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Exome sequencing (ES) is a recommended first-tier diagnostic test for many rare
monogenic diseases. It allows for the detection of both single-nucleotide variants
(SNVs) and copy number variants (CNVs) in coding exonic regions of the genome
in a single test, and this dual analysis is a valuable approach, especially in limited
resource settings. Single-nucleotide variants are well studied; however, the
incorporation of copy number variant analysis tools into variant calling
pipelines has not been implemented yet as a routine diagnostic test, and
chromosomal microarray is still more widely used to detect copy number
variants. Research shows that combined single and copy number variant
analysis can lead to a diagnostic yield of up to 58%, increasing the yield with as
much as 18% from the single-nucleotide variant only pipeline. Importantly, this is
achieved with the consideration of computational costs only, without incurring
any additional sequencing costs. This mini review provides an overview of copy
number variant analysis from exome data and what the current recommendations
are for this type of analysis. We also present an overview on rare monogenic
disease research standard practices in resource-limited settings. We present
evidence that integrating copy number variant detection tools into a standard
exome sequencing analysis pipeline improves diagnostic yield and should be
considered a significantly beneficial addition, with relatively low-cost implications.
Routine implementation in underrepresented populations and limited resource
settings will promote generation and sharing of CNV datasets and provide
momentum to build core centers for this niche within genomic medicine.
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1 Introduction

Exome sequencing (ES) is a widely used molecular approach and
is recommended as a first-tier test for diagnostic purposes for rare
monogenic disorders (Stark et al., 2016; Hu et al., 2018; Srivastava
et al., 2019). ES identifies variants within coding exonic regions and
is predominantly centered around single-nucleotide variant (SNV)
discovery. Recent computational advances have made it possible to
incorporate copy number variant (CNV) analysis from ES data,
making it more practical and cost-effective, especially for disorders
where both SNVs and CNVs are involved in disease etiology.

CNVs attribute to the pathogenesis of up to 15% of rare
monogenic cases (Truty et al., 2019; Testard et al., 2022) and
tend to have a more severe consequence on phenotype compared
to SNVs due to their large size and effect on entire coding regions
(Park et al., 2019). Progress has been made regarding joint SNV and
CNV investigations in low-middle-income countries (LMICs);
however, the gold standard for CNV detection remains
chromosomal microarray (CMA) despite its inability to detect
SNVs or smaller insertions and deletions. Thus, CMA does not
facilitate the efficient use of resources when applied exclusively
within already resource-limited settings (Park et al., 2019).

ES has proven to be a cost-effective first-tier test in developed
countries, predicting a cost saving between $1,484 and $3,242 per
diagnosis (Schwarze et al., 2018). Implementing a diagnostic exome
is still thought to be higher in LMICs due to the lack of established
infrastructure, high cost of reagents, and the need for personnel
training (Wiener et al., 2023); however, studies show that traditional
genetic testing and pre-ES investigations can cost up to six times
more than local ES costs (Cordoba et al., 2018; Masri and Hamamy,
2021). ES as a first-line investigation would thus be beneficial for
many patients and a worthwhile investment in a limited resource
setting (Wiener et al., 2023). Despite the advances in ES, it is still not
routinely used, especially in countries where genetic testing is
limited. The overall diagnostic rate of ES is estimated at ~25%
(Yang et al., 2013; Lee et al., 2014; Fung et al., 2020); however, yields
as high as 36% (Srivastava et al., 2019) and 41% (Dong et al., 2020;
Wright et al., 2023) have been reported in patients with rare
monogenic developmental disorders. In studies involving
consanguineous patients, a yield of up to 86% has been reported
(Hiz Kurul et al., 2022).

In this mini review, we present evidence to show that integrating
CNV detection tools into a standard ES analysis pipeline should be
considered since it is cost-effective, improves diagnostic yield, and
shortens the diagnostic odyssey for patients.

2 Bioinformatic considerations and
CNV calling tools

Many bioinformatic tools have been developed for the
identification of CNVs from genome and ES data. While no
additional sequencing costs are involved in the exome CNV
analysis, computational costs relating to additional data analysis
should be considered. Comparing computational costs of exome
CNV tools, the average expected central processing unit usage was
5.68 GHz and an average of 267,55 Mb of space was used for a
11.2 Mb series of datasets with ×100 coverage (Zhao et al., 2020).

Implementing CANOES on 285 samples took ~6 min per sample
using a 2.3 GHz central processing unit core (Backenroth et al.,
2014) and for CLAMMS, (Packer et al., 2016) an estimate of ~50 MB
random-access memory is required per process. The four main
approaches to detect CNVs (Figure 1) are read depth-based, paired-
end mapping, split read-based, and assembly-based approaches
(Zhao et al., 2013). A combination or ensemble approach is also
commonly used as none of the methods alone detect all CNVs with
high specificity and sensitivity. Here, we will focus on the most
recent and most widely used CNV tools (Gabrielaite et al., 2021)
divided into categories according to these different detection
approaches (Table 1).

2.1 Read depth-based approach

This approach relies on the depth of coverage to estimate the
copy number that the genomic region is correlated with. A higher
depth of coverage at a specific region indicates a gain, whereas a
lower depth of coverage indicates a loss of copy number. This
approach performs well in complex genomic regions (Yoon et al.,
2009). CLAMMS (Packer et al., 2016), CoNIFER (RRID:SCR_
013213) (Krumm et al., 2012), ExomeDepth (RRID:SCR_002663)
(Plagnol et al., 2012), XHMM (Fromer et al., 2012), cn.MOPS
(RRID:SCR_013036) (Klambauer et al., 2012), and GATK-gCNV
(Babadi et al., 2022) are amongst the most recent and often used read
depth-based tools. As only the exonic regions are sequenced, some
considerations need to be addressed for these tools to function
optimally. ES is considered more appropriate for this approach since
it has higher coverage than whole genome sequencing. The majority
of tools developed to date for the identification of CNVs from ES
data are thus based on this approach. When using read depth-based
CNV detection, one should take into consideration that most tools
require the use of a reference panel of samples. An assumption of the
read depth approach is that reads are distributed uniformly across
the genome; however, this is not the case for exome sequencing.
Reference samples are thus used to control these biases created by
regions of variable depth across exons by establishing a baseline for
CNV calling, which ensures the accurate detection of CNVs. These
samples should ideally be matched in terms of preparation and
sequencing platform and even sequencing batch if possible to limit
technical biases which might hinder CNV detection. A number of
tools require matched case–control samples as inputs; however,
many tools use multiple test samples as a cohort to serve as reference
samples for the analysis. The number of samples to be used ranges
from below ten to hundreds of samples; for instance, cn.MOPS
requires a minimum of six samples, whereas XHMM has a
minimum of 50 samples. Several read depth-based tools have
been developed and implemented on ES data (Krumm et al.,
2012; Tan et al., 2014; Pfundt et al., 2017; Zhao et al., 2020;
Gordeeva et al., 2021).

2.2 Split read-based approach

This approach detects unmatched read pairs; thus, one read
aligns to the reference genome, while the other read fails to map or
aligns only partially to the genome. This potentially identifies the
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breakpoints for CNVs. A few recent tools developed based on this
approach are PINDEL (RRID:SCR_000560) (Ye et al., 2018), PRISM
(RRID:SCR_005375) (Jiang et al., 2012), SVseq2 (Zhang et al., 2012),
and Gustaf (Trappe et al., 2014). One tool developed specifically for
ES data is INDELible (Gardner et al., 2021) which was designed to
target smaller structural variations (21–500 bp) mostly missed by
other CNV calling tools.

2.3 Paired-end mapping approach

This approach was the first approach to put forth the possibility
of using next-generation sequencing (NGS) data to detect CNVs
(Tuzun et al., 2005; Korbel et al., 2009). It relies on the insert size
from the library preparation process and identifies any decreased
insert size or swapped read directions between read pairs to identify
a CNV or mobile element, insertions, inversions, and tandem
duplications. In regions of low complexity containing segmental
duplications, this approach seems to be limited. A number of tools
have been developed, such as BreakDancer (RRID:SCR_001799)
(Fan et al., 2014), HYDRA (RRID:SCR_005260) (Quinlan et al.,
2010), PEMer (RRID:SCR_005263) (Korbel et al., 2009), and Ulysses
(Gillet-Markowska et al., 2015) being the most widely used (Zhao
et al., 2013; Gabrielaite et al., 2021).

2.4 Assembly-based approach

The assembly-based approach assembles reads de novo and does
not align to a reference genome. Overlapping reads are assembled,
and these contigs are then compared to the reference genome,
identifying regions with contradictory copy numbers. A
minimum read coverage is required for tools based on this

approach to be used successfully. The most commonly used
assembly-based tool is Magnolya (RRID:SCR_000164) (Nijkamp
et al., 2012).

2.5 The ensemble approach

None of the abovementioned methods alone detects the full
spectrum of CNVs with high sensitivity and specificity, and thus it is
recommended to use an ensemble approach. In this regard, several
tools have been developed to integrate multiple approaches and
increase performance. These include DELLY (RRID:SCR_004603)
(Rausch et al., 2012), LUMPY (RRID:SCR_003253) (Layer et al.,
2014), Manta (Chen et al., 2016), CNVer (RRID:SCR_010820)
(Medvedev et al., 2010), and GenomeSTRiP (Handsaker et al.,
2011). Although this approach is recommended, there is still no
gold standard for CNV detection, especially from ES data. A review
of recent publications making use of these bioinformatic tools will
thus provide a clearer indication of what approach to consider when
calling CNVs from ES data.

3 Best approaches for CNV calling from
ES data

As there are many tools available for CNV detection from ES
data, recommendations have been made focusing on the use of these
tools for optimal results. In a recent comparative analysis of ES-
focused CNV tools (Zhao et al., 2020), the recommendations for
obtaining the best results were related to the specific dataset. In
terms of accuracy, it was recommended to use CNVkit (Talevich
et al., 2016) if CNV size is small (<100 kb), whereas cn.MOPS seems
to be optimal if CNV size is larger. If the dataset presents with more

FIGURE 1
Illustration of the four main CNV calling methods from NGS data. Adapted from Zhao et al. (2013), licensed under CC BY 2.0. (A) Read depth-based,
(B) Split read-based, (C) Paired-end mapping, and (D) assembly-based approaches.
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TABLE 1 Summary of bioinformatic tools for CNV detection using next-generation sequencing data.

Tool Method Advantages/Attributes Reference

CANOES Read depth Rare CNVs from ES data Backenroth et al. (2014)

CLAMMS Read depth Large population ES studies and easy integration into
automated variant-calling pipeline

Packer et al. (2016)

CoNIFER Read depth More insertions identified and low memory required. ES-
specific tool

Krumm et al. (2012)

ExomeDepth Read depth Good control of technical variability between samples and
effective across a wider range of exome datasets. Small and

heterozygous deletions

Plagnol et al. (2012)

XHMM Read depth Explores novel classes of CNVs from ES data Fromer et al. (2012)

Cn.MOPS Read depth Larger CNVs identified from ES andWGS data. Fast average
running time

Klambauer et al. (2012)

GATK-gCNV Read depth Detects rare CNVs and determines copy number biases and
CNVs from WGS and ES data

Babadi et al. (2022)

HMZDelFinder/HMZDelFinder _opt Read depth Rare, intragenic homozygous and hemizygous deletions
from ES data

Gambin et al. (2017)

EXCAVATOR2 Read depth Detects CNVs from ES data with genome-wide resolution D’aurizio et al., 2016

CODEX Read depth Nomatched normal controls required. Designed for ES data. Jiang et al. (2012)

CN-Learn Read depth Small sample size needed, good precision, and high-
confidence CNVs from ES data

Pounraja et al. (2019)

CNVkit Read depth <100 kb CNVs from WGS and ES data and more effective
for deletions

Talevich et al. (2016b)

PINDEL Split read Large deletions and medium-sized insertions from WGS Ye et al. (2018)

PRISM Split read SVs and precise breakpoints from WGS Jiang et al. (2012)

SVseq2 Split read Indel from low coverage WGS data and exact breakpoints Zhang et al. (2012)

Gustaf Split read Identifies size and location of dispersed duplications and
translocations from WGS data; 30–100 bp and >500 bp

Trappe et al. (2014)

INDELible Split read Smaller SVs (20–500 bps) from ES data missed by
conventional methods

Gardner et al. (2021)

BreakDancer Paired-end Various SVs including indels, inversions, and translocations
from WGS

Chen et al. (2016)

HYDRA Paired-end Diverse classes of SVs, including those involving repetitive
elements such as transposons and segmental duplications

from WGS

Quinlan et al. (2010)

PEMer Paired-end ~3 kilobases or larger SVs from WGS Korbel et al. (2009)

Ulysses Paired-end High specificity over a complete spectrum of variants Gillet-Markowska et al. (2015)

Magnolya Assembly based No mapping of reads to reference genome and de novo CNV
detection

Nijkamp et al. (2012)

DELLY Ensemble approach Full spectrum of genomic rearrangements from WGS,
including complex events

Rausch et al. (2012)

LUMPY Ensemble approach Increased sensitivity of SV detection from WGS Layer et al. (2014)

Manta Ensemble approach Less computational time/space, intense large-scale SVs,
medium-sized indels, and large insertions fromWGS and ES

data

Chen et al. (2016)

GenomeSTRiP Ensemble approach Whole-genome discovery and genotyping of deletions Handsaker et al. (2011)

CNVer Ensemble approach Better mitigates the sequencing biases causing uneven local
coverage and accurately predicts CNVs

Medvedev et al. (2010)

*Whole-genome sequencing (WGS).

*Structural variation (SV).
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insertions, using CoNIFER is recommended, and CNVkit is
seemingly the best for identifying deletions. If there is no prior
knowledge of the dataset, then using cn.MOPS and CoNIFER
together is recommended (Guo et al., 2013; Zhao et al., 2020).

Different tools have been designed to obtain optimal sensitivity
and specificity focused on rare or common CNVs as well as
population size. Previous limitations, for instance, only being able
to identify CNVs spanning at least two or more exons, GC content,
or mappability biases as well as sequencing noise have been
addressed, and many tools have been developed to try and
overcome these difficulties (Pounraja et al., 2019; Bigio et al.,
2020; Filer et al., 2021; Babadi et al., 2022). CLAMMS was
developed to be more suitable for large population studies
(Packer et al., 2016) and integrated more easily into an
automated variant calling pipeline. In order to more accurately
identify rare and intragenic homozygous and hemizygous deletions,
HMZDelFinder (Gambin et al., 2017) was developed, and the newer
HMZDelFinder_opt (Bigio et al., 2020) outperforms the older
version in terms of accuracy and specifically identifies partial
exon deletions. ExomeDepth has also been widely used (Marchuk
et al., 2018; Rajagopalan et al., 2020; Zhai et al., 2021) and designed
to control technical variability between samples. CANOES
(Backenroth et al., 2014) is complementary to methods like
XHMM and CoNIFER, and accuracy can be improved when
using CANOES in combination with one of these methods. CN-
Learn identifies true CNVs with higher precision and recall rates
without compromising performance even with as little as 30 samples
(Pounraja et al., 2019). This tool uses CNVs predicted by four
different CNV callers (CANOES, CODEX, XHMM, and CLAMMS)
which were found to enhance performance instead of using the tools
as standalone methods. Another study also merged results from
CANOES and HMZDelFinder after each tool was applied separately
(Dong et al., 2020). It was also suggested to combine GATK-gCNV,
LUMPY, DELLY, and cn.MOPS which have the best recall and
capture different CNVs (Gabrielaite et al., 2021).While LUMPY and
DELLY have been developed for whole-genome sequencing data,
GATK-gCNV and cn.MOPS should be used with ES data. In a recent
study, CNVkit, XHMM, EXCAVATOR2, and ExomeDepth were
used for ES-based CNV calling in order to maximize the sensitivity
and make ES a more powerful tool to diagnose neurodevelopmental
disorders (Zhai et al., 2021).

It is clearly demonstrated that the ensemble approach yields
optimal results while increasing the sensitivity and specificity of
CNV detection (Välipakka et al., 2020). Individual implementation
strategies could still be helpful and lead to an increased diagnostic
yield but is largely influenced by the available computing
infrastructure in specific environments as well as adequate
representation of the different calling strategies. CNV calling
from ES data should be particularly attractive in resource-
constrained settings with reduced capital expenditure and
required infrastructure.

4 Value of CNV calling from ES in
resource-constrained countries

In a recent study (Dong et al., 2020), an overall yield of 41.4%
was reported by the simultaneous analysis of SNV and CNV, of

which 12.0% can be attributed to CNVs. Another study based in
China found that SNV and exome-based CNV calling yielded an
overall diagnostic rate of 58.8%, of which diagnostic CNVs
accounted for 17.6% (Xiang et al., 2021). A comprehensive
method was used for CNV identification which included
combining XHMM and principal component analysis with
CNVKit. Similarly, it was found that incorporating exome-based
CNV detection into conventional SNV analysis for a single trio-ES
test significantly improved the diagnostic rate (Zhai et al., 2021).
When combining SNV and CNV analyses, an overall diagnostic
yield of 54%was obtained, which included 18.9% fromCNV analysis
alone. CNVs in this study were detected using CNVkit, XHMM,
EXCAVATOR2, and ExomeDepth, which were all retained and
annotated thereafter.

In an effort to identify the cause of congenital heart disease in
96 child participants from Nigeria, a combined approach was
applied by making use of ES from patient and parents (where
available) and performing XHMM CNV analysis on the data
(Ekure et al., 2021). Assessing the genomic etiology of autism
spectrum disorder in India, a diagnostic yield of 29.7% of
individuals in total was obtained for exome sequencing, of which
CNVs contributed 3%, and interestingly, CMA analysis carried out
on the same cohort yielded a diagnostic rate of 2.9% (Sheth et al.,
2023). Thus, combined CNV and SNV analysis from ES data
significantly increased the diagnostic yield versus only using
CMA (29.7% vs. 2.9%). The combined SNV and CNV analysis
from the discussed literature has been shown to increase the
diagnostic yield by as much as 18% (Figure 2), which is an
additional diagnosis for ~2 out of every 100 individuals. The
average increased yield attributed to CNVs from the discussed
research is 10.7% without additional testing costs involved.
Therefore, implementing ES as a first tier for diagnosis, especially
when incorporating CNV analysis, should be considered because it
is efficient and cost-effective and shortens the diagnostic odyssey for
patients who would not have otherwise necessarily received a
molecular diagnosis.

As is the case for most resource-limited settings, the cost of
sequencing a trio and availability of both parents are always the
important limiting factors. A study carried out in India (Pranav
Chand et al., 2023) on children with neurodevelopmental delay
found that a proband-only ES approach obtained a diagnostic yield
of 31.5% of these children. Addition of parental samples increased
this yield by only 3%, and CNVs contributed to 6.5% of the
diagnoses. Another study conducted in China had an overall
diagnostic rate of 28.8% after analyzing 1,323 pediatric patients,
which proved to be a relatively efficient and cost-effective approach
in a developing country (Hu et al., 2018). A South African study
(Moosa et al., 2022) found that proband-only ES is a very valuable
tool for diagnosis, especially if CNV analysis is included. A
diagnostic yield of 51% was obtained with 46% of patients
presenting with SNVs and 5% with CNVs. Even though trio-ES
has been shown to have the best outcome for a positive diagnosis
(Wright et al., 2023), proband-only exome analysis has proven to be
a feasible option for diagnosis in settings with limited resources or
difficulty in obtaining parental samples.

Another advantage of identifying CNVs in underrepresented
populations is the expansion of variant representation in
predominantly European-focused public data repositories. Recent
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progress has been made to contribute CNVs from African
population groups to variant databases (Nyangiri et al., 2020;
Romdhane et al., 2021; Yilmaz et al., 2021) as the lack of
diversity of high-quality genomic data, specifically from Africa,
hampers the implementation of appropriate genetic services and
brings forth healthcare inequalities (Baine-Savanhu et al., 2023). The
lack of representation in population frequency databases has also
made clinical interpretation and classification of CNVs more
challenging in LMICs. Standardized CNV reporting is possible by
using specific ACMG and Clinical Genome (ClinGen) Resource
guidelines for CNV classification (Riggs et al., 2020), but careful
evaluation of CNVs is encouraged to ensure that only likely disease-
causing CNVs matching the patient phenotype are reported.
Resolving VUSs remains challenging if population representation
is inadequate. Furthermore, additional investigations including
validation and functional experiments are often not available in
LMIC laboratories. Distinguishing benign CNVs from pathogenic
CNVs can be challenging, and thus a number of tools have been
developed to enable a more convenient manner of CNV annotation
and interpretation. These tools provide support for annotation and/
or classification of CNVs, and many tools are web-based, easy to use,
and freely available. A recent review have summed up these tools
comprehensively to make it easier for clinicians, laboratory
scientists, and genetic counselors to make a decision as to which
tool would work best in their setting (Pös et al., 2021).

5 Discussion

Overall, simultaneous analysis of CNVs and SNVs through
ES shows potential as a first-tier investigation for diagnosing rare
monogenic disorders. Novel candidate genes and variants have
been identified, representing the first step in genomic studies
within understudied populations. The diagnostic yield of the
current gold standard for CNV detection (CMA) is 15%–20%

(Miller et al., 2010), which is significantly lower than ES. In a
recent scoping review, it was shown that ES for diagnosing
neurodevelopmental disorders outperforms CMA by 10%–28%
(Srivastava et al., 2019), further supporting the combined SNV
and CNV analysis approach from ES data. Although it would be
ideal to validate exome CNVs with methods such as microarray,
it is costly and often not feasible in LMICs. Accurate CNV calling
incorporating thorough quality control can help limit false-
positive and false-negative results. This is evidenced by
eliminating the need for Sanger sequencing validation of SNVs
when proper quality control is carried out (Strom et al., 2014). It
is also important to note that ES CNV tools have limitations due
to their inability to detect specific types of variations, for instance,
balanced structural variants (translocations and inversions),
mosaicism, and smaller CNVs (<50 bp). Although analyses
and technologies are improving to address these shortcomings,
it should be considered when implementing these tools. Whole-
genome sequencing and array-based techniques can be used to
identify these variations; however, this will incur additional costs.
Long-read sequencing has the ability to detect these structural
variations as well as SNVs, making it ideal to implement as a
single assay to replace all the above methods. At present, this
technology is too expensive to use as a first-tier test; however, as
costs decrease, this might be a possibility for future
consideration.

It is evident that a more diverse reference genome representing a
larger range of population groups is required to improve CNV calling
and classification. Improved diversity in population frequency
databases will also provide access to key data needed for the
clinical interpretation of CNVs. Although there is still limited data
and genetic services in most of Africa, making it difficult to translate
research into clinical healthcare services (Kamp et al., 2021), a current
and thorough analysis of the cost-benefit for ES would be beneficial
toward motivating the adoption of ES as a first-tier test in resource-
constrained environments. This review highlights the need for

FIGURE 2
Average diagnostic yield of exome SNVs and combined SNVs/CNVs from 1. Zhai et al. (2021), 2. Truty et al. (2019), 3. Pranav Chand et al. (2023),
4. Moosa et al. (2022), 5. Xiang et al. (2021), 6. Sheth et al. (2023), and 7. Dong et al. (2020).
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incorporating not only efficient but appropriate exome pipelines in
LMICs to further implement genomic medicine and make it more
attainable for all. A wider adoption of CNV calling from ES data and
use over time will allow for more opportunities to achieve this.
Reanalysis of data should be considered for patients without a
definite diagnosis as this has proven to increase diagnostic yield
(Liu et al., 2019; Schuermans et al., 2022). More CNV publications
and ClinVar submissions (Landrum et al., 2014; Landrum et al., 2016;
Landrum et al., 2017) from understudied populations will expand the
size and scope and improve the resolution of clinically relevant CNVs
in the public domain. Public data repositories like ClinVar and
DECIPHER (Bragin et al., 2014) have contributed to diversifying
data; however, more effective production and sharing of genomic
datasets are needed to advance genomic medicine globally. Recent
initiatives have been established to facilitate African data-sharing and
empower health experts by availing tools, training, and coordination
to strengthen laboratory and bioinformatic capacity (Mulder et al.,
2016; Mulder et al., 2018; Makoni, 2020; Lumaka et al., 2022).
International collaborations and training could be crucial to
resolve the true impact of CNVs and build strong core groups
with expertise, experience, and technical competence to
accurately report on CNVs in a diagnostic context within
LMICs. CNV calling from existing ES datasets from non-
European individuals may therefore be an important analysis
to invest in.
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