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Single-cell sequencing (SCS) technology is changing our understanding of cellular
components, functions, and interactions across organisms, because of its inherent
advantage of avoiding noise resulting from genotypic and phenotypic
heterogeneity across numerous samples. By directly and individually measuring
multiple molecular characteristics of thousands to millions of single cells, SCS
technology can characterize multiple cell types and uncover the mechanisms of
gene regulatory networks, the dynamics of transcription, and the functional state
of proteomic profiling. In this context, we conducted systematic research on SCS
techniques, including the fundamental concepts, procedural steps, and
applications of scDNA, scRNA, scATAC, scCITE, and scSNARE methods,
focusing on the unique clinical advantages of SCS, particularly in cancer
therapy. We have explored challenging but critical areas such as circulating
tumor cells (CTCs), lineage tracing, tumor heterogeneity, drug resistance, and
tumor immunotherapy. Despite challenges in managing and analyzing the large
amounts of data that result from SCS, this technique is expected to reveal new
horizons in cancer research. This review aims to emphasize the key role of SCS in
cancer research and promote the application of single-cell technologies to cancer
therapy.
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1 Introduction

A single cell is the fundamental unit of life activity. It is affected by interactions between
genetic mechanisms and the cellular environment to form complex structures such as tissues
and organs. The anatomical composition and a description of the interactions, dynamics,
and functions at single-cell resolution are essential for a full understanding of the biology of
almost all life phenomena, whether normal or diseased (Han et al., 2022).

Continued advances in high-throughput sequencing technologies are giving rise to new
genomics, epigenomics, transcriptomics, and proteomics technologies. Single-cell genomics
(SCG) can reveal cell genealogy relationships, transcriptomics will aid in replacing the crude
concept of marker-based cell types, and epigenomics and proteomics can analyze the
functional state of individual cells (Shapiro et al., 2013). The significance of single-cell
sequencing (SCS) analysis lies in providing a platform for inferring the cell types and
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functional status of their ancestors, shedding light on basic underlying
questions of biology and medicine. SCS is widely used to study
common human diseases, including metabolic, circulatory, chronic,
and infectious diseases, as well as clinically challenging neoplasms.

SCS has become an important tool for researchers to explore the
gene regulatory networks and cellular dynamics. This review
comprehensively analyzed analyzes the prominent experimental
results and emerging applications scenarios of SCS in recent
years, and outlines the development developing potential of
single-cell DNA sequencing (scDNA-seq), single-cell RNA
sequencing (scRNA-seq), single-cell assay for transposase
accessible chromatin by sequencing (scATAC-seq), single-cell
cellular indexing of transcriptomes and epitopes by sequencing
(scCITE-seq), single-cell single nucleus chromatin accessibility
and mRNA expression sequencing (scSNARE-seq) and data
analysis techniques. We summarize the clinical use of SCS in
different cell types and the challenges faced in the actual
operation process. We also focus on the application of SCS to
the detection of circulating tumor cells (CTCs), tumor

heterogeneity, drug resistance and immunotherapy, review its
status, and speculated on its future development.

2 Single cell sequencing technologies

2.1 Single-cell DNA sequencing (scDNA-seq)

scDNA-seq is a type of DNA high-throughput sequencing
technology that can perform massive parallel sequencing of
hundreds of thousands to millions of DNA molecules at a time.
In scDNA-seq, single cells are isolated and whole genomes of
individual cells are amplified, followed by high-throughput
sequencing to understand the biological functions of the genes in
a single cell (Han et al., 2022) (Figure 1).

Isolating single cells from environmental samples is the first and the
most principal procedure of SCS proceedings. Several single cell
isolation methods have been developed, including serial dilution,
micro-manipulation, optical tweezers, microfluidic and fluorescence

FIGURE 1
The flowchart of a typical single cell omic sequencing project. (A), Tissue dissection and preparation of single cell suspensions; (B), Single cell
isolation (More details about different isolation methods can be seen in Figure 2); (C), Three single-cell technologies (scDNA-seq, scRNA-seq and sc-
ATAC-seq) important gene information extraction. ScDNA-seq: DNA is extracted from individual cells using specific kits or techniques, followed by WGA
(whole genome amplification) to obtain all DNA sequence information; ScRNA-seq: RNA is extracted from individual cells using specific kits or
techniques, RNA is converted to cDNA using reverse transcriptase, and amplification is performed by PCR to obtain all the information of the
transcriptome; and sc-ATAC-seq uses the Tn5 transposase, capture chromatin open region, cut nuclear DNA to obtain nuclear DNA fragments, amplified
by PCR, obtain all chromatin open region nuclear genome information.; (D), Single cell sequencing by specific platform; (E), Data analysis.
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activated cell sorting (FACS). There are various methods for isolating
single cells for analysis. Serial dilution is commonly used, because of its
simplicity and inexpensiveness (Yilmaz and Singh, 2012); however, it is
time-consuming and laborious (Hwang et al., 2018). It is not sufficiently
automated and cannot separate a large number of cells at once. Micro-
manipulation is a classical method and is suitable for a small number of
cells, as well as visual evaluation (Grun and van Oudenaarden, 2015).
Nevertheless, the main drawbacks are that it is low throughput and
involves the shearing of cells and laborious work. Laser capture
dissection, also called optical tweezers, is useful for the isolation of
single cells from a complex matrix (Hwang et al., 2018). Combining
imaging-based cell selection with optical trapping, it can differentiate
cell types without external labeling by biochemical profiling (Saliba
et al., 2014). However, inaccurate probe-guided slicing may cause the
addition of impurities or the loss of important genes during the
dissection progress. Microfluidics has the benefits of low sample
consumption, low analysis cost, and precise control (Hwang et al.,

2018) (5). Microfluidic devices encapsulate a single cell together with a
single bead inside an oil droplet (Chambers et al., 2019). This process
provides a sealed environment for isolation, thus reducing the risk of
external contamination (Yilmaz and Singh, 2012). The most prominent
advantage ofmicrofluidics is that it is high throughput, capturing tens of
thousands of cells in a single pass (Chambers et al., 2019). It enables the
analysis of rare cell types in a sufficiently heterogeneous biological space
(Hwang et al., 2018). FACS is a high-throughput separation method
that sorts cells based on a variety of cell characteristics. Random samples
of cells can be purified (Grun and van Oudenaarden, 2015) with
unrestricted sorting gates. Fluorescently labeled antibodies are used
to isolate cells of interest using targeted cell-surface markers (Saliba
et al., 2014). Antibodies recognize specific surface markers and enable
sorting of distinct populations (Hwang et al., 2018). Thanks to its
efficient data visualization and low running costs, FACS has now
become the most widely used strategy for single-cell isolation (Saliba
et al., 2014) (Figure 2).

FIGURE 2
Comparison of the advantages and disadvantages of five main cell separation techniques.
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Next, to amplify the whole genome or region of interest, multiple
displacement amplification (MDA) has become the preferred
method for whole genome amplification (WGA) from single
cells. Marcy et al. (Marcy et al., 2007) developed a microfluidic
device that enables genomic analysis of microorganisms without the
need for culture. Dean et al. (Dean et al., 2001) described a simple
method for amplifying vector DNA by rolling circle amplification
with random primers and phi29 DNA polymerase. Nishikawa et al.
(Nishikawa et al., 2015) found that droplets generated by
microfluidics show potential as an effective tool for amplification
of low-input DNA for SCG, and proposed a new method termed
“droplet MDA”, in which isolated genomic fragments can be
amplified in these drops without encountering reagent-borne or
environmental contaminants.

The analysis of SCS data is difficult. The larger the scale of the
experiment and the higher the amount of underlying cells, the
greater the burden of data analysis. As the data of SCS continue
to increase, scientists are developing new algorithms to address this
issue. For example, the new tool SmashCell developed by Harrington
et al. (2010) automated genome assembly, gene prediction and
annotation of single-cell amplification genomes. Jensen et al.
(2009) used the STRING database to calculate single-copy
homologous groups and estimate genome integrity. SCS has
encountered serious technical challenges for generating complex
data output. In a recent article, the researchers outline the available
methods, discuss how to carry out experiments and integrate single-
cell data (Grun and van Oudenaarden, 2015). The increasing volume
of data from SCS studies also requires more powerful computational
capabilities. Computational algorithms that can handle large SCS
datasets are needed.

scDNA-seq is most widely used in the field of somatic mutation
analysis. scDNA-seq analyzes genetic variants and associated driver
and concomitant mutations in the stages of tumor initiation,
progression, and metastasis, contributing to the classification,
prognosis, targeted therapy, and drug resistance analysis of
tumor patients.

2.2 Single-cell RNA sequencing (scRNA-seq)

The transcriptome is an important tool for studying cellular
phenotype and function. The transcriptional process, which involves
synthesizing RNA using DNA as a template, represents the initial
step in gene expression and plays a key role in the regulation of gene
expression. The conversion of cellular RNA molecules into cDNA
using non-probe RNA-seq technology, followed by parallel
sequencing using next-generation sequencing technology
(Metzker, 2010), is increasingly becoming the preferred choice
for analysis. However, 1 cell contains only 1–10 pg of RNA. The
capture of small amounts of RNA molecules for the preparation of
cDNA and the amplification of these cDNA molecules in large
quantities are hardly equal or efficient (Figure 1).

In 1990, Norman Iscove’s group accomplished exponential
amplification of cDNA molecules using the polymerase chain
reaction (PCR), demonstrating for the first time that
transcriptome analysis of single cells was feasible. In the early
1990s, Eberwine et al. (1992) invented a new technique to obtain
cDNAs from individual living neuronal cells, and then used these

cDNAs as templates for transcription to generate RNAs, enabling
linear amplification of RNAs. High-throughput RNA sequencing
technology (second-generation sequencing) (Weiss et al., 2013) was
developed in 2008, and then researchers combined high-throughput
sequencing technology with the previously developed nucleic acid
amplification technologies to study the single-cell transcriptome in
more detail (McCombie et al., 2019). The first single-cell RNA
amplification method combined with second-generation sequencing
appeared in 2009, namely, Tang’s method (Tang et al., 2009). Tang
found that the expression of thousands more genes could be detected
by using single-cell transcriptome technology compared to
microarray technology (Tang et al., 2009). Since then, many
novel techniques have been developed to provide more
information with higher repeatability and sensitivity. Quartz-Seq
is actually an optimization of Tang’s method that simplifies the
experimental process and further reduces amplification by-product
generation (Sasagawa et al., 2017). Single-cell Quartz-Seq reveals
fluctuations in global gene expression in an individual cell type at the
same cell cycle stage. Through barcoding and pooling samples, Cell
expression by linear amplification and sequencing (CEL-seq) was
developed to overcome the limitation of small starting amounts of
RNA with the use of one round of in vitro transcription
(Hashimshony et al., 2012). Switching mechanism at 5′ end of
the RNA transcript sequencing (smart-seq) is a landmark
technology developed in 2012 by scientists from the
United States and Sweden (Ramskold et al., 2012). Smart-seq and
smart-seq2 (Picelli et al., 2014) are based on switching mechanism at
5′ end of RNA template technology (SMART) for amplification and
sequencing target RNAs, and there are already more mature
commercialized kits that have been widely used.

With the deepening and refinement of applications in scRNA-
seq (Zheng et al., 2017), sequencing a few cells no longer meets the
requirements of scientific research. It is necessary to simultaneously
sequence thousands or even tens of cells at one time to analyze the
differences in gene expression between cells. Therefore, there is in
urgent need to develop large-scale and low-cost SCS methods. Thus,
two teams at Harvard University combined microfluidics with
scRNA-seq to develop Drop-seq (Macosko et al., 2015) and
inDROP (Klein et al., 2015), respectively. Both technologies
utilize a microfluidic device to generate droplets that flow along a
very fine channel which encapsulates microbeads with barcodes into
the droplets along with the cells, enabling reverse transcription-
amplification library building in the droplets while each barcode is
attached to a gene in each cell, thus allowing all genes to be
determined at once and tracing the cell of origin of each gene.
The advent of these technologies has made it possible to analyze the
gene activity of thousands of single cells quickly and inexpensively.

A high-throughput single-cell RNA sequencing method was
established by a team from the Zhongshan Ophthalmic Center of
Sun Yat-sen University through multiple RNA links to analyze the
limbal tissue cells of cynomolgus monkeys (Shi et al., 2023). This
breakthrough has raised the throughput capability of single-cell full-
length RNA sequencing to a new level, whilemaintaining the sequencing
accuracy. These results demonstrate the ability of scRNA-seq to
comprehensively analyze the RNA isoforms of different cell types in
human tissues, leading to a deeper understanding of the pathogenesis of
diseases and potential therapeutic targets, and providing new directions
for novel drug development.
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2.3 Single-cell assay for transposase
accessible chromatin by sequencing
(scATAC-seq)

Single-cell assay for transposase accessible chromatin sequencing
(scATAC-seq) is a tool for simultaneous profiling of accessible
chromatin and protein levels, based on 10× Genomics Chromium™
dynamic microfluidic technology and using Tn5 transposase to cut
open chromatin and form short fragments (Mimitou et al., 2021). The
accessibility of chromatin is closely associated with transcriptional
regulation (Buenrostro et al., 2015). Now, scATAC-seq is gradually
entering the field of single-cell omics research with the advancement of
the technology and its application value (Figure 1).

Innate lymphoid cells (ILCs) have been found to receive signals
from other cells in the tissue microenvironment and play a vital
immune role on the mucosal surface. Bielecki et al. (2021) confirmed
the potential of skin ILCs to switch between natural, resting, and
ILC2 effector states after disease induction through in vitro
experiments, scATAC-seq, and in vivo fate mapping, contributing
to a better understanding of the pathological process of skin
inflammation in psoriasis caused by ILC responses to different
signals that are generated. scATAC-seq analysis can be also used
to draw the single-cell epigenome and a transcriptional map of
influenza vaccine immunization (Wimmers et al., 2021).

scATAC-seq can explore homeopathic regulatory sequences and
gene expression regulation by detecting the openness of chromatin.
Combining with single cell transcriptome sequencing, it can detect
the gene regulatory network (Buenrostro et al., 2015; Cusanovich
et al., 2015), potential chromatin structure and key transcription
factors of each cell type (Cusanovich et al., 2018). For example,
scATAC-seq combined with scRNA-seq analysis is used to study the
regulation of hematopoiesis during human development
(Buenrostro et al., 2018), explore heterogeneity of breast cancer
(Pervolarakis et al., 2020), investigate the underlying gene regulatory
networks and epigenetic changes that drive cell fate transitions
during early heart development (Jia et al., 2018).

In summary, scATAC-seq technology is becoming increasingly
prevalent in the study of tumors (Pervolarakis et al., 2020),
embryonic development (Wu et al., 2018), and immune diseases
(Satpathy et al., 2019). This technology will provide scientists with a
robust technical tool for understanding the dynamic changes in
chromatin during different life processes, the downstream
regulation of gene transcription and other related aspects.

2.4 Single-cell cellular indexing of
transcriptomes and epitopes by sequencing
(scCITE-seq)

High-throughput scRNA-seq has revolutionized our
comprehension of intricate cell populations, however, it falls
short in offering phenotypic insights such as cellular surface
protein expression. scCITE-seq is a method that combines highly
multiplexed protein marker detection with unbiased transcriptome
profiling for thousands of single cells (Stoeckius et al., 2017). It
enables simultaneous access to cellular gene expression data and
surface protein marker information, thereby affording a more
comprehensive description of cellular phenotypic properties.

Unlike traditional scRNA-seq, scCITE-seq requires surface
protein labeling of cells before processing. Afterwards, the cDNA
library and “surface protein” library formed by mRNA reverse
transcription were constructed through PCR amplification. The
two constructed libraries can be subjected to high-throughput
sequencing for data analysis. scCITE-seq data includes protein
and transcriptome information, which can link the immune
phenotype of cells with gene expression, and annotate cell
subpopulations or rare cell types more accurately.

By establishing a mutant mouse, Nathan Salomonis’ team
(Muench et al., 2020) combined scCITE-seq and scATAC-seq
techniques to analyze the pathogenic mechanism of severe
congenital neutropenia in children caused by GFI1 mutation. The
author further explored the surface protein expression levels in
various cell subpopulations from the sequencing results of scCITE-
seq, and validated the chromatin defects and a series of molecular
dysfunctions caused by GFI1 mutations. In the future, the utilization
of scCITE-seq analysis on tumor specimens is expected to detect
tumor cells and various infiltrating immune cell populations in the
tumor microenvironment (Stoeckius et al., 2017).

scCITE-seq is believed to be highly advantageous in the
profound characterization of tumor heterogeneity and the
development of novel therapeutic modalities. Wu et al. (2021)
introduced a single-cell method known as SCS subtype to
identify innate subtypes, thus shedding light on the heterogeneity
of recurrent tumor cells in breast cancer. The immunophenotypic
analysis by scCITE-seq produces high-resolution immunoprofiles,
including the identification of novel PD-L1/PD-L2+ macrophage
populations associated with clinical outcomes. The spatial
arrangement of the stromal immune microenvironment within
tumors offers valuable insights into anti-tumor immune
regulation (Stoeckius et al., 2017).

2.5 Single-cell single nucleus chromatin
accessibility and mRNA expression
sequencing (scSNARE-seq)

scSNARE-seq refers to single nucleus chromatin accessibility
and mRNA expression sequencing (Chen et al., 2019). The main
feature of scSNARE-seq is the ability to perform large-scale SCS
combining nuclear chromatin accessibility and mRNA expression.

The fundamental approach involves the use of Tn5 transposase
to capture chromatin accessibility within the permeable nucleus
before droplet formation. This facilitates the co-packaging of
accessible genomic regions and mRNA from individual nuclei
within the same droplet. Simultaneously, a “sandwich
oligonucleotide” has been devised, which complements the linker
sequence introduced at the 5′ end of the transposon and concludes
with poly-A, allowing for its capture by beads carrying poly-T.
Subsequently, the encapsulated mRNA and fragmented genomic
DNA are liberated by heating the droplets, and a library is
constructed for subsequent sequencing.

Chen et al. (2019) also mapped brain samples of newborn and
adult mice by scSNARE-seq. By cluster analysis, they delineated at
least 20 distinct cell types within a pool of 16,000 brain cells. Notably,
scSNARE-seq, in contrast to the existing scATAC-seq method,
concurrently integrates transcriptomic data from each cell,
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enabling a more precise cell type identification. The data generated by
SNARE-seq exhibit enhanced quality and illuminate tissue complexity
by analyzing the input and output of transcriptional regulatory units.
The approach offers comprehensive and distinctive sequencing
advantages, including heightened sensitivity, specificity, resolution,
increased measurement throughput, and ease of implementation.
These properties have a profound significance in creating single-
cell maps for various human organ systems and advancing clinical
research on diseases.

2.6 Translational of single cell technologies
to cancer studies

SCS analysis distinguishes between functionally healthy cells
and cancer cells at different stages of tumor development. The
application of SCS in large-scale cancer research can be
categorized into three key areas. First, perform comprehensive
omics-level SCS on tumor tissues with the selection of
appropriate omics sequencing methods according to the research
objectives (Zhou et al., 2020). Next, analyze the constituents of cells
based on omics sequencing data (Gong et al., 2021). For tumor cells,
we should pay attention to heterogeneity, while for immune cells, we
should focus on cell subtypes and states, leading to the establishment
of tumor-related indicators or characteristics (Zhou et al., 2021).
Finally, select a suitable dataset with tumor therapy strategies for
further clinical validation in terms of treatment selection, treatment
monitoring and response, survival prognosis, and other aspects. By
adopting the multifaceted approach, SCS technology enhances our
ability to decipher the complexities of cancer biology and provides
valuable insights for more effective cancer diagnosis and treatment.

3 Data analysis technologies

SCS data constitutes a high-dimensional and intricate dataset.
To efficiently process and analyze single-cell sequencing data,
particularly for cell subtype identification, it is often necessary to
commence with dimensionality reduction (Malepathirana et al.,
2022). Dimensionality reduction aims to optimize high-
dimensional data by preserving critical features from the original
dataset and projecting them into a lower-dimensional space, thereby
facilitating data representation in a two-dimensional or three-
dimensional format. Common dimensionality reduction methods
include principal component analysis (PCA) (Jolliffe and Cadima,
2016; Ben Salem and Ben Abdelaziz, 2021), t-distributed stochastic
neighbor embedding (t-SNE) (Kobak and Berens, 2019), uniform
manifest approximation and projection (UMAP) (Becht et al., 2018),
and scvis (Ding et al., 2018). PCA is a linear dimensionality
reduction method that converts high-dimensional data into low-
dimensional representations through linear transformation,
preserving the maximum variance. While t-SNE is a nonlinear
dimensionality reduction method that maps high-dimensional
data to low-dimensional space by optimizing the similarity
between samples, preserving the local structure between samples
(Zhou and Sharpee, 2022).

Clustering aims to group similar cell categories together (Gao,
2018). In the dimensionality reduction clustering map of SCS

analysis, the gene expression of each cell is displayed on a two-
dimensional plane, and cells that share similar gene expression
patterns are clustered together. For each identified cell cluster, we
can pinpoint the cluster-specific marker genes expressed within it
using differential gene analysis, aiding subsequent cell type
annotation. Typically, differential genes between a cluster and all
other clusters are used as markers for that cluster. After identifying
cell clusters and their associated marker genes, the next step is to
determine the cell types of these clusters, a process known as cell
type annotation. A cell cluster can be classified as the corresponding
cell type if its marker genes coincide with those of a cell type. This
annotation step is important in single-cell analysis, and various cell
automated annotation tools such as single recognition or single-cell
cluster-based annotation toolkit for cellular heterogeneity
(scCATCH), which can aid in cell type assignment (Brent, 2008).
To enhance annotation accuracy, single-cell public databases (e.g.,
CellMarker, PangLaoDB, CancerSCEM, SingleCellPortal, etc.) can
be consulted to access reference datasets or known cell type markers,
allowing for improvements in annotation quality.

To accurately elucidate the functional bias and biological significance
of specific cell populations, it becomes crucial to perform functional
enrichment analysis on the target set of differentially expressed genes,
which is known as differential expression analysis (Anders and Huber,
2010). Several other important aspects deserve further attention and
exploration in the field of SCS analysis. These include the synergistic
application of scRNA-seq and clustered regularly interspaced short
palindromic repeats (CRISPR) screening (Ji et al., 2020), as well as
the comprehensive analysis of scRNA-seq data alongside multi-omics
approaches, encompassing single-cell methylation and transcriptome
sequencing (scMT-seq) (Hu et al., 2016) and spatial transcriptomics.
In the field of SCS research, analytical algorithms and tools still possess
substantial potential to enhance data exploration and our understanding
of cell functionality.

4 Applications of SCS

4.1 Cell-type-specific SCS

Intercellular variability and heterogeneity are essential and
intrinsic features of cell populations. Even a “pure” cell type will
have heterogeneous gene expression from the same genetic
structure. In addition, gene expression may change during the
cell cycle and can be affected by randomness within the gene
expression system and external microenvironments (Junker and
van Oudenaarden, 2014). However, when large numbers of cells are
used for genome-wide analysis, the apparent heterogeneity between
cells masks the heterogeneity within a “pure” cell. SCS technologies
emerged as a result. The obvious advantage is that these technologies
allow the profiling of single-cell heterogeneity in a comprehensive
and unbiased way without prior whole-cell population sequencing
(Wen and Tang, 2016). The application of these methods in different
types of cells has led to exciting new discoveries. More details and the
significance of SCS in diverse cell types are discussed in this section.

4.1.1 Stem cells
The application of SCS in stem cells can help reconstruct the

core gene regulatory network within each cell during differentiation
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and establish causal relationships between genotype and phenotype,
while also providing a comprehensive understanding of the
complexity of gene regulatory networks under physiological and
pathological conditions, offering new insights into the biological
basis of human development and disease (Wen and Tang, 2016).

4.1.1.1 Small intestinal stem cells
A research team led by Alex and Wrana (Ayyaz et al., 2019) has

identified a unique class of stem cells which activated after injury to
the small intestine to maintain homeostasis of the stem cell pool and
promote regeneration of the small intestinal epithelium. scRNA-seq
made it possible to analyze the regenerating mouse intestine and
identify a unique, injury-induced quiescent cell type which termed
regenerative stem cells (revSCs).

4.1.1.2 Hematopoietic stem cells
Dong et al. (2020) tracked the differentiation process of

transplanted hematopoietic stem cells in the host using scRNA-
seq. Through tracking the dynamics, the absence of significant
hematopoietic stem cell expansion during the first week post-
transplantation was found, revealing that hematopoietic stem
cells transplanted in myeloablative recipients at an early stage
were not available for kinetics and fate selection.

4.1.1.3 Embryonic stem cells
scRNA-seq analysis of human preimplantation embryos and

human embryonic stem cells (hESCs) constructs an integrated
framework for the transcriptome view. Klein et al. (2015)
revealed the population structure and differentiation
heterogeneity without leukemia inhibitory factor (LIF) by
performing scRNA-seq on mouse embryonic stem cells (ESCs).
Budnik’s team also did similar study to quantify the
heterogeneity and dynamic changes in protein expression at the
single cell level in mouse ESCs during differentiation (Budnik et al.,
2018). The difference between two studies is the former applies
scRNA-seq while the latter applies single cell proteome analysis. The
second study defined cell types and inferred potential relationships
between cell types and specific protein abundance. Comparative
analysis between single-cell proteomes and transcriptomes has
shown that covariation exists between mRNA and protein levels,
and that many genes can play a synergistic regulatory role at both
mRNA and protein levels.

4.1.2 Primary and metastatic tumor cells
The detection of oncogenes and tumor suppressor genes in tumor

cells by SCS can determine whether a tumor has metastasized,
providing important perspectives on the differentiation and
diagnosis of primary and metastatic tumors and helping to
determine different treatment strategies (Ohgami et al., 2015). In
addition, scRNA-seq profiles of individual cancer patients have shown
that intercellular adhesion molecules, tumor neovascularization, and
extracellular matrix adhesion and degradation (Eble and Niland,
2019) are closely related to tumor metastasis.

There are significant differences between primary and metastatic
tumors in terms of their tumor heterogeneity, drug resistance, and tumor
microenvironment. Components of the tumor microenvironment, such
as tumor-associated macrophages (TAM), play an important role in
promoting tumor metastasis (Fu et al., 2020). SCS technology can be

used to examine the relationships between tumor metastasis and tumor
heterogeneity, tumor drug resistance, and the tumormicroenvironment,
thus helping to differentiate and diagnose primary and metastatic
tumors and to suggest new treatment strategies accordingly. A
colorectal cancer study (Okamoto et al., 2021) used SCS to determine
the cell composition of tumors in patients with primary and metastatic
colorectal cancer, indicating the cellular heterogeneity of metastatic
tumors and primary tumors. Additionally, SCS has been used in
breast cancer for the study of transcriptional heterogeneity in
primary and metastatic tumors, providing a therapeutic target for
preventing the metastasis and spread of breast cancer (Davis et al.,
2020). SCS can accurately detect heterogeneous dynamic changes among
tumor cells at different times and in different spatial locations. Pan et al.
(2020) used SCS to analyze cancer stem cells of a pair of primary and
metastatic collecting duct renal cell carcinomas, and found that cancer
stem cells can transform into primary and metastatic collecting duct
renal cells in a spatiotemporal manner.

In conclusion, the results above suggest that SCS can identify
potentially critical factors in tumorigenesis and metastasis at the
single-cell level to guide the development of precise treatment
regimens and to track the lineage of metastatic cells.

4.1.3 Circulating tumor cells (CTCs)
Circulating tumor cells (CTCs) refer to tumor cells that can

penetrate the basement membrane, invade the surrounding tissues
and enter the peripheral circulating blood (Paoletti and Hayes,
2016). They are then transmitted to distal tissues, and exude,
adapt to the new microenvironment, finally “seed”, proliferate,
and form metastatic tumor. Therefore, early detection of CTCs in
blood is an important guide for prognosis, efficacy evaluation and
individualized treatment of patients (Zhu et al., 2018). Circulating
tumor DNA (ctDNA) is a cell-free extracellular DNA found in body
fluids such as blood, synovial fluid and cerebrospinal fluid (Lin et al.,
2021). It is mainly composed of single- or double-stranded DNA or
mixtures of both, and exists either as a DNA-protein complex or as
free DNA. ctDNA is derived from shedding tumor cells or apoptotic
cells which are released into the circulatory system. Chae and Oh
(2019) showed that ctDNA can be used to detect the presence of
microscopic residual disease (MRD) after surgical resection of
several cancers, and that MRD will help to identify patients at
risk of recurrence and thus guide treatment decisions for resettable
cancers.

CTCs are present in peripheral blood in different forms, both as
free individual CTCs and as aggregated cell clusters (Amintas et al.,
2020), known as circulating tumor microemboli (CTM). Tumor
cells undergo epithelial mesenchymal transition (EMT) (Jie et al.,
2022) during their entry into peripheral circulation, resulting in
different types of CTC, including those with an epithelial phenotype,
those with a mesenchymal phenotype, and those with a mixed
epithelial and mesenchymal phenotype. During EMT, the
expression of epithelial markers such as E-cadherin, EpCAM, and
cytokeratins decreases, while the expression of mesenchymal
markers such as N-cadherin, vimentin, and fibronectin increases.
CTM and mesenchymal phenotype CTCs have a higher metastatic
potential (Umer et al., 2018), and CTC testing may help to monitor
tumor dynamics and assess the treatment efficacy and risk of
recurrence in real time by capturing the CTCs in peripheral
blood and monitoring trends in the CTC type and number, also
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known as “liquid biopsy” (Figure 3). Findings in breast and colon
cancers have attached great importance to the discovery of markers
that can capture CTCs independently of their EMT status. Vimentin
may be a suitable candidate biomarker to detect and isolate CTCs.

Liquid biopsy targeting CTCs is one of the most important
breakthroughs in precision medicine. The presence or absence of
CTCs in the patient’s blood, and their quantity, represent both the
ability of the primary tumor to infiltrate into the blood vessels and
the possibility of metastases forming in distant organs. Therefore,
detecting and counting the number of CTCs can indicate the degree
of malignancy of the tumor and the risk of metastasis, which has
important diagnostic and prognostic value.

Wankhede et al. (2022) evaluated the overall survival and
disease-free survival of CTC-positive and negative patients with
early-stage non-small cell lung cancer (NSCLC) respectively by
meta-analysis, and showed that CTC-positive patients have a
higher risk of recurrence, which can help to guide treatment by
stratifying the survival outcome of early-stage NSCLC patients in
future clinical applications. He et al. (2017) used the New
CellCollector to capture CTCs from blood in patients with lung
nodules, healthy volunteers and lung cancer, then used low-dose

computed tomography (LDCT) combined with CTC analysis to
screen for lung cancer, and performed NGS analysis through WGA.
The results showed that CTC were positive in the lung cancer group,
while no “CTC-like” events were detected in the healthy group. This
suggests that CTC combined with high-throughput sequencing will
be a promising method to screen for early-stage lung cancer and has
great application prospects in precision medicine. CTC analysis with
SCS may contribute to understand the mechanism of mutation in
tumor metastasis. Lohr et al. (2014) performed SCS of CTCs,
primary tumors, and metastatic lymph nodes from prostate
cancer patients, and detected CTC exon mutations in early-stage
and stem-cell mutated tumor samples. As mentioned previously,
CTC clusters, consisting of aggregated CTCs, have a greater
possibility of metastasis compared with individual CTCs (Umer
et al., 2018), and metastasis is an important biological feature of
advanced malignant tumors. This was further confirmed by Pineiro
et al. (2020), who studied the role and metastatic potential of CTC
clusters using breast cancer as an example. Additionally, Herath
et al. (2020) emphasized the importance of comprehensive
characterization of CTC clusters, as heterotypic clusters can
provide a mechanism for immune evasion. This study provides a

FIGURE 3
Application of SCS in CTCs (A) The formation of CTCs and CTCs analysis; (B) Circulating tumor cells as a material for liquid biopsy.
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detailed understanding of the cellular interactions within clusters
and helps to guide the development of approaches to reduce CTC
cluster metastasis. CTCs can reveal genetic information about the
tumor origin more accurately than information obtained from
individual diagnostic biopsies. Pancreatic cancer is known as the
“king of cancers” because of its high malignancy, late onset, and a 5-
year survival rate of less than 5%. There is no clear tumor marker for
screening and detection of early cases, but CTCs are an emerging
biomarker that could assist the early diagnosis and staging of
pancreatic cancer (DiPardo et al., 2018).

However, CTCs are a heterogeneous population that may differ
from one another in terms of various factors, including cell size and
morphology, molecular phenotype, degree of activity, metastatic
potential, and proliferative potential. CTCs may exist as single cells
or may aggregate with one another or with blood-derived cells to
form tiny multicellular aggregates. SCS of CTCs avoids the
interference of tumor heterogeneity by comparing the differences
between the single-cell genomes, transcriptomes, and the epigenetic
group of the primary and metastatic tumors, providing a new
dimension to the understanding of cancer biology. CTC analysis
can also explore more detailed information at the genetic level,
further explore the tumor microenvironment and immune escape-
related mechanisms, and guide new directions in anti-tumor drug
development (Xu et al., 2021).

Reza et al. (2021) used a simple microfluidic device to screen
individual CTCs in a dynamic state to obtain an accurate atlas of the
heterogeneous expression of various protein biomarkers in therapy.
This automated assay can help to monitor the malignant biological
behavior of tumors and provides an important window into
understanding tumor heterogeneity. Thiele et al. (2019) use a
single-cell proteogenomic approach combined with a high-
definition SCS workflow to investigate CTC heterogeneity and
understand their full potential in the study of tumors. Single-cell
proteomic analysis of CTCs provides critical protein-level data,
which can give key information such as the malignancy of the
tumor tissue and the activation status of signaling pathways,
allowing for more precise treatment planning. Miyamoto and
colleagues (Miyamoto et al., 2015) identified the expression of
androgen receptor (AR) gene mutations and splice variants in
circulating prostate tumor cells by scRNA-seq, further
demonstrating that single-cell analysis of CTC can reveal tumor
genetic heterogeneity, and that this heterogeneity is a cause of
treatment failure. However, most current CTC analyses are based
on CTC epithelial biomarkers, which may not be expressed in some
tumor types. They have not been analyzed at the genomic level, so
individual CTC profiles or patient genomic profiles are lacking. Lim
et al. (2019) investigated the feasibility of analyzing longitudinal
samples for mechanisms associated with acquired therapeutic
resistance by genomic analysis of the whole genome/exome of
CTCs, performing WGA and quality control of the amplified
DNA products prior to sequencing. Thus, SCS is predicted to
allow the development of personalized tumor treatment plans for
cancer patients in future.

In conclusion, the specific application scenarios of CTC testing
in clinical settings include early screening of high-risk groups,
accurate staging of confirmed patients, post-operative monitoring
of recurrence and metastasis in early-stage patients, prognosis
determination before the start of treatment and efficacy

evaluation after each cycle of treatment in advanced patients, and
real-time analysis of molecular targets to predict the efficacy of
relevant drugs, providing important assistance for the whole process
of patient management. We should be cautiously optimistic about
the clinical application of CTCs, and it is expected that this will help
medical treatment in the field of oncology to take radical steps in the
future.

4.2 Lineage tracing

The combination of scRNA-seq and cell lineage tracing analysis
provides a better understanding of the origin of cell populations and
their biological functions, leading to the development of more
targeted and personalized drugs. Wagner and Klein (2020) used
SCS methods to comprehensively document the alterations of cell
states and lineage information during organ development, providing
insight into the molecular mechanisms involved in genealogical
development. This may be helpful to provide clues to explore the
origins of cancer. Kumar et al. (2022) established a single-cell
profiles of the genealogical status of gastric cancer by orthogonal
validation of spatial transcriptomics, independent bulk RNA-seq
cohorts. They identified 34 different cell lineage states, including
new rare cell populations. Many of the genealogical states showed
distinct cancer-related expression profiles, and the results of this
study provide a high-resolution molecular resource for genealogical
states within and between patients with different gastric cancer (GC)
subtypes. Once a cell lineage has been established, understanding the
structure and function of a cell at the single-cell level can be used to
trace the lineage of cells from which it came, providing important
information about its ancestral cells.

The application of scRNA-seq offers the possibility to
understand the fundamental mechanisms of organism evolution
trajectory and help investigate the genesis of diseases. Paik et al.
(2020) showed the full implications of single-cell transcriptome
sequencing using cardiovascular cells as an example: detecting
rare cell populations, constructing lineage trajectories, identifying
intercellular interactions. Fu et al. (2019) compared the gene
expression in an individual kidney glomerular cells of diabetic
and normal mouse using scRNA-seq. Dynamic changes in the
pattern of expressed genes showing that vital factors underlying
the pathophysiology of diabetic kidney disease progression and
provide potential new therapeutic approaches. Kim et al. (2020)
featured 208,506 cells based on the single-cell transcriptome profile
of metastatic lung adenocarcinoma and identified subtypes of cancer
cell that deviated from the normal differentiation trajectory and
dominated the metastatic stage.

4.3 Tumor heterogeneity and drug
resistance

Frede et al. (2021) found that different transcriptional states
coexist in individual cancer cells and the use of differential
transcriptional regulation and enhancer reassociation are the basis
of these alternative transcriptional states by using scRNA-seq and
scATAC-seq in multiple myeloma. More importantly, the treatment
generated a unique immunotherapeutic target, such as CXCR4, that
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could be used to overcome treatment resistance. Thus, this study using
SCS as an analytical tool depicts how cellular plasticity can be
translated into drug-resistant immuno-oncology treatment
opportunities. Chambers et al. (2019) studied non-malignant lung
diseases with aberrant cell differentiation and heterogeneous
microenvironment by combining heterogeneity analysis and cell
lineage tracing with scRNA-seq. Accurate resolution of clones,
which has important implications for providing information about
changes in gene expression and insight into the peritumor
microenvironment and inflammatory cellular environment, and
may inform drug sensitivity or resistance. Under the pressure of
chemotherapeutic agents and targeted drugs, spontaneous mutations
cause a fraction of tumor cells to acquire drug resistance. Therefore,
proteomic analysis of tumor cells at the single-cell level can more
accurately establish the relationship between gene mutations and
protein expression and thus infer different mechanisms of drug
resistance, providing theoretical support for subsequent drug
dosing and the development of novel anticancer drugs (Figure 4).

The future drug screening models will certainly tend to observe
the efficacy and toxicity of drug candidates on different types of cells
with different functions, and the most ideal cell source should be
human primary cells. Single-cell proteomics analysis breaks the
bottleneck of sample size and is well suited for high-throughput
drug screening on primary cells to clarify the mechanism of drug
action and potential toxicity, and to improve the success rate of drug
development (Kelly, 2020).

4.4 Tumor immunotherapy

Immune cells are highly differentiated in cell type and function and
maintain immune homeostasis in vivo by finely regulating each other.
Conventional sequencing methods mask the characteristics of individual
cells, so SCS analysis of a single type of immune cell is essential to reveal
the mechanisms of immune-related diseases and to contribute to the
development of more effective individualized treatment protocols to
guide clinical care and predict prognosis (Liu et al., 2022).

Lin’s team (Yang et al., 2023) from the Chinese Academy of
Medical Sciences used scRNA-seq to collect the functional role of

apolipoprotein B mRNA editing enzyme catalytic polypeptide
(APOBEC) mutagenesis in 169 patients with esophageal squamous
cell carcinoma (ESCC), and evaluated the characteristics of cancer cell
immune infiltration and found that APOBEC mutagenesis can
prolong the overall survival of ESCC patients, which may show
greast potential in prognostic value for immunotherapy.

The collection of sequence diversity is called the immune repertoire
(IR), and single-cell immune repertoire sequencing (scIR-seq) has
recently been developed. Using high-throughput sequencing, a large
number of single-cell gene expression profiles and immunomic library
data can be obtained in parallel, enabling simultaneous high-
throughput sequencing of gene transcripts and immunomic libraries
at a single-cell resolution (Tian et al., 2022). Zheng et al. (2021) Zheng
et al. (2021) systematically analyzed the heterogeneity and dynamics of
tumor-infiltrating T cells in different cancer types, resulting in the
construction of a scRNA-seq profile of T-cell composition in different
cancer types. Cancer patients can be classified based on the T-cell
composition, which is expected to provide new insights for precise
immunotherapy targeting T cells. Wang et al. (2020) performed a
comprehensive immune analysis of infants with biliary atresia (BA) by
scRNA-seq, which showed that B-cell modification therapy alleviated
liver pathology. Novel approaches linking antigen specificity to
transcriptional dynamics by integrating T-cell receptor (TCR)
tracking, scRNA-seq, TCR gene pools, and gene expression profiles
from the same cells hold the promise of characterizing the specific
clonality of immune cell subpopulations (De Simone et al., 2018).

Azizi et al. (2018) used scRNA-seq to analyze the immune cells of
breast cancer patients, and found that the immune cells in the tumor
microenvironmen (TME) have an increased “phenotypic volume”
compared with immune cells in non-malignant breast tissues,
indicating increased levels of phenotypic heterogeneity. In addition,
another study conducted deep scRNA-seq on 12,346 T cells from
14 patients with NSCLC, describing the composition, evolution
trajectory and functional status of tumor-infiltrating lymphocytes
(TILs), results showed that based on CD8+ T cell phenotypes, cells
which exhibited pre-existing state changes prior to exhausting had a
better prognosis than those that exhausted directly (Guo et al., 2018).
To investigate the molecular mechanism of B cell acute lymphoblastic
leukemia (B-ALL) recurrence, Witkowski et al. (2020) demonstrated

FIGURE 4
Application of SCS in drug resistance.
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the remodeling of the B-ALL bone marrow immune
microenvironment at disease onset, revealing the role of non-
classical monocytes in B-ALL survival by SCS. Notably, Wilk et al.
(2020) analyzed peripheral blood single nuclei cells from seven
critically ill patients hospitalized for COVID-19 and constructed a
cytogram of the peripheral immune response in these patients, which
provided input for the invention of a new crown vaccine by SCS.

We have begun to gain a deeper understanding of immunotherapy,
alongside the remarkable effects of anti-cytotoxic T lymphocyte-
associated antigen-4 (CTLA-4) antibodies, anti-programmed death-1.

(PD-1)/programmed cell death-ligand 1(PD-L1) antibodies, and
chimeric antigen receptor (CAR)-T cell therapies that include negative
regulation of the body’s immune function in clinical cancer treatment.
Schmidt et al. (2022) combined CRISPR screening and scRNA-seq to
perform an in-depthmolecular characterization of T cells in screening
hits and uncovered the mechanisms regulating T-cell activation and
the cellular states characterized by different cytokine expression
profiles. This will likely inform the design of immunotherapies. In
addition, a comprehensive understanding of the protein expression
status of various types of TILs can greatly facilitate the design and
development of next-generation tumor immune drugs. Lowery et al.
(2022) localized 55 neoantigen-specific TCR clonotypes from ten
metastatic human tumors to their single-cell transcriptome and
identified CD8+ and CD4+ neoantigen-responsive TILs. Single-cell
transcriptomics for immunotherapy studies allowed successful
prediction of TCRs for cancer immunotherapy based solely on the
TIL transcriptome status, opening a broader scope for the application
of SCS technology. The transcriptomes of 17,000 cells from 18 primary
or early recurrent hepatocellular carcinoma (HCC) cases were
analyzed by Sun et al. (2021), and a decrease in regulatory T cells
and an increase in dendritic and CD8+ T cells were observed in early
relapsed HCC.

This provides more insight into the comprehensive description
of the HCC ecosystem and directly reflects the significance and
promise of SCS technology for innovative research in HCC: sc-
RNA-seq reveals a unique immune ecosystem in early relapsed
HCC. Intending to focus more on intratumoral immune
heterogeneity, Zheng et al. (2020) obtained surface marker
profiles of immune cells from T (HCC)/L (frontier)/N (non-tumor)

samples from HCC patients and identified different L-region-specific
immune cell profiles. Their data suggest a potential anti-tumor activity
of double-positive T cells in HCC patients. Krieg et al. (2018) analyzed
and compared immune cell subsets in the peripheral blood of
melanoma patients before and after 12 weeks of anti-PD-
1 immunotherapy using high-dimensional SCS and a bioinformatics
pipeline. A significant response of T-cell blocks to immunotherapy was
observed. Another study confirmed the presence of gene-expression
signatures of three myoblastic cancer-associated fibroblasts (CAF)
subpopulations at diagnosis is associated with resistance to anti-PD-
1 antibiotics by single-cell analysis (Kieffer et al., 2020).

Cell therapy, represented by CAR-T cells, has made rapid
developments in recent years, but there is still a lack of effective
methods to analyze CAR-T cells after they enter the tumor
microenvironment. Single-cell proteomics analysis cannot only obtain
the activation status of CAR-T cells, but also determine the trend of CAR-
T proteome changes at different time points, which can assist drug
development scientists in the design and optimization of chimeric antigen
receptors (CARs) (Bai et al., 2021). Xue et al. (2017) performed SCS of
CD19 CAR-T pre-infusion products prepared from four healthy donors
to assess the functional characteristics of CD19CAR-T cells after antigen-
specific stimulation. Single CAR-T cells exhibited significant cytokine
secretion heterogeneity and a multifunctional (2+ cytokine)
subpopulation that counteracted CAR bead stimulation. Therefore,
multiple proteomic analyses revealed the diversity of responses of
CD19 CAR-T cells to immune effectors, providing a new platform for
obtaining detailed CAR-T cell data, and potentially providing an
assessment of the safety and effectiveness of CAR-T cell therapy.

In summary, with the rapid development of molecular biology,
molecular immunology, and related biotechnology, tumor
immunotherapy has become a hot spot of clinical research. High-
throughput, multifaceted characterization of the genomic,
transcriptomic, and epigenomic features of tumors and relevant
immune cells by SCS helps to dissect tumor heterogeneity and reveal
complex interactions between tumor cells and their
microenvironment (Gohil et al., 2021). Tumor immunotherapy
research combined with SCS is expected to become an important
comprehensive measure for tumor treatment in the future
(Figure 5).

FIGURE 5
Application of SCS in tumor immunotherapy.
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5 Conclusion

The completion of the draft human genome sequence was a
key moment in genomics, heralding the advent of the “omics
era”. Since the 1990s, human genomic research has contributed
to the advancement of transcriptomics, proteomics, and
metabolomics. SCS is gradually becoming an important tool
for omics research.

This review systematically discusses the main classifications of
SCS, isolation methods for single cells, the significance and challenges,
and the excellent application potential of SCS. scDNA-seq atlases can
provide both valuable data resources and biological insights that will
facilitate cell engineering, regenerative medicine, and understanding
of diseases. The introduction of an evolving lineage-tracing system
with a scRNA-seq readout elucidates the hierarchical nature of tumor
evolution and, more broadly, enables in-depth studies of tumor
progression. scATAC-seq, an important breakthrough in single-cell
epigenetics, reveals the accessibility of single-cell chromatin at the
level of epigenomics, differentiates cell heterogeneity, and obtains
information such as the location of open chromatin, binding sites of
transcription factors, regulatory regions of nucleosomes, and the
chromatin status. scCITE-seq obtains cell surface protein
information and intracellular transcriptome information
simultaneously, allowing for deeper differentiation of cell
heterogeneity, more precise excavation of specific cell types, and
exploration of the mechanisms behind biological phenomena
including drug resistance. scSNARE-seq, which connects the
transcriptome with the accessible chromatin of a cell, serves as a
valuable tool for the input and output of transcriptional regulatory
units to characterize tissue complexity and is highly useful for
profiling cell maps of human tissues and clinical samples.

For CTCs, SCS is clinically important in pre-judgment, efficacy
assessment, and monitoring of relapses and drug-resistant
metastasis. In tumors, SCS provides a more intuitive platform to
deeply explore the tumor microenvironment and heterogeneity,
helping our understanding of how neoplastic tumors change their
own surrounding microenvironment to escape host immune attack.
SCS is expected to provide new therapeutic targets for anti-tumor
drugs and promote the development of human medicine.

In conclusion, the application of single-cell omics sequencing
technology is becoming more and more widespread and continues
to grow in popularity. Based on its basic unit of research, the single
cell, which is the foundation of all biomedicine, its future is
immeasurable. The single-cell era has arrived, and SCS-based
technologies will revolutionize biological science.
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Glossary

APOBEC Apolipoprotein B mRNA editing enzyme catalytic polypeptide

AR Androgen receptor

B- ALL B cell acute lymphoblastic leukemia

CAF Cancer-associated fibroblasts

CAR Chimeric antigen receptor

CEL-Seq Cell expression by linear amplification and sequencing

CRISPR Clustered regularly interspaced short palindromic repeats

CTCs Circulating tumor cells

ctDNA Circulating tumor DNA

CTLA-4 Cytotoxic T lymphocyte-associated antigen-4

CTM Circulating tumor microemboli

EMT Epithelial mesenchymal transition

ESCs Embryonic stem cells

ESCC Esophageal squamous cell carcinoma

FACS Fluorescence-activated cell sorting

GC Gastric cancer

hESCs Human embryonic stem cells

ILCs Innate lymphoid cells

IR Immune repertoire

HCC Hepatocellular carcinoma

LDCT Low-dose computed tomography

LIF Leukemia inhibitory factor

MDA Multiple displacement amplification

MRD Microscopic residual disease

NSCLC Non-small cell lung cancer

PCA Principal component analysis

PCR Polymerase chain reaction

PD-1 Programmed death-1

PD-L1 Programmed cell death-ligand 1

revSCs Regenerative stem cells

SCS Single-cell sequencing

SCG Single-cell genomics

scDNA-seq Single-cell DNA sequencing

scRNA-seq Single-cell RNA sequencing

scATAC-seq Single-cell assay for transposase accessible chromatin by sequencing

scCITE-seq Single-cell cellular indexing of transcriptomes and epitopes by
sequencing

scMT-seq Single-cell methylation and transcriptome sequencing

scSNARE-seq Single-cell single nucleus chromatin accessibility and mRNA
expression sequencing

scIR-seq Single-cell immune repertoire sequencing

scCATCH Single-cell cluster-based annotation toolkit for cellular heterogeneity

smart-Seq Switching mechanism at 5′ end of the RNA transcript sequencing

SMART Switching mechanism at 5′ end of RNA template technology

TAM Tumor-associated macrophages

t-SNE T-distributed stochastic neighbor embedding

TCR T-cell receptor

TME Tumor microenvironment

TILs Tumor-infiltrating lymphocytes

UMAP Uniform manifest approximation and projection

WGA Whole genome amplification
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