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Molecular profiling technologies, such as RNA sequencing, offer new
opportunities to better discover and understand the molecular networks
involved in complex biological processes. Clinically important variations of
diseases, or responses to treatment, are often reflected, or even caused, by the
dysregulation of molecular interaction networks specific to particular network
regions. In this work, we propose the R package PLEX.I, that allows quantifying and
testing variation in the direct neighborhood of a given node between networks
corresponding to different conditions or states. We illustrate PLEX.I in two
applications in which we discover variation that is associated with different
responses to tamoxifen treatment and to sex-specific responses to bacterial
stimuli. In the first case, PLEX.I analysis identifies two known pathways i) that
have already been implicated in the same context as the tamoxifen mechanism of
action, and ii) that would have not have been identified using classical differential
gene expression analysis.
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1 Introduction

Interactions between different biological entities are crucial for the function of biological
organisms. In biological networks, nodes can represent genes, proteins or microbes, and their
interactions can be defined by edges, which can be either binary or weighted (Loscalzo,
2017). Gene co-expression networks (GCNs), for instance, are biological networks whose
nodes represent genes and whose edges between them are weighted by a measure of their co-
expression, such as correlation. Highly connected sets of genes are often found to be involved
in the same functional context.

Multiplex networks consist of multiple sets of edges between the same set of nodes
(Hammoud and Kramer, 2020). Each edge set, referred to as a layer, can represent a distinct
type of data (e.g., transcriptomics and proteomics) or clinical condition (e.g., disease/health
and responder/non-responder to a drug). Various methods have been proposed for the
analysis of multiplex networks, many of which detect those nodes whose set of neighbors
(neighborhood) is highly consistent across layers (Buphamalai et al., 2021; Mahapatra et al.,
2021; Peng et al., 2021). With highly consistent neighborhoods across layers may be
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prioritized as the most interesting ones for downstream
computational or biological analysis. This type of method is often
used to aggregate networks from different omics datasets.

Other methods identify nodes whose neighborhoods vary from
one layer to the other. These methods are, in particular, useful for the
detection of dysregulated genes that can be associated with different
clinical conditions such as diseases and specific responses to
treatments (Loscalzo, 2017). To quantify the variations in the
local neighborhood of each node (e.g., gene) between two given
conditions (or clinical states), such as case-control or drug sensitive-
resistant status, several methods have been used in the literature,
which have been reviewed in Lichtblau et al. (2016), van Dam et al.
(2018), and Bródka et al. (2018). These methods are essentially based
on comparing a measure of degree centrality, such as in Fuller et al.
(2007) and de la Fuente (2010) between the two layers. However,
such measures can fail in recognizing neighborhood variation if the
node centrality remains unchanged. To overcome this shortage, we
propose a tool named PLEX.I to discover local variations of such
networks, and to test for statistical significance of such variation.

The input to PLEX.I is a multiplex network. In Scenario I, we
consider a two-layer network, where each layer corresponds to a
condition; and, the aim is to detect nodes whose neighborhood
significantly changes from one condition to the other. In Scenario II,
we consider a set of two-layer networks, each for one individual; and,
the aim is to detect nodes whose neighborhood variation, from one
layer to the other, is associated with a particular phenotype across
individuals. We have shown an application of both scenarios on
human gut microbiomes data in our previous study (Yousefi et al.,
2023).

Here, we illustrate the potential of PLEX.I in Scenario I and II
in broader applications. In particular, for Scenario I, we detect
genes whose regulatory neighbors are associated with drug
response on human cancer cell lines. And, for Scenario II, we
detect genes whose neighborhood variation is associated with sex
(see Usage Examples).

2 Methods and implementation

Considering a two-layer multiplex network as the input, in the
first phase, PLEX.I performs representation learning that constructs
a map, which, for each layer, projects each node onto a point in a
low-dimensional embedding space such that the pairwise graph
distances in each layer are approximated by the pairwise
distances of the corresponding two points in the embedding
space. As the pairwise graph distances also reflect local variations
in the neighborhood of any given node between two layers, the
distance d in the embedding space can also be interpreted as a
measure of the original variation in the node neighborhood between
the two layers. In the second phase, PLEX.I performs an assessment
of statistical significance for each gene, as follows. In Scenario I, for
the (gene-specific) distance d, a p-value is computed by comparing d
against a background distribution generated from permuted
versions of the multiplex network (Figure 1). In Scenario II, a
(again, gene-specific) distance di is calculated for each individual
i and a p-value is computed that reflects the association of this
distance with a phenotype of interest. The details of both phases are
described in the following.

2.1 Phase I. Representation learning

Given a multiplex network with n nodes, PLEX.I first maps the
nodes of each layer to a common embedding space of dimension k (a
user-defined parameter). To obtain a simultaneous embedding of all
network layers, we designed an encoder-decoder neural network
(EDNN) with n-dimensional inputs and outputs, and a
k-dimensional bottleneck layer (Ietswaart et al., 2021; Yousefi
et al., 2023). For a discussion of the suitability of this approach,
for our application, over other network representation learning
methods, we refer to Hamilton et al. (2017), Yousefi et al. (2023).
For each given node v of each layer, the input of the EDNN is the

FIGURE 1
PLEX.I essentials for Scenario I. The nodes in all layers of the multiplex network, along with the permuted networks, are embedded into a vector
space. Then the significance of the distances is assessed on the basis of the probability distribution function (PDF) of the null distances.
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vector of edge weights between v and any node w of the layer. The
output the EDNN is trained to generate is either the input edge
weights or the vector of empirical probabilities to reach w after a
fixed-length random walk (Yousefi et al., 2023), which can be
selected by the user.

The activation functions of the EDNN output layer are logistic
functions, as the decoder outputs are probabilities, while activation
functions of the bottleneck layer can be chosen by the user. The user
can also opt for different distance measures; we set the cosine
distance as default as it performs best in our previous study
(Yousefi et al., 2023). The code for the simulation study is
described in the Supplementary Material S1.

2.2 Phase II. Significance assessment

Scenario I: To assess the statistical significance of a distance d in
the embedding space, PLEX.I constructs an empirical distribution of
distances d over a null model of multiplex networks. The user can
choose from two possible backgroundmodels: distances generated from
i) random permutation of the (weighted) adjacency matrix, and ii)
random replacement of edges that preserves the degree distribution.

Scenario II: To assess the statistical association of a distance d
with a particular phenotype across individuals, different tests can be
applied based on the nature of the phenotype. PLEX.I uses a
Wilcoxon Rank-Sum test for the case of binary phenotypes and a
correlation test (e.g., Kendall’s τ) for continuous phenotypes.

The training of neural networks, with their non-convex cost
functions, requires solving complex optimization problems.
Training neural networks therefore requires an iterative
optimization algorithm with random initialization. Different
initializations, however, may result in different EDNNs, and, with
that, in embedding spaces. To obtain robust results, we therefore
train EDNN several times (the default number of repeat is 50), with
different initializations. For each repeat, we calculate the distances
and p-values; then aggregate all p-values into a single p-value using
Fisher’s combined probability (Yi et al., 2018). Finally, PLEX.I
implements different options to adjust the resulting n p-values
for multiple testing (see also Supplementary Material S1).

2.3 Usage data

In Scenario I, we used the RNAseq gene expression data from the
PRISM dataset (Corsello et al., 2020). We considered cell lines
derived from lung cancer tumors with responses to Tamoxifen
drug. We then calculated gene co-expression networks, for
responders and non-responders, with 2,000 genes with the largest

expression variance resulting in
2000
2

( ) � 1, 999, 000 edges. As for

the input multiplex network, one network layer was constructed
from the transcriptomes of those cell lines that were found to
respond to tamoxifen treatment (27 samples), the other was
derived from those that did not (37 samples)—see
Supplementary Material S2 for more details.

In Scenario II, we used transcriptome measurements for healthy
human blood samples before and after bacterial stimulation

(Thomas et al., 2015; Piasecka et al., 2018). We considered
370 samples with equal numbers of males and females. The data
contains the NanoString expression of 564 genes resulting in

564
2

( ) � 158, 766 edges in each network. In the context of

Scenario II, we show how PLEX.I can also be used to explore
local neighborhood variations between individual specific
networks (ISNs). ISNs model pairwise gene co-expression in
individuals that are derived from single transcriptome
measurements (Melograna et al., 2023). Here, we derived ISNs
using the LIONESS method (Kujjer et al., 2019a; Kujjer et al.,
2019b). We restricted our analysis to the three bacterial
stimulation of Escherichia coli, Staphylococcus aureus, and
Staphylococcal enterotoxin B. For each stimulation group and
each individual, we constructed a multiplex network, one layer
corresponding to the stimulation case and the other layer
corresponding to the unstimulated case.

3 Results

Genes whose neighbors in GCN vary between populations with
different clinical conditions appear to have a transcriptome
regulatory effect, thus, are likely to explain the differences (Van
Dam et al., 2018). In the context of personalized medicine, for
instance, genes with differential co-expression patterns between
drug responders and non-responders may play key roles in drug
resistance. As a first usage example, we used PLEX.I to discover
genes whose neighborhood variation is associated, in cell lines, with
different responses to tamoxifen treatment. The input to PLEX.I
consisted of gene co-expression networks, derived from cell lines of
the PRISM dataset (Corsello et al., 2020). Using PLEX.I we identified
42 genes whose gene co-expression neighborhood varies
significantly between the responsive and the non-responsive cell
lines (Supplementary Table S1). Figure 2A shows the 10 most
significant genes and their immediate neighbors. The edge weight
shown represents the difference in the corresponding edge weights
between the responder and non-responder networks. The results for
an over representation analysis of these 42 genes, using the Reactome
Analysis Tools–Analyse gene list (https://reactome.org), is shown in
Supplementary Table S2. The two most strongly enriched pathways
were Interleukin and nuclear factor kappaB signaling. Corroborating
the PLEX.I analysis, these two pathways have already been found to
interact specifically in the context of estrogen sensing, and, with that,
in the context of the tamoxifen mechanism of action (Liu et al., 2005;
Shao et al., 2015). We refer the reader to (Matariek et al., 2022;
Howell and Howell, 2023) for an overview of the tamoxifen
applications.

The interaction of the microbiome with the immune system has
long been recognized to be of key importance for health and disease
(Zheng et al., 2020). In the context of Scenario II, PLEX.I was applied
on ISNs of blood transcriptomes stimulated with different microbes.
For each microbial stimulation, we identified genes whose
neighborhood variation is significantly associated with sex.
Figures 2B–D shows the 10 most significant genes, respectively,
for Escherichia coli, Staphylococcus aureus, and Staphylococcal
enterotoxin B stimulations (see Supplementary Table S1). Similar
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to the previous use case, edge weight differences between aggregated
networks across ISNs are shown as the edge colors.

It is worth mentioning that none of the genes identified by
PLEX.I in either scenario were found to be differentially expressed
between responders and non-responders or between unstimulated
and stimulated groups (see Supplementary Material S2). For
Scenario I, in particular, PLEX.I thus revealed plausible biological
mechanisms underlying tamoxifen treatment that would not have
been found using straightforward differential gene expression
analysis, which considers only expression levels of individual
genes. More details on the implementation of the usage examples
with the implementation codes are provided in the Supplementary
Material S1. The related analysis codes are freely available via the
above GitHub repository.

4 Discussion

PLEX.I quantifies distances between the local neighborhoods of
network nodes between two conditions or states and assesses their
significance using a statistical test. The nodes of the network can
represent any entity such as genes, microbes, and individuals.
PLEX.I can therefore detect the variation in the neighborhood of
any such network between two conditions or time points. In this
manuscript we considered biological networks of gene regulations
derived from a population of samples and biological ISNs, for
Scenario I and Scenario II, respectively. Identified variations may
highlight complementary information to commonly used node-
oriented differential analysis strategies, as illustrated such as
those proposed in Giri et al. (2023), Thomas et al. (2015), and

FIGURE 2
Visualized variation in the neighborhood of nodes in biological networks between two conditions or states. (A) Local variation in gene co-expression
networks for responders and non-responders to Tamoxifen. (B–D) Local variation in interaction networks for the blood trascriptome of males and
females stimulated, respectively, by Escherichia coli, Staphylococcus aureus, and Staphylococcal enterotoxin B. Genes (network nodes) detected by
PLEX.I are highlighted in dark gray; their distance-1 neighbors are marked in light gray. The red and green edges show positive and negative edge
connectivity differences, respectively, towards baseline [(A): non-response; (B–D): no stimulation].
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Piasecka et al. (2018). A potential third scenario is to consider a set of
two-layer networks, each for a pair of individuals, aiming at
calculating similarities in local neighborhoods between pairs of
individuals to cluster them. For future versions of PLEX.I, we
plan additional features, such as the application on the multilayer
networks in the third scenario mentioned above.

PLEX.I is freely available under a GPL-3 license on CRAN
(https://cran.r-project.org/web/packages/PLEXI/index.html) and
on GitHub (https://github.com/behnam-yousefi/PLEXI). It is
written in R language and can operate on any of the Windows,
Linux, and MacOS operating systems. The detailed guide for
implementation is available in Supplementary Material S2.
Testing the code for Scenario I on the simulated network of two
layers with 100 nodes (see Supplementary Material) takes 243 s and
requires 203 MB of RAM on a MacOS (version 13.4) and R version
4.3 (2023-06-16).

The use of the current EDNN, which is based on multilayer
perceptrons, revealed two main limitations. Firstly, there is the
challenge of scalability when dealing with exceedingly large
networks. Secondly, selecting an appropriate distance measure
between corresponding nodes within the embedding space lacks
intuitive appeal. Both limitations can be addressed by
integrating graph neural networks in subsequent versions of
our pipeline.
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