of piRNAs in CHDs (Jia et al.,
2021). Here, they identified a biomarker panel of three pregnancy-
associated exosomal piRNAs (hsa-piR-009228, hsa-piR-016659, and
hsa-piR-020496) which distinguished fetuses with congenital
malformations from normal fetuses. However, whether they can
serve as bona fide biomarkers for all classes of CHDs remains to be
elucidated. Other types of ncRNAs whose biological functions are
poorly defined include promoter-associated small RNAs (PASRs)
(Kapranov et al., 2007), TSS-associated RNAs (TSSa-RNAs) (Seila
et al., 2008), promoter upstream transcripts (PROMPTs) (Preker
et al., 2008) and transcription initiation RNAs (tiRNAs) (Taft et al.,
2009). No study has provided evidence of a genetic association between
them and the occurrence of CHD.

5 Transcriptome sequencing
technology

5.1 Insights from total RNA sequencing

The discovery of genes and variants with a potential causal link
to CHD combined with analyses of gene expression during
development and functional studies in model systems provide
crucial evidence for assigning causality in the clinical setting
(Richards et al., 2015; Strande et al., 2017). With the popularity
of sequencing technologies, RNA sequencing of tissue samples (bulk
RNA-seq) has generated a huge amount of data about

transcriptomic alterations in cardiovascular diseases (Wang et al.,
2009; Ramachandran et al., 2022). Pediatric tissue samples are rare
and exceedingly difficult to obtain (Brisson et al., 2012) this has
hampered or slowed down the tissue molecular biology of CHDs,
limiting a thorough understanding of the biological mechanism of
CHDs. Samples assayed recently were explanted cardiac tissue from
heart transplant patients and donor samples (Hill et al., 2022). Two
major complicating factors when analyzing human heart tissue
(compared to other human tissue types) are that it contains a
large proportion of fibrous tissue and has a low cell density, so
disrupting the cells and extracting their total RNA is challenging.
Thus, rigorous precautions must be taken to avoid degradation of
RNA during its extraction, and (hence) impairment of both RNA
quality and yields. Detailed RNA-seq studies of healthy and failing
human myocardium have revealed remarkable similarities between
upregulated genes in the failing heart and fetal myocardium (Akat
et al., 2014). Therefore, considering the complication of procuring
pediatric tissue to study congenital heart disease, the inability to
create a perfect CHDmodel, and the fact that heart failure is a major
long-term complication of CHD. Researchers could gain more
insight into the biological mechanism of CHD by creating heart
failure surgical models. Pathway analysis approach has been
employed to study RNA seq data, investigate enrichment for
biologically relevant pathways and functions and pinpoint
differentially expressed genes in CHD. Our cross-study
comparison based on data from several CHD cohorts describes
some definitive transcripts, prominent differentially expressed
genes, and enrichment pathways in CHD by applying bulk RNA
sequencing technology (Table 1).

5.2 Insights from single-cell transcriptomics

The advent of single-nuclear RNA sequencing and single-cell RNA
sequencing (scRNA-seq) technology has enabled a detailed
characterization of the many cells that populate the human mature
heart (Cao et al., 2019; Litvinukova et al., 2020). Both technologies are
outstanding approaches to exploring transcriptome dynamics at the
resolution of a single cell (Shapiro et al., 2013) and identifying
transcriptional heterogeneity between different cell lineages and
distinct cell states. The healthy hearts in human and mouse reveals
that heart tissue is typically composed of a variety of cell types, including
but not limited to four subsets of ventricular cardiomyocytes and five
subsets of atrial cardiomyocytes endothelial cell, fibroblast,
macrophages, and smooth muscle cell (Litvinukova et al., 2020;
Tabula Muris Consortium, 2020; Wang et al., 2021). Genes of the
Notch signaling pathway are highly enriched in endocardial cells at
gestational week 7, when compaction of the myocardium occurs,
whereas genes related to the BMP pathway are expressed in
endocardial and fibroblast-like cells from gestational week 5 to week
25, reflecting periods of endocardial-to-mesenchymal transition (Cui
et al., 2019). Single-cell RNA sequencing provides a powerful tool to
study DEG profiles in the cell subpopulations of interest at the single-
cell level. This could enhance the understanding of the underlying
mechanisms of CHD at both the cellular and molecular levels and
highlight potential targets for the treatment of CHD. However, only a
few studies have yet investigated the development of various categories
of CHDs using scRNA-seq analysis. Among them, scRNA-seq studies
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of heart development and gene expression signatures in cells derived
from CHD and normal control tissues have mostly been based on
animal models, and less so on human cardiac tissue. scRNA-seq studies
of human fetal hearts, although more limited in scope than studies on
adult hearts, have identified transcriptional signatures of cardiac muscle
cells (TNNI3 and TNNT2), fibroblast-like cells (COL1A1, COL1A2, and
POSTN), endothelial cells (PECAM1 and KDR) and valvular cells
(SOX9) (Cui et al., 2019). With scRNA-seq analyses of healthy and
diseased hearts, Gladka and others found that CKAP4 could modulate
the activation of fibroblasts, showing positive correlations with known
myofibroblast markers (Gladka et al., 2018). Yang et al. suggested that
selective expression of NEXN, an F-actin-binding protein, could lead to
ASD by inhibitingGATA4 (Yang et al., 2014). Duong et al. showed that
Nr2f1a is expressed in differentiated atrial cardiomyocytes and that it
mediates the size of the atrial and atrial-atrioventricular canal by
regulating the differentiation of atrial cardiomyocytes (Duong et al.,
2018). Single-nucleus RNA sequencing analysis on 157,273 nuclei from
control heart tissues and heart tissues from patients with hypoplastic left
heart syndrome (HLHS), tetralogy of Fallot, and dilated and
hypertrophic cardiomyopathies a recent study found CHD-specific
cell states in cardiomyocytes, which showed evidence of insulin
resistance and increased expression of genes associated with FOXO
signaling and CRIM1. Cardiac fibroblasts in HLHS were enriched in a
low-Hippo and high-YAP cell state characteristic of activated cardiac
fibroblasts (Hill et al., 2022). scRNA-seq analysis offers a promising
paradigm for the identification of functionally relevant pathways,
validated markers, and therapeutic targets. A spectrum of changes
associated with various cell subpopulations in ASD was captured in
various clusters in the development of ASD. (Wang et al., 2021). Cells in
cardiomyocyte clusters showed significantly higher expression of

FABP4, CD36, TNNT3, and AQP1, which are markers of
cardiomyocytes. Markers of endothelial cells, including SELE,
ACKR1, PLVAP, DNASE1L3, and CCL14, were highly expressed in
Cluster 5 also known as the endothelial cell cluster. Clusters 4 and
6 were considered smooth muscle cell clusters due to the high
expression of markers RGS5, GJA4, TAGLN, ACTA2, MYL9, and
SOD3. Markers of fibroblasts, including DCN, COL1A2, LUM,
COL1A1, FBLN1, and TCF21, were highly expressed in Clusters 2, 3,
and 7. Hence, Clusters 2, 3, and 7 were defined as fibroblast clusters.
Cluster 8 was considered a macrophage cluster due to the high
expression of markers AIF1, CD163, and CD68. ASD showed a
decreased proportion of cardiomyocytes and an increased
proportion of fibroblasts. There was more cellular crosstalk among
cardiomyocytes, fibroblasts, and macrophages, especially between
fibroblasts and macrophages. For all cell types, the majority of the
DEGs were downregulated in ASD samples. For cardiomyocytes, there
were 199 DEGs (42 upregulated and 157 downregulated) between ASD
and normal samples (Wang et al., 2021).

5.3 Insights from spatial transcriptomics
sequencing

Despite the many advantages of total/bulk RNA sequencing and
scRNA-seq, there are several pitfalls. In standard bulk RNA-seq,
whole tissue biopsies are homogenized, and only average
representations of expression profiles within the entire sample are
obtained. With single-cell transcriptomic sequencing, the coverage of
gene expression quantification in scRNA-seq data (usually covering
approximately up to 10,000 genes) is also substantially compromised

TABLE 1 Notable Genes and Functional Pathway associated with congenital heart disease in Human Patients.

Model Biological sample Total DEGS Signaling pathway Notable Genes/DEGs References

Human Blood samples from 35 CHD
(ASD and VSD) patients

FOXP1 and ADAR2 were
downregulated while ADAR1 was
upregulated in CHD patients

Cardiac homeostasis, cardiac
fibrosis, hypertrophy, and
cardiomyocyte proliferation

ADAR 2, FOXP1, ADAR 1 Altaf et al.
(2019)

Human Right Ventricle heart tissues
from 22 TOF patients

41 genes with differential
expressions were reported as CHD-
related genes

Blood vessel morphogenesis and
other CHD-related signaling
pathways such as extracellular
matrix assembly, Wnt, BMP, and
ERK, and disease ontologies (e.g.,
cardiovascular disorders and non-
cardiac disease)

WNT3, SOX9, PEX19, VIT,
CDH11, IGFBP5, HAS2, ENO2,
EGR1, NRAS, PTEN,
and SMAD4

Zhang et al.
(2021)

Human Cardiovascular tissue (right
ventricle, pulmonary valve,
and pulmonary artery) from
19 children with TOF

715 upregulated genes and
347 downregulated genes

WNT and NOTCH pathways
have several members with
significantly altered expressions

DVL3, WNT5B, DTX3 Bittel et al.
(2011)

Biofunction networks identified
were protein synthesis,
cardiovascular disease, genetic
disorder, neurological disease,
and cell death

NPPA

Human RV tissue of TOF patients 33 upregulated and 8 downregulated
genes

Pathways Leading to cardiac
dysdevelopment

KCNJ2, FBN2, SLC38A3 and
TNNI1

Grunert et al.
(2019)

BMP signaling

Human RV tissue of TOF patients SNIP, A2BP1, and KIAA1437 were
upregulated, and genes markedly
downregulated included STK33,
BRDG1, and TEKT

Cell motility SNIP, A2BP1 KIAA1437,
STK33, BRDG1, and TEKT

Kaynak et al.
(2003)

Developmental processes

Calcium binding
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in comparison with bulk RNA-seq data (usually covering
100,000 genes) (Hou et al., 2020) Further, scRNA-seq only isolate
individual cells in droplets and does not preserve the tissue structure
that is a fundamental component of every biological organism. As a
result, information on spatial patterns of gene expression is lost and
signals from subpopulations of cells with deviant profiles, such as
those with low-level marker gene expression, are obscured.

To overcome these deficiencies, spatial transcriptomics (ST)
technology (Ståhl et al., 2016) offers a promising paradigm enabling
spatial analysis of important marker genes expressed at low levels within
whole tissue sections. Spatial transcriptomic profiling provides the
genomic information of single cells as they are intricately spatially
organized within their native tissue environment (Li and Peng, 2022).
Expanding our knowledge on the expression of transcripts meanwhile
preserving the morphology of tissues will facilitate the understanding of
cell type heterogeneity, cell-cell interaction, and cell fate dynamics in
normal and abnormal biological contexts. As an illustration, hPSC-based
CHD models which are more likely to capture Human-specific biology
are two-dimensional and thus lack the spatial context of the Human
heart, which is critical for studying structural defects of CHDs. Spatial
transcriptomics technologies hold the promise of overcoming this
limitation as transcriptomics expressions are captured while preserving
spatial anatomy (Mantri et al., 2021). To the best of our knowledge,
spatial mapping of transcriptional differences across ventricle and atrial
tissue pediatric heart tissue in pediatric congenital heart disease has not
been previously described. However, by combining single-cell and spatial
transcriptomics, Stahl and others studied the development of the chicken
heart from the early to late four-chambered heart stage and identified
anatomically restricted expression patterns, including the expression of
genes implicated in congenital heart disease. They also discovered a
persistent enrichment of the small, secreted peptide, thymosin beta-4,
throughout coronary vascular development and uncovered an intricate
interplay between cellular differentiation and morphogenesis (Mantri et
al., 2021). While SPTseq is gaining popularity in translational
cardiovascular research and facilitating transcriptomics assays in the
heart while preserving spatial anatomy, current spatial transcriptomics
approaches lack single-cell resolution. A better approach to unraveling
cellular interaction in spatially resolved gene expression entails combining
both single-cell and spatial transcriptomic sequencingwith algorithms for
data integration. As explicitly described here (Mantri et al., 2021; Shi et al.,
2022; Longo et al., 2021), spatial transcriptomics data can be integrated
with the scRNA-seq data using Seurat-v3 anchor-based integration (Hie
et al., 2019; Butler et al., 2018). These techniques along with the use of
humans, animals, and the hPSC-based CHD model can help in
understanding the development of CHD and pinpointing specific
therapeutic targets.

6 Conclusion and future directions

Despite the progress of next-generation sequencing, there are still
gaps in the literature regarding transcriptomic profiling in congenital
heart disease and identifying consistent therapeutic markers. Relying
on diagnostic biomarkers is a promising approach for the early
detection of CHDs in infant blood. For example, transcriptome
changes in the blood (cells or plasma) may help to better diagnose
or determine the prognosis of patients. NcRNA signatures provide
valuable molecular insight into patient phenotypes and could add to

traditional markers and established clinical variables. LncRNA
biomarkers are also being investigated as novel predictive tools to
monitor therapeutic effectiveness and stratify patients. However, it
cannot be excluded that there are still some CHDs that cannot be
detected throughout pregnancy due to a lack of serum biomarkers for
more comprehensive screening and diagnosis of CHD (McCracken
et al., 2018). Understanding the functional mechanism of novel non-
coding transcriptomes (described in Figure 3) could still lend a clue
or open up avenues for deciphering diagnostic makers, especially for
CHDs likeHLHS that present with poor prognoses even aftermultiple
surgeries. Numerous short-circulating miRNAs have been implicated
in CHDs. miR-329, and miR-222 species commonly shared across all
types of CHD are promising biomarkers to inform tailored treatment
selection and monitor ongoing efficacy and thus deserve further
investigation. Spatial transcriptomics technologies hold the promise
of overcoming the limitations of single-cell transcriptomics as
transcriptomics expressions are captured while preserving spatial
anatomy (Mantri et al., 2021), as such its represent a powerful tool
for researcher seeking to deploy embryo model for studying
congenital heart disease. Additionally, generating 3D models in
tissue organoids and generating a post-natal model of CHD are
important topics for future research.
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