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Genetic disorders are significant contributors to infant hospitalization and
mortality globally. The early diagnosis of these conditions in infants remains a
considerable challenge. Clinical exome sequencing (CES) has shown to be a
successful tool for the early diagnosis of genetic conditions, however, its utility in
African infant populations has not been investigated. The impact of the under-
representation of African genomic data, the cost of testing, and genomic
workforce shortages, need to be investigated and evidence-based
implementation strategies accounting for locally available genetics expertise
and diagnostic infrastructure need to be developed. We evaluated the
diagnostic utility of singleton CES in a cohort of 32 ill, South African infants
from two State hospitals in Johannesburg, South Africa. We analysed the data
using a series of filtering approaches, including a curated virtual gene panel
consisting of genes implicated in neonatal-and early childhood-onset
conditions and genes with known founder and common variants in African
populations. We reported a diagnostic yield of 22% and identified seven
pathogenic variants in the NPHS1, COL2A1, OCRL, SHOC2, TPRV4, MTM1 and
STAC3 genes. This study demonstrates the utility value of CES in the South African
State healthcare setting, providing a diagnosis to patients who would otherwise
not receive one and allowing for directed management. We anticipate an increase
in the diagnostic yield of our workflow with further refinement of the study
inclusion criteria. This study highlights important considerations for the
implementation of genomic medicine in under-resourced settings and in
under-represented African populations where variant interpretation remains a
challenge.
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1 Introduction

Genetic conditions are significant contributors to infant
mortality, morbidity, and hospitalisations globally (Kingsmore
et al., 2020). Despite advances in diagnostics with next-
generation sequencing (NGS) and microarrays, it remains
challenging to make diagnoses in infant populations. Infants
often present with atypical or non-specific disease symptoms;
many genetic disease phenotypes cannot be distinguished during
the neonatal period; and disease progression may often be very
rapid, making the identification and diagnosis of genetic conditions
difficult (Wilkinson et al., 2016; van Diemen et al., 2017; French
et al., 2019).

Clinical and whole exome sequencing (CES and WES), have
been widely investigated for their use in diagnosing ill infants,
with many studies evidencing their benefit (Petrikin et al., 2015;
Smith et al., 2015; Willig et al., 2015; Stark et al., 2016; Meng et al.,
2017; van Diemen et al., 2017; Farnaes et al., 2018; French et al.,
2019; Kingsmore et al., 2019; Lunke et al., 2020; Wang et al.,
2020). While WES targets all protein-coding regions of the
genome, CES targets select genes with known disease
associations and their flanking splice regions, and has been
shown to provide an early, definitive diagnosis, preventing a
diagnostic odyssey, and allowing for targeted clinical
management (Smith et al., 2015). Virtual panels examining a
subset of these clinically relevant genes from WES/CES data can
be utilized to minimise the initial time and cost of analysis while
offering the potential of comprehensive analysis of additional
genes at a later stage with no additional laboratory costs, a key
cost consideration for resource-constrained settings. Previous
studies suggest that earlier diagnoses promote improved patient
care and outcomes by facilitating changes in medical treatment,
the early introduction of targeted therapies, increased
surveillance, the appropriate initiation of comfort care, the
reduction of costly, repeat, and sometimes invasive
investigations, and the instigation of cascade testing for family
members and counselling for reproductive planning–all
measurable utility for the use of diagnostic testing (Rabbani
et al., 2012; Splinter et al., 2018; Wright et al., 2018; Lunke
et al., 2020).

Despite evidence from numerous research studies illustrating
the benefits of CES for the diagnosis and management of ill infants,
CES is not accessible in many parts of the world, particularly in low-
andmiddle-income countries (LMICs). In many LMICs, CES is only
offered in limited research settings (or not at all) creating larger
health disparities in regions where access to primary healthcare and
diagnostic services are already poor. This is true across the African
continent, with few countries having established genetic services
(Kamp et al., 2021). In South Africa, only three of the nine provinces
offer genetic services in the State healthcare system, which services
more than 80% of the population (Kromberg et al., 2013a; Stats SA,
2022). With limited access to genetic services, many affected by
genetic conditions go undiagnosed and untreated. The lack of
funding and resources for CES implementation is widely
acknowledged by stakeholders, particularly shortages in
infrastructure and trained genetics professionals (Kamp et al.,
2021; Lumaka et al., 2022). The implementation of CES in the
South African State healthcare system needs to be informed by

international guidelines and standards, but requires optimisation in
the local context to accommodate the scarcity of resources and the
limited bioinformatics and genomics capacity (Kamp et al., 2021).
The implementation of CES is further complicated by challenges in
genetic data interpretation due to the underrepresentation of
African populations in genomic databases and literature, African
genetic diversity, and the lack of disease registries to document
genetic disease prevalence (Kromberg et al., 2013b; Baynam et al.,
2020; Lumaka et al., 2022). Despite these challenges, CES may offer
significant improvements in the clinical management of vulnerable,
underserved South African populations, including ill infants in the
neonatal intensive care unit (NICU). Without a genetic diagnosis,
infants with genetic conditions are constrained by less accurate risk
assessments, prognoses, and specialist referrals; minimal assistance
from support organisations and government welfare; and no access
to emerging therapies and clinical trials, widening the existing
healthcare disparities African populations face in accessing
personalised healthcare.

With the shift in focus of genomic medicine to implementation
science and translation into clinical practice, studies are needed to
determine the benefits and challenges faced in implementing CES in
real-world settings (Kingsmore and Cole, 2022). There are many
barriers to the implementation of genomic medicine in LMICs
which need to be investigated and addressed for genomic
medicine and CES to be successfully integrated into global
healthcare systems. To meet the World Health Organisation’s
sustainable development goal to reduce neonatal and children
under-5 mortality, the implementation of adequate genetic
services to address the burden of genetic disease, often
overshadowed and masked by infectious and communicable
disease, is necessary in LMICs. Implementation should address
the various barriers faced, including limited infrastructure and
technology, shortages in the genetics workforce, poor genomic
literacy amongst healthcare providers, poor literacy and
education amongst the general population, language barriers and
the lack of standardised genomics terminology in local languages,
cultural and societal nuances around family structure, cultural
beliefs around disease causality, and paucity of information
around genetic disease burden in African populations (Kamp
et al., 2021). These challenges will vary across LMICs due to
population, economic, political, and social diversity, rendering a
one-size-fits all implementation approach inappropriate for most
settings and making investigations into unique, country-specific
challenges necessary (Tiffin, 2014; Kamp et al., 2021; Lumaka
et al., 2022).

We performed a scoping study to evaluate the diagnostic utility
of singleton CES in a cohort of ill infants suspected of having a
genetic condition in the South African State healthcare system
through a series of three virtual gene panels. This study provides
insight into the implementation of CES for ill infants in an under-
resourced LMIC setting, where access to genetic services is limited,
the burden of genetic disease is unknown and the interpretation of
genomic data remains a considerable challenge.

2 Methods

The study workflow is summarised in Figure 1.
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2.1 Recruitment

A cohort of thirty-two ill infants, suspected of having a genetic
condition, were recruited from two State hospitals in Johannesburg,
South Africa: RahimaMoosaMother and Child Hospital (RMMCH)
in Coronationville, and Nelson Mandela Children’s Hospital
(NMCH) in Parktown. These hospitals are regional and
quaternary hospitals respectively and serve mostly State patients.
Participants were referred for genetic testing either directly by
neonatologists and paediatricians without consultation with
medical geneticists, or by medical geneticists at call out
consultations or referral. Clinicians were provided a list of

recruitment criteria, highlighting a broad range of phenotypic
features that may be suggestive of a genetic cause for an ill
infant’s condition. Infants were considered eligible for
recruitment if they presented with any of the following: multiple
congenital anomalies, a concern for their neurological status,
metabolic abnormalities of uncertain cause, dysmorphic features
or if they had abnormal growth parameters. Infants were excluded if
they had significant teratogen exposure during pregnancy,
experienced birthing trauma or asphyxia, or had a diagnosed
infection that could be the primary cause of illness. Premature
patients were considered eligible for inclusion if their clinical
features were not primarily explained by prematurity.

FIGURE 1
Study overview and analysis workflow.
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Parents and guardians provided informed consent on behalf of
infants for participation in the study after the study was explained to
them by a principal investigator or genetic counsellor. A blood
sample was collected for DNA extraction and exome testing from
each participant. A saliva sample from available parents was banked
at consent, however, this study employed exome sequencing of
probands only.

Phenotypic information regarding the condition and medical
history of the participants was provided by the referring clinician.
Clinicians were provided a short format phenotype collection rubric
to assist with this as a Redcap form (Supplementary Table S1)
(Harris et al., 2009; Harris et al., 2019), and requested to provide any
information they believed was relevant to a possible genetic
diagnosis.

2.2 DNA extraction and next-generation
sequencing

DNA extraction was performed on the stored participant blood
samples using a modified salting-out method (Miller et al., 1988).
DNA quality and quantity was assessed using the NanoDrop 2000
(Thermo Fisher Scientific, United States), gel electrophoresis and the
Qubit 4.0 system (Thermo Fisher Scientific, United States). Library
preparation was performed manually using the Ion Ampliseq
Exome RDY library preparation kit, as per the manufacturer’s
instruction. DNA libraries were quantified and sized using the
TapeStation High Sensitivity D5000 ScreenTape assay (Agilent
Technologies, Germany). Diluted libraries were loaded onto Ion
540 sequencing chips for exome sequencing using the automated Ion
Chef instrument (Thermo Fisher Scientific, United States). Loaded
chips were sequenced in-house on an Ion GeneStudio S5 sequencer
(Thermo Fisher Scientific, United States). The laboratory processing
time for four samples was approximately 5 days.

2.3 Exome data analysis

Read alignment to the GRCh37 human reference genome was
performed on the Ion Torrent Suite software (Thermo Fisher
Scientific, United States). Variant calling was subsequently
performed using Ion Reporter software (Thermo Fisher Scientific,
United States). Variants were annotated using the Ensembl Variant
Effect Predictor (VEP), versions 107 and 108 (McLaren et al., 2016).

Variants were filtered and prioritised for manual curation using
three sequential filtering approaches, summarised in Figure 1. The
first variant filtering approach retained variants in a virtual gene
panel consisting of 1,127 genes, curated for their association with
neonatal- and early-childhood-onset conditions (Ceyhan-Birsoy
et al., 2017; Milko et al., 2019) and genes with known founder
variants and common variants in African populations (Krause et al.,
2018) (NICU/African) (Supplementary Table S2). If no causative
variant was identified, the second variant filtering approach,
retaining variants with previous pathogenic, likely pathogenic and
variant of uncertain significance (VUS) classifications on ClinVar,
including variants with conflicting interpretations, was employed
(Landrum et al., 2018). The third filtering strategy, employed if no
causative variant was identified from the first two strategies, retained

variants in 2,313 genes on the Deciphering Developmental
Disorders Genotype to Phenotype (DDG2P) gene panel
(Thormann et al., 2019). Filtered variants were then prioritised
for manual curation based on the type of variant, population minor
allele frequencies, previous pathogenic and likely pathogenic
interpretations on ClinVar and predicted deleterious impacts on
protein function from in silico prediction tools CADD, REVEL,
BayesDel and MetaRNN (Ioannidis et al., 2016; Feng, 2017;
Rentzsch et al., 2019; Li et al., 2022). Variants were visually
inspected to determine quality using Integrated Genomics Viewer
software (IGV) (Robinson et al., 2011).

Prioritised variants were classified according to the American
College of Medical Genetics and Genomics and the Association for
Molecular Pathology (ACMG/AMP) guidelines to determine their
pathogenicity (Richards et al., 2015). Filtering, prioritization,
manual curation and classification took approximately 6 h to
perform per filtering strategy per sample. Pathogenic and likely
pathogenic variants were then reviewed by a multidisciplinary team
to determine if the diagnosis was appropriate for the participant.
Findings were reported in a research report and returned to the
referring clinicians and participants. VUSs and incidental findings
were not reported in this study. Positive molecular findings were
returned to parents by a genetic counsellor or medical geneticist, and
appropriate downstreammedical intervention and referrals initiated
where necessary. Parents of participants with negative findings were
invited for further consultation with a medical geneticist to discuss
the implications of the negative result and determine an appropriate
clinical management route going forward.

3 Results

3.1 Cohort characteristics

Thirty-two infants under the age of two, with a suspicion of a
genetic condition were recruited for CES between May 2021 and
December 2022 (Table 1). A single participant was enrolled and
excluded as the participant had received a blood transfusion and
demised before an appropriate amount of time had passed for a
blood sample to be drawn. Most participants were referred for
genetic testing directly by their treating neonatologist or
paediatrician (23) and were not formally assessed by a medical
geneticist prior to recruitment. An equal proportion of male and
female participants were recruited. Most participants were of
African ancestry (26). Only two participants, NE025 and NE035,
were born to self-reported consanguineous parents. The most
frequent indications for CES were multiple congenital anomalies
(9), cardiac defects and abnormalities (6), general dysmorphism (3)
and neuromuscular abnormalities (3). No participants had
abnormalities detected prenatally on ultrasound or had prenatal
genetic investigations, however, fetal anomaly scans are infrequently
performed as standard obstetric care in the State healthcare system.

3.2 Genetic diagnoses from singleton CES

Singleton CES was performed on all participants with an average
coverage of 134%X and 90% uniformity. A molecular diagnosis was
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confirmed for 7 of the 32 recruited participants, resulting in a
diagnostic yield of 22% (Table 2). Five of the identified causative
variants were in genes in our NICU/African virtual panel.

Two participants received a severe myopathy diagnosis. A
homozygous STAC3 variant (c.851G>C; p.Trp284Ser) was
identified in participant NE001. This variant has been associated
with a diagnosis of STAC3myopathy (Horstick et al., 2013; Telegrafi
et al., 2017; Waldrop et al., 2017; Zaharieva et al., 2018; Schoonen
et al., 2019; Ravenscroft et al., 2021; Saleh et al., 2021). Multiple in
silico prediction tools predict this variant to be deleterious to
STAC3 function, confirmed in zebrafish models, which show a
deficiency in skeletal muscle excitation-contraction coupling as a
result of this missense mutation (Horstick et al., 2013; Linsley et al.,
2017). A hemizygous, nonsense MTM1 variant (c.664C>T;
p.Arg222Ter), affecting the functional myotubularin phosphatase

domain of the MTM1 protein, was identified in participant NE021.
This variant has been associated with severe X-linked myotubular
myopathy (Laporte et al., 1997; Tanner et al., 1999; Biancalana et al.,
2003; Longo et al., 2016). Both diagnosed myopathies had severe
disease presentations, resulting in the demise of both infants within a
week of life. Parents of these infants were offered prenatal testing for
future pregnancies.

A pathogenic, heterozygous missense variant in COL2A1
(c.3589G > A; p.Gly1197Ser) was identified in participant NE022.
This variant occurs in a predicted missense constrained gene and has
predicted deleterious effects on type II collagen stability and
structure (Beck et al., 2000). Other amino acid substitutions at
the same position, p.Gly1197Ala and p.Gly1197Arg, have previously
been reported as pathogenic. Mutations in the COL2A1 gene have
been associated with a spectrum of overlapping skeletal dysplasias,

TABLE 1 Demographics and clinical characteristics of the patient cohort referred for clinical exome sequencing.

Characteristic Number of
individuals

Percentage of
cohort (%)

Number of positive
diagnoses

Percentage of positive
diagnoses (%)

Total number of participants 32 — 7 21.9

Hospital recruitment
site

RMMCH 17 53.1 6 35.3

NMCH 15 46.9 1 6.7

Sex Female 16 50.0 3 18.8

Male 16 50.0 4 25.0

Referring clinician Neonatologist/
Paediatrician

23 71.9 4 17.4

Geneticist 9 28.1 3 33.3

Ancestry African 26 81.3 5 19.2

European 1 3.1 — —

Mixed 1 3.1 1 100.0

Other 4 12.5 1 25.0

Consanguinity Consanguineous
parents

2 6.3 — 0.0

Non-consanguineous
parents

30 93.8 7 −23.3

Indication for genetic
testing

Neuromuscular 3 9.4 2 66.7

Skeletal 2 6.3 2 100.0

Cardiac 6 18.8 — —

Renal 2 6.3 1 50.0

Multiple congenital
anomalies

9 28.1 1 11.1

Hepatic 2 6.3 — —

Developmental 2 6.3 1 50.0

Abnormal growth 1 3.1 — —

Dysmorphic 3 9.4 — —

Neurological 1 3.1 — —

Gastrointestinal 1 3.1 — —

Abbreviations: RMMCH, Rahima Moosa Mother and Child Hospital; NMCH, Nelson Mandela Children’s Hospital.
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TABLE 2 Positive infant diagnoses through clinical exome sequencing using three filtering strategies.

Study
ID

Hospital Referring
clinician
type

Sex Ancestry Indication
for testing

Phenotypic
features

Variant
HGVS;

gene OMIM
number

Variant
type

Filtering
strategy

ACMG/AMP
classification
and codes

ClinVar
accession
ID and

classification

Variant
inheritance,

variant
coverage

Diagnosed
condition

NE001 RMMCH Neonatologist/
Paediatrician

M African Neuromuscular Myopathic facies,
generalised

hypotonia, reduced
tendon reflexes, low

set, posteriorly
rotated ears, high
arched palate,
cryptorchidism,

wide
intermammillary
distance, genu

recurvatum, rocker
bottom foot, single
transverse palmar

crease

STAC3:c.851G >
C (p.Trp284Ser)

615521

Missense NICU/
African
Panel

Pathogenic—PM3_strong,
PS3, PP3, PP5_supporting

VCV000088744.39
2 star Pathogenic

Autosomal
recessive, 124X

STAC3 (Bailey-
Bloch) myopathy

NE021 RMMCH Neonatologist/
Paediatrician

M Other -
Pakistani

Neuromuscular General hypotonia,
myopathic facies,
frog-like posture,

areflexia, low power,
breathing

difficulties, open
anterior and

posterior fontanelle,
generalised

hypertrichosis,
retrognathia, narrow
chest, hypoplastic

scrotum,
cryptorchidism

MTM1:c.664C >
T (p.Arg222Ter)

300415

Stop gain NICU/
African
Panel

Pathogenic—PVS1,
PM2_supporting,
PP5_supporting

VCV000158994.14
2 star Pathogenic

X-linked
recessive, 47X

X-linked
myotubular
myopathy

NE022 NMCH Geneticist F African Skeletal Mild rhizomelic
shortening,

restricted elbow
extension and hip
abduction, truncal
hypotonia, short

sternal prominence,
pectus carinatum,
short and narrow
chest, Harrison’s
sulcus, flared ribs,

protuberant
abdomen with

palpable soft liver
and spleen,

exaggerated lumbar
lordosis, relative
macrocephaly, flat

nasal bridge,

COL2A1:
c.3589G > A
(p.Gly1197Ser)

120140

Missense NICU/
African
Panel

Likely Pathogenic—PM5,
PM1, PM2_supporting,

PP3, PP2, PP5_supporting

VCV000017361.21
2 star Pathogenic/
Likely Pathogenic

Autosomal
dominant, 85X

COL2A1 collagen
disorder

(Continued on following page)
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TABLE 2 (Continued) Positive infant diagnoses through clinical exome sequencing using three filtering strategies.

Study
ID

Hospital Referring
clinician
type

Sex Ancestry Indication
for testing

Phenotypic
features

Variant
HGVS;

gene OMIM
number

Variant
type

Filtering
strategy

ACMG/AMP
classification
and codes

ClinVar
accession
ID and

classification

Variant
inheritance,

variant
coverage

Diagnosed
condition

prominent forehead,
epicanthal folds,

infraorbital creases,
grey sclera, malar
hypoplasia, short

neck

NE026 RMMCH Neonatologist/
Paediatrician

M African Developmental Neonatal seizures,
hypocalcaemia,
failure to thrive,
alopecia, sparse
eyebrows, frontal

bossing,
scaphocephaly,

malar flattening, flat
nasal bridge,

retromicrognathia,
mild abdomen

distention, scrotal
dysplasia, mild
hypotonia with

normal power, dry
skin, feeding

difficulties due to
fragile teeth and
bleeding gums

SHOC2:c.4A >
G (p.Ser2Gly)

602775

Missense ClinVar
Filter

Pathogenic -—PS2_very
strong, PS4, PS3_moderate,
PM2_supporting, PP2,

PP5_supporting

VCV000006821.64
3 star Pathogenic

Autosomal
dominant, 34X

Noonan-like
syndrome with

loose anagen hair

NE029 RMMCH Geneticist M Mixed Multiple
congenital
anomalies

Cataracts, blocked
tear ducts, bilateral
eye opacity, bilateral

nystagmus,
retrognathia, open
anterior fontanelle
without craniotabes,
redundant skin at
shoulder joints,
brachydactyly,
tapered fingers,

hyperlaxity of finger
joints, short stature,
global hypotonia
with reduced

reflexes and power,
head lag,

osteomalacia on
x-ray, proteinuria,
stagnating weight

OCRL:c.1621C >
T (p.Arg541Ter)

300535

Stop gain NICU/
African
Panel

Pathogenic - PVS1_strong,
PM2_supporting,
PP5_supporting

VCV000521093.9
2 star Pathogenic

X-linked
recessive, 16X

Lowe syndrome
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TABLE 2 (Continued) Positive infant diagnoses through clinical exome sequencing using three filtering strategies.

Study
ID

Hospital Referring
clinician
type

Sex Ancestry Indication
for testing

Phenotypic
features

Variant
HGVS;

gene OMIM
number

Variant
type

Filtering
strategy

ACMG/AMP
classification
and codes

ClinVar
accession
ID and

classification

Variant
inheritance,

variant
coverage

Diagnosed
condition

NE033 RMMCH Geneticist F African Renal Congenital
nephrotic syndrome,

left ventricular
hypertrophy,

effusion of right
ventricle, peripheral
pulmonary stenosis,

anasarca,
proteinuria,
electrolyte

abnormalities,
hypothyroidism

NPHS1:
c.1379G>A

(p.Arg460Gln)
602716

Missense NICU/
African
Panel

Likely Pathogenic -
PM3_strong, PM1,
PP5_supporting

VCV000056438.17
2 star Pathogenic

Autosomal
recessive 89X

Congenital
nephrotic
syndrome

NE034 RMMCH Neonatologist/
Paediatrician

F African Skeletal Metaphyseal
widening left femur

and midshaft
fracture of right

femur, hypoplastic
left tibia, restricted
elbow extension,

proximally inserted
thumb, tapered
fingers bilaterally,
fixed hip flexion
bilateral hip and
knee extension,
bilateral talipes
equinovarus,

hypoplastic nails
both feet, prominent
occiput, Mongolian

blue spot over
buttocks and sacral,
dimple over medial
malleoli, reduced
plantar creases

TRPV4:c.806G >
A (p.Arg269His)

605427

Missense ClinVar
Filter

Pathogenic—PS4, PS3,
PM5, PM1, PP5_supporting

VCV000005000.37
2 star Pathogenic

Autosomal
dominant, 73X

Spondylo-
metaphyseal
dysplasia

Abbreviations: RMMCH, Rahima Moosa Mother and Child Hospital; NMCH, Nelson Mandela Children’s Hospital; M, Male; F, female; NICU/African, Neonatal- and early childhood onset and African Founder Variant.
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therefore, this participant received a broad diagnosis of a COL2A1
collagen disorder (Cole et al., 1993; Nishimura et al., 2005; Terhal
et al., 2015). Further assessments are needed to refine this diagnosis.
This participant will need to be monitored for eye abnormalities,
cervical instability and have their respiratory function assessed by
the appropriate medical specialties.

Participant NE026 was diagnosed with Noonan-like syndrome
with loose anagen hair caused by a heterozygous SHOC2 variant
(c.4A > G, p.Ser2Gly). This variant, carrying a three-star ClinVar
classification, has been shown to alter MAPK activation in in vitro
studies and animal models (Cordeddu et al., 2009; Hoban et al.,
2012; Gripp et al., 2013; Gargano et al., 2014; Choi et al., 2015). This
participant will be referred for neurodevelopmental and cardiac
assessments, as cardiac defects and psychomotor delay are
frequently observed in this condition.

A hemizygous, nonsense OCRL variant (c.1621C > T,
p.Arg541Ter) was identified in participant NE029, associated
with X-linked recessive Lowe (Oculo-cerebro-renal) syndrome.
This specific premature termination variant has been observed
in other Lowe syndrome patients with similar clinical
presentations (Hichri et al., 2011; Yang et al., 2014; Recker
et al., 2015). This participant will require ophthalmology
treatment for cataracts and glaucoma, as well as electrolyte
monitoring for renal tubular acidosis. The mother of
Participant NE029 received carrier screening by Sanger
sequencing, confirming that she was not a carrier for the
identified pathogenic variant.

Participant NE033 received a diagnosis of severe congenital
nephrotic syndrome (Finnish type), harbouring a homozygous
variant in the NPHS1 gene (c.1379G > A, p.Arg460Gln). This
variant has been reported in a homozygous state in multiple
congenital nephrotic syndrome cases (Beltcheva et al., 2001;
Schoeb et al., 2010; Warejko et al., 2018; Mann et al., 2019).
Participant NE033 presented with end stage renal disease and
was unable to access renal replacement therapy in South Africa.
Due to a poor prognosis and limited available medical intervention,
this family received counselling on comfort care.

A heterozygous missense variant in TRPV4 (c.806G > A,
p.Arg269His) was identified in participant NE034. This variant
has been extensively reported in the literature for its association
with autosomal dominant neuromuscular disease and skeletal
dysplasia (Auer-Grumbach et al., 2010; Deng et al., 2010;
Landoure et al., 2010; Zimon et al., 2010; Echaniz-Laguna
et al., 2014; Louis et al., 2014; Biasini et al., 2016; Fleming and
Quan, 2016; Jedrzejowska et al., 2019). Multiple functional
studies support this variant’s gain of function role in
increasing calcium channel activity, resulting in cell death and
axonal degeneration (Deng et al., 2010; Landoure et al., 2010;
Fecto et al., 2011; Klein et al., 2011; Takahashi et al., 2014).
Participant NE034 presented clinically with only the skeletal
features of TRPV4-associated disease and received a diagnosis
of spondylometaphyseal dysplasia. As the neuropathic symptoms
of this disease have been reported to occur after the neonatal
period, this participant will need to be monitored for the
development of these symptoms (Fleming and Quan, 2016).
This participant will require physical therapy to maintain
lower limb function. Pulmonary function and cervical spine
stability will also be monitored in this participant.

4 Discussion

This study generated valuable insights into the practicalities and
utility of implementing CES in a NICU setting in South Africa. As
the developed world moves toward rapid testing for ill infants,
challenges in the implementation of genomic medicine in African
and LMICs exacerbates existing healthcare disparities due to the
slow uptake of these newer technologies, particularly in Sub-Saharan
Africa, where most NGS testing, even in the research setting, is
performed outside of the African continent (Baine-Savanhu et al.,
2023). These challenges require careful consideration for the
implementation of cutting-edge genomic services and for health
equity to be achieved (Kingsmore and Cole, 2022).

We identified a genetic cause in seven ill infants with a range of
clinical disease presentations, achieving a minimum diagnostic yield
of 22%. Many studies globally have assessed the utility of CES in
infant populations, showing impressive diagnostic yields of up to
70% (Clark et al., 2018), however, there is an absence of African
individuals in these studies and low representation from LMICs.
Patients of African ancestry are less likely to receive a diagnosis
using current analytical strategies, as shown in the Deciphering
Developmental Disorders study, creating a significant healthcare
disparity for these populations (Wright et al., 2023). A tailored
implementation strategy is needed for successful uptake of CES in
Africa and in LMICs.

Comprehensive analysis strategies offer a higher probability of
identifying a causative variant, however, these strategies are more
time and labour intensive and have higher VUS rates (Stark and
Ellard, 2022). A curated virtual panel of carefully selected genes, as
demonstrated in this study, is an effective first approach for exome
data analysis. Five of the seven causative variants identified in this
study were in genes in our custom NICU/African panel, illustrating
its utility for infant cohorts. The simplification of analysis pipelines
and strategies in LMIC settings is necessary to deliver a result in a
timely manner and with a low dependence on computational
infrastructure and bioinformatics capacity. More comprehensive
analysis pipelines, such as whole exome analysis, and the
investigation of CNVs and structural variants could be deployed
next for the remaining undiagnosed participants (Splinter et al.,
2018). Undiagnosed participants may also benefit from reanalysis to
incorporate updates to the virtual gene panel, new variant
information, novel gene-disease associations, updated phenotypic
data and bioinformatic advancements (Schobers et al., 2022).

The implementation of CES across the African continent and in
LMICs is significantly under-investigated and many of the
challenges associated with CES implementation into genetic
service are exacerbated in an African setting. The significant
barriers to the implementation of genomic medicine include a
lack of infrastructure and support for clinical translation, the
scarcity of information regarding African genetic epidemiology,
poor genomic literacy among healthcare workers, few formally
trained genetics professionals, a lack of investment by
governments and international funders, the low cost effectiveness
in establishing genetic services, and the fear of widening the existing
disparities by only benefiting those who can afford access to these
technologies (Jongeneel et al., 2022). These challenges, many seen in
this study, need to be addressed when planning implementation
strategies for CES in our context.

Frontiers in Genetics frontiersin.org09

Campbell et al. 10.3389/fgene.2023.1277948

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1277948


More than 70% of our infant cohort was referred for genetic
testing directly by a neonatologist or paediatrician. Appropriate
phenotyping and a predictive clinical diagnosis from a medical
geneticist can direct CES data interpretation and contribute to a
higher diagnostic yield (Trujillano et al., 2017; Gubbels et al., 2020).
The limited formally trained genetics workforce in South Africa
makes input from trained geneticists prior to genetic testing a
virtually impossible task (Kromberg et al., 2013a). The
engagement and upskilling of primary care medical specialities
is necessary for CES implementation in under-resourced
settings, to allow the few medical geneticists and genetic
counsellors to be most efficiently utilised (Dragojlovic et al.,
2020; Chou et al., 2021).

The lack of representation of African and Sub-Saharan African
populations in publicly available databases and limited
understanding of African genetic disease epidemiology makes
CES data analysis and interpretation complex. A representative
reference genome which considers African population diversity
and disease epidemiology is essential in identifying disease-
causing variants in a timely manner. A better understanding of
genetic disease in African populations is key to improved
management and service of our populations. This study allowed
us to investigate genetic disease epidemiology in an
underrepresented African population. The variant identified in
participant NE001, diagnosed with STAC3 myopathy, has the
highest carrier rate in the Genome Aggregation Database
(GnomAD, accessed June 2023) in individuals of African/African
American ancestry (Zaharieva et al., 2018; Gromand et al., 2022).
Unpublished research from the South African National Health
Laboratory Service revealed a frequency of 20% for this variant
in a homozygous or compound heterozygous state in SMN1 negative
African patients with myopathic phenotypes (Mhlongu et al., 2022).
Despite its prevalence in African-ancestry patients, STAC3 testing
has only been recognized as a common myopathy and introduced
into diagnostic service in the South African State system within the
past year.

Singleton CES was utilised in this study to elucidate the potential
cause of disease in our infant cohort. Despite its recognised
diagnostic superiority, trio-sequencing is costly to consider in
LMICs, where limited financial resources must effectively serve
large populations {Baine-Savanhu et al., 2023 #416} (Clark et al.,
2018; Kingsmore et al., 2019). Trio-sequencing is thus not affordable
at present in LMICs and the benefit versus cost requires further
investigation. Complex family dynamics and social issues are other
key considerations for African populations. In this cohort, only 31%
of participants had both parents available at enrolment due to a
variety of social factors, including: admission at hospitals far away
from their residence with no access to transportation; the inability to
get time off work for hospital visits; some participants were African
immigrants who were not in South Africa as a complete family unit;
and many participants were born to single-parent households and
families. A diagnosis was still achievable in some participants in this
study with singleton sequencing, illustrating the effectiveness and
utility of this tool as a first-tier strategy, despite difficulties in
documenting de novo mutations and reoccurrence risk. For
effective implementation of genomic services in Africa, these
social challenges need to be embraced to prevent the exclusion of
patients who would greatly benefit from access to these services.

Approximately 80% of participants did not receive a molecular
diagnosis in this study. The workflow offers a starting strategy in the
diagnostic trajectory of these participants, who would benefit from
further investigations to fill in gaps not addressed in our virtual gene
panels. Refinement of the inclusion and exclusion criteria may
provide more clarity to referring clinicians as to which infants
would most benefit from CES, allowing for better utilisation of
the scarce resources for testing. More comprehensive phenotyping
may also provide more guidance in participant screening and in
variant interpretation for a more cost- and time-effective
implementation strategy.

In conclusion, this study yielded a definitive diagnosis for seven
families affected by a genetic condition with minimal access to
genetic testing in the South African State healthcare system,
providing the first evidence of the diagnostic utility of CES for ill
infants in an under-resourced NICU setting in Africa. Our
experience can be used as a point of departure to develop
feasible, local CES implementation strategies, utilising
appropriately curated virtual panels to provide clinically
actionable findings within an appropriate timeframe.
Optimisation of an appropriate gatekeeping strategy that
leverages locally available genetics capacity may increase our
diagnostic yield and minimise inappropriate testing.
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