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Syndrome differentiation and treatment is the basic principle of traditional Chinese
medicine (TCM) to recognize and treat diseases. Accurate syndrome
differentiation can provide a reliable basis for treatment, therefore, establishing
a scientific intelligent syndrome differentiation method is of great significance to
the modernization of TCM. With the development of biomdical text mining
technology, TCM has entered the era of intelligence that based on data, and
model training increasingly relies on the large-scale labeled data. However, it is
difficult to form a large standard data set in the field of TCM due to the low degree
of standardization of TCM data collection and the privacy protection of patients’
medical records. To solve the above problem, a multi-label deep forest model
based on an improvedmulti-label ReliefF feature selection algorithm, ML-PRDF, is
proposed to enhance the representativeness of features within themodel, express
the original information with fewer features, and achieve optimal classification
accuracy, while alleviating the problem of high data processing cost of deep forest
models and achieving effective TCM discriminative analysis under small samples.
The results show that the proposed model finally outperforms other multi-label
classification models in terms of multi-label evaluation criteria, and has higher
accuracy in the TCM syndrome differentiation problem compared with the
traditional multi-label deep forest, and the comparative study shows that the
use of PCC-MLRF algorithm for feature selection can better select representative
features.
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1 Introduction

Traditional Chinese medicine (TCM) is an important part of Chinese traditional medicine
with unique theoretical system and diagnostic and therapeutic methods. TCM textual data is an
important carrier of TCM knowledge, which is rich and diverse, with a long history and a special
language, using a large number of terminology, allusion references, metaphors and similes, etc.,
which expresses the ideological methods and cultural connotations of TCM, but it also increases
the difficulty of comprehension and analyses. TCM text data are important for studying the rules
and characteristics of TCM illnesses and diseases, as well as having practical value for improving
the quality and level of TCM services. Therefore, we chose TCM text data as the object of study.

OPEN ACCESS

EDITED BY

Min Zeng,
Central South University, China

REVIEWED BY

Shanwen Sun,
Northeast Forestry University, China
Xuan Lin,
Xiangtan University, China

*CORRESPONDENCE

Mingming Qi,
webqmm1974@163.com

RECEIVED 03 August 2023
ACCEPTED 07 September 2023
PUBLISHED 03 October 2023

CITATION

Gong L, Jiang J, Chen S and Qi M (2023),
A syndrome differentiation model of TCM
based on multi-label deep forest using
biomedical text mining.
Front. Genet. 14:1272016.
doi: 10.3389/fgene.2023.1272016

COPYRIGHT

© 2023 Gong, Jiang, Chen and Qi. This is
an open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Genetics frontiersin.org01

TYPE Methods
PUBLISHED 03 October 2023
DOI 10.3389/fgene.2023.1272016

https://www.frontiersin.org/articles/10.3389/fgene.2023.1272016/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1272016/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1272016/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1272016/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2023.1272016&domain=pdf&date_stamp=2023-10-03
mailto:webqmm1974@163.com
mailto:webqmm1974@163.com
https://doi.org/10.3389/fgene.2023.1272016
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2023.1272016


At present, biomedical text mining of artificial intelligence methods
are widely used in the medical field, especially in the diagnosis and
treatment of diseases. But most of the research is on applications in the
other biomedicine, with applications in TCM lagging behind. Different
from the related research on western medicine, TCM syndrome
differentiation mainly relies on doctors’ own theoretical knowledge
and accumulated clinical experience. Therefore, subjective factors play a
decisive role in TCM diagnosis, and this unique diagnosis mode has
become a bottleneck in the development of TCM (Zhang et al., 2020;
Song et al., 2021). In recent years, many domestic scholars have carried
out research on standardization, digitalization and intellectualization of
TCM syndrome differentiation. The main difficulties in realizing the
intellectualization of TCM syndrome differentiation are as follows:

1) Syndrome is a unique concept in TCM clinical diagnosis and
treatment. There are experiments show that a disease may
include several different syndromes, and the same syndrome
may appear in different diseases during their development. That
is, to say, in TCM clinical syndrome differentiation, the syndromes
tend not to appear singly, but are often intertwined and there will be
two ormore syndromes combined. The problem ofmulti-syndrome
combination makes TCM syndrome differentiation essentially a
typical multi-label learning problem, which makes TCM syndrome
differentiation and prediction task very challenging (Zhou et al.,
2018).

2) Compared with the abundant public data sets in the field of
Western medicine, there is a lack of corresponding work in the
TCM field. The data set of TCM is difficult to obtain and the scale
is very limited. Due to the absence of TCM data collection
standards, clinical data privacy protection and other reasons,
it is difficult to form a large-scale standard data set in TCM
(Zhang et al., 2018; Li et al., 2020; Yang and Zhu, 2021). In order
to overcome this limitation, it is necessary to design a TCM
syndrome differentiation analysis method suitable for small-
scale data sets.

3) Generally, the data dimension of medical text is large and the
value density is low, which inevitably leads to redundant and
irrelevant features, affecting the performance of related
classification algorithms (Shao et al., 2013; Guo et al., 2016;
Huq et al., 2018). The minimum feature subset needs to be
selected reasonably to maximize the performance of the model.

Numerous experts and scholars have conducted research around
the problems of TCM syndrome differentiation. Xu et al. (2016)
learned that in the clinical therapy of chronic gastritis, there are 30% of
cases with two or more syndromes combined, so they used random
forest and REAL algorithms to select the related symptoms of chronic
gastritis, and finally constructed an effective model. Yang T. et al.
(2020) proposed a multi-label learning algorithm for TCM syndrome
differentiation based on dependency tree, which took full account of
the correlation between syndromes. In this paper, we use deep forest
model to deal withmulti-label classification problem, and use a feature
selection method based on PCC-MLRF algorithm to do multiple
evidence related feature screening. Xia et al. (2020) appliedmulti-label
K-nearest Neighbor algorithm (ML-KNN) to model 767 clinical cases
and successfully established the syndrome differentiation model of
metabolic syndrome. Yan et al. (2020) introduced Support Vector
Machines (SVMs) into the study of TCM diagnosis and treatment,

demonstrating the feasibility of using machine learning methods to
approximate TCM diagnosis.

In recent years, deep neural networks (DNN) have become a
new hot spot in the field of AI because of its powerful feature
learning and representation capabilities. PangWeiZhao et al. (2020)
combined the DNN with the attention mechanism to construct the
syndrome differentiation model of 10,910 AIDS data sets, and the
accuracy rate was superior to other models. However, the
construction of depth learning model requires a large number of
training samples, and the modulus and quality of data influence the
model effect. Due to the high requirements of the amount of training
data and the complicated hyper-parameter, there are certain
restrictions on the application of DNN. Zhou and Feng (2017)
proposed Deep Forest which is an alternative method based on deep
learning ideas. Compared to DNN, Deep Forest has high efficiency
and scalability, and can be used for small-scale training data tasks.
Therefore, it is widely used in many fields, especially in the field of
bioinformatics. LMI-DForest (Wang et al., 2020) introduced the
deep forest algorithm into the prediction task of lncRNA-miRNA
interactions and achieved superior performance over the other
machine learning models. Chu et al. (2021) proposed a cascade
deep forest model towards the prediction of drug-target interactions
(DTIs) and successfully predict 1352 new DTIs which are proved to
be correct. In order to find new lncRNA–protein Interactions (LPIs),
Tian et al. (2021) developed a deep forest model with cascade forest
structure. In view of the complexity and nonlinear characteristics of
TCM, (Yan et al., 2019) used the deep forest algorithm to build a
TCM syndrome classification model for chronic gastritis.
Nevertheless, the above applications of Deep Forest are all single-
label classification problems while multi-label learning problems
emerging in large numbers (Wang et al., 2021). Recently Yang L.
et al. (2020) proposed Multi-Label Deep Forest (MLDF) method,
that is, the first time to introduce the deep forest model to multi-
label learning tasks. MLDF is proposed with two measure-aware
mechanisms: measure-aware feature reuse mechanism based on
confidence computing, which can optimize different performance
measures on user’s demand, and measure-aware layer growth
mechanism, which can reduce overfitting.

Inspired by Yang L. et al. (2020) who proposed a MLDF approach,
we first introduced MLDF to the TCM dialectic task. In order to solve
the common multi-label classification problem in the TCM dialectic
domain, we proposed an improved multi-label deep forest model based
on the PCC-MLRF feature selection algorithm, called ML- PRDF. ML-
PRDF does not simply transform TCM syndrome differentiation task
into a single label classification task. In the face of complex multi-
syndrome labels, the correlation of labels and the relationship between
samples andmultiple labels are fully considered to avoid the loss caused
by label transformation. It adopted an effective feature selection
algorithm to enhance the representation of features within the
model, while integrating the strong representation learning ability of
deep forest. This model has high computational efficiency and does not
require professional knowledge in the field of TCM.

2 Methods

Syndrome differentiation is essentially a multi-label classification
task. The syndrome differentiation analysismodel of TCM inputs clinical
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information and outputs corresponding syndrome labels. Each instance
can obtain corresponding labels through the classificationmodel, and the
label can be one or more. The TCM clinical information feature set can
be expressed as P � p1, p2, p3, . . . , pf{ } ∈ Rf,X stands for sample set
of TCM clinical cases, X � x1, x2, x3, . . . , xn{ } ∈ Rn×f. There are n
samples in the set and each sample can be represented as
xi � (p1

i , p
2
i , p

3
i , . . . , p

f
i ), Y ∈ Rn×m represents the set of all

syndrome labels that appear in the instance. yi � 0, 1{ }l ∈ Y
represents syndrome label corresponding to xi, If yi(l) � 1, it means
that the sample belongs to l label class. If yi(l) � 0, it means that the
sample does not belong to l label class.

2.1 Datasets

Kidney diseases and stomach diseases are the most common
diseases in Chinese medicine, involving multiple systems and organs
of the human body, with complex and diverse symptoms, often
showing multiple symptoms corresponding to multiple symptoms,
and the principle of Chinese medicine in treating these two diseases
is to discriminate between different symptoms, i.e., according to the
different symptoms to determine which type of symptoms they
belong to, and then to treat them. Therefore, they are very suitable
for TCM dialectical research.

The kidney disease dataset (Web333panda, 2021) used in this
paper was obtained from the National Population Health Science
Data Centre PHDA TCM Prevention and Control of Chronic Renal
Failure database, and the stomach disease dataset (Web333panda,
2021) was obtained from TCM outpatient diagnosis and treatment
records with necessary desensitisation. The data used in this study
can be easily accessed from https://github.com/web333panda/TCM-
Dataset. The data processing of disease data set is as follows: 1)
Removing data records without syndromes or symptoms, 2)
Combining single-label records into multi-label records.

In order to minimize the error caused by different expressions as
much as possible, we established a standardized symptom dictionary
based on the TCM symptom description information in the SymMap
database (Wu et al., 2019). Then wemerge the synonyms in the original
data, transform the non-standard symptom description into standard
symptom names, and reduce the feature dimension. After data
integration and standardized operation, the statistics related to the
dataset are shown in Table 1.

2.2 PCC-MLRF feature selection algorithm

Previously, the feature processing of multi-label classification for
clinical texts mostly adopted some simple and direct strategy, such
as unsupervised method or converting multi-label feature selection
problems into single-label ones, which ignored the correlation
among different labels (Guo et al., 2016). In multi-label learning,

each instance is associated with multiple class labels, and the label
information may be noisy or incomplete.

The Relief algorithms are representative algorithms in the filter
method, which is the mainstream method of feature selection. ReliefF
algorithm can process various types of data and has strong tolerance to
noise, so it is widely used. However, ReliefF algorithm cannot be applied
to multi-label learning tasks. ML-ReliefF algorithm (Cai et al., 2015)
solves the problem of multi-label learning. Different from other multi-
label selection methods that only consider the relationship between
pairs of classes, this method introduces the concept of label set and
further considers the relationship between label sets, reflecting the
influence between samples and multiple labels. The similarity
calculation between samples was also added to force the effect.
However, the ML-ReliefF algorithm uses the cosine of the included
angle of two vectors to evaluate their similarity. Cosine similarity
measures the consistency of orientation between dimensions, which
pays attention to the difference in direction, not numerical value. The
insensitivity to numerical value causes the loss of certain information,
which leads to errors in the results.

The PCC-MLRF algorithm proposed in this study improves the
calculation method of sample similarity in ML-ReliefF algorithm.
We use the idea of Pearson correlation coefficient (PCC) to measure
the relevance of the vector, which centralize the vector before
performing the cosine calculation. The error of missing
information will be corrected, so PCC-MLRF is more suitable for
TCM syndrome differentiation problems.

Suppose there are two samples X � x1, x2, . . . , xn{ } and
Y � y1, y2, . . . , yn{ }, the corresponding PCC calculation formula is
shown in Eq. 1. Since ρxy may be negative, we use the reciprocal of
Pearson distance as sample similarity, and the interval of Pearson distance
is (0,2). The final sample similarity calculation formula is shown in Eq. 2.

ρxy � Cov X, Y( )�����
D X( )√ �����

D Y( )√ � ∑n
i�1 xi − �x( ) yi − �y( )�����������∑n

i�1 xi − �x( )2
√ �����������∑n

i�1 yi − �y( )2√ (1)

sim � 1
1 − ρxy

(2)

PCC-MLRF algorithm also changes the selection method of
sample point from random selection to traversal selection, avoiding
the problem that high-frequency samples are repeatedly sampled
while low-frequency samples are difficult to be selected. It makes the
final weight update formula more reasonable.

The feature weight updating formula of PCC-MLRF algorithm is
shown in Eq. 3. For a certain feature of the sample point, its initial
weight minuses the feature difference of samples which have same
labels with the sample point, and pluses the feature difference of
samples which have different labels. The principle is that if the
feature is relevant to the ability to classify, then it should be able to
distinguish between samples with different labels and not confuse
them, i.e., the values of similar samples should be close together and
the values of dissimilar samples should be far away.

TABLE 1 Frequency statistics of syndromes and symptoms.

Dataset Count Symptom features Max frequency/Min frequency Syndrome labels Max frequency/Min frequency

Kidney Disease 645 755 472/1 124 214/1

Stomach Disease 436 323 230/1 49 89/1
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Wp � Wp −∑K
j�1
simt,Hitj ·

d p, xt,Hitj( )
n∑K

j�1simt,Hitj

+ ∑
C≠C xt( )

∑K
j�1

P C( )
1 − P C xt( )( ) · simt,Miss C( )j ·

d p, xt,Miss C( )j( )
n∑K

j�1simt,Miss C( )j
(3)

Hit represents the nearest neighbors belonging to the same class as
the sample point, Miss(C) represents the nearest neighbors
belonging to class C, P(C) represents the prior probabilities of
classC, d(p, xt,Hitj) represents the distance between sample points
xt andHitj with respect to feature p, simt,Hitj represents the sample
similarity of sample points xt and Hitj.

The algorithm steps of PCC-MLRF feature selection algorithm
are as follows:

Input:Symptom feature matrix X � x1,x2 ,x3 , . . . ,xn{ } ∈ Rn×f.

Syndrome multi-label matrix Y ∈ Rn×m

Output:List of feature indexes in descending order of

weight W

Method:

• Initialize feature weights Wp � 0(p � 1: f)
• For t � 1: n

• Select sample xt andg et the corresponding tag set LSt

• Add the top K nearest neighbors in the same sample of

LSt to Hit

• For C∉ LSt

Add the top K nearest neighbors in the heterogeneous

sample of LSt to Miss(C)
• For p � 1: f

• Updated feature weight Wp

End for

End for

End for

Finally get W � argsort(Wp)

Algorithm. PCC-MLRF feature selection

2.3 Multi-label deep forest (MLDF)

Deep Forest is a framework based on multi-gained scanning and
cascade forest, which can perform representation learning just like
deep neural network model. However, unlike deep neural network,
which requires large-scale training data, deep forest can work well
with only small-scale training data. Multi-label Deep Forest (Yang L.
et al., 2020) (MLDF) is formed by introducing deep forest intomulti-
label learning. Based on multi-label random forest structure and two
measure-aware mechanisms, MLDF can optimize different
performance measures on user’s requirements, reuse excellent
representations in the previous layer, and reduce overfitting when
utilizing label correlations by a large number of layers.

The framework of MLDF is illustrated in Figure 1. With two
different methods generating nodes in trees are used to forests, each
layer of MLDF integrates two groups of different multi-label forests as
the base classifier. RF-PCT (Kocev et al., 2013) is an algorithm that
integrates random forest and predictive clustering tree. The
performance of a single multi-label decision tree is limited, but it

will be significantly improved after integration. For a sample, the
forest gives a predicted probability vector by averaging the results
for each tree. The process of multi-label forest predicting samples in
the model is shown in Figure 2. The multi-label random forest averages
the results of two trees to obtain the prediction label vector (0.2,0.4,0.7).

After fitting different multi-label forests ensembled in each layer,
we can get an output vector Ht. The measure-aware feature reuse
mechanism will receive Ht and update it by reusing the excellent
representation of the previous layer to be Gt. Then Gt will be
concatenated to the input feature and put into the next layer.

The measure-aware layer growth mechanism limits the
complexity of the model through various measures to alleviate
the overfitting problem. Based on the measures selected by the
user, as long as the process is not exited, a layer will be added to the
existing model. However, if the performance has not been updated
in the last three layers, the layer growth process will be exited.

Table 2 lists the definition formula of six multi-label learning
measures, in which the ones marked with * are label-based measures
and the others are instance-based measures. “↓” indicates that the lower
the value is, the better the performance is. “↑” indicates that the higher
the better. n is the number of instances, m is the number of labels, hij
represents the prediction result of the ith instance on the jth label, yij

represents the corresponding real label result, f(xi) represents the
confidence score of the instance xi, rankf(xi, j) represents the
predicted score ranking of the jth label of the instance xi, Y+

represents the label set corresponding to 1 in the real label, Y−

represents the label set corresponding to 0 in the real label.

2.4 ML-PRDF: a multi-label deep forest
model based on PCC-MLRF

As aforementioned in Introduction, the data dimension of
medical text is large and the value density is low, which inevitably
leads to redundant and irrelevant features in TCM syndrome
differentiation task. Supposing that the symptom feature is directly
put into the original multi-label deep forest model without feature
selection, it will increase the space complexity of the algorithm, reduce
the operating efficiency and finally affect the performance.

To improve the problem in the original model, this paper
proposes a multi-label deep forest model based on PCC-MLRF
feature selection algorithm (ML-PRDF). The predicting process of
ML-PRDF can be summarized as follows. The effective experimental
data were extracted from the original TCM clinical case data. After
the preprocessing of removing the cases of missing symptoms or
syndromes, combining single-label data into multiple-label data,
TCM symptom standardized mapping and TF-IDF vectorization,
we can get the input feature matrix and syndrome multi-label
matrix. The PCC-MLRF feature selection algorithm was used to
update the weight values of symptom features, and we will select the
optimal feature subset in descending order according to the weight
values. Then, multi-label deep forest was used for syndrome
differentiation and prediction of TCM to obtain the score of
instances for each label. If the score was higher than a certain
threshold value, the sample is considered to belong to the label, and
the corresponding label set of the sample will be finally obtained.
Figure 3 describes the process of ML-PRDF model of TCM
syndrome differentiation analysis.
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3 Results and discussions

3.1 Evaluation measures

The performance of multi-label classification will be limited
by redundant or unrelated features in clinical data, so it is

necessary to select valid features from the feature space. Our
study adopts the following five multi-label evaluation metrics
based on instance to accurately evaluate the performance of the
feature selection algorithm proposed in this paper from multiple
aspects. These evaluation measures are defined as follows (Wang
et al., 2015):

mlACC � 1
n
∑n
i�1

Yi ∩ Hi| |
Yi ∪ Hi| | (4)

mlPRE � 1
n
∑n
i�1

Yi ∩ Hi| |
Hi| | (5)

mlREC � 1
n
∑n
i�1

Yi ∩ Hi| |
Yi| | (6)

mlF1 � 2 ·mlREC ·mlPRE

mlREC +mlPRE
(7)

ACC � 1
n
∑n
i�1
1 Yi ≡ Hi( ) (8)

FIGURE 1
The framework of MLDF (Yang L. et al., 2020)

FIGURE 2
The example of a multi-label forest’s forecasting process.

TABLE 2 Definition formula of six measures.

Measure Formulation

*Hamming loss↓
1
nm∑n

i�1
∑m
j�1

1 hij ≠ yij{ }

One error↓
1
n∑

n

i�1
1 argmaxf(xi) ∉ Y+

i·{ }
Coverage↓

1
nm∑n

i�1
j ∈ Y+

i· |max rankf(xi, j)} − 1{
Ranking loss↓

1
n∑

n

i�1
| (u,v) ∈ (Y+

i· × Y−
i· )|fu(xi )≤fv(xi ){ }|

|Y+
i· ||Y−

i· |

Average precision↑
1
n∑

n

i�1
1

|Y+
i· | ∑

j∈Y+
i·

| k ∈ Y+
i· |rankf(xi ,k)≤ rankf(xi ,j){ }|

rankf(xi ,j)

*Macro-AUC↑
1
m∑m

j�1

| (a,b) ∈ (Y+
·j × Y−

·j)|fj(xa)≤fj(xb ){ }|
|Y+

·j ||Y−
·j |

FIGURE 3
The process of ML-PRDF.
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Yi represents the real label of each instance, Hi represents the
predicted label of each instance, | · | represents the number of
elements in the set, 1(Yi ≡ Hi) means that this formula is 1 if
the real label and the predicted label are exactly the same, otherwise
it is 0.

3.2 Comparative experiments

In order to validate that the PCC-MLRF algorithm can better
select representative features, we compared three classical multi-
label classification algorithms on the kidney disease dataset using a
feature extraction method, an unsupervised feature selection
method, a traditional ML-ReliefF multi-label feature selection
method and PCC-MLRF. PCA is one of the representative
methods for feature extraction which can extract the main
feature components of the data and variance filtering method
(Remove features with low variance) was chose as the
representative algorithm of unsupervised feature selection. They
only extract or select features based on the distribution and variation
of the data itself, without considering the correlation between the
labels, which can lead to some features related to the classification
ability to be ignored or lost, and therefore perform poorly, as shown
in Table 3.

It can be seen from the above results that PCC-MLRF feature
selection method has the best performance on the classification
algorithms that consider the relevance between labels. It indicates
that PCC-MLRF feature selectionmethod fully learns the correlation
between labels and labels as well as the correlation between labels
and features, and enhances the representativeness of features within
the model.

The PCC-MLRF algorithm was used to update the weight of
symptom features to obtain the importance of each feature for
classification ability. Figure 4 shows examples of the 40 features with
the highest weight values.

Meanwhile, in order to verify the effectiveness of ML-PRDF
model in solving TCM syndrome differentiation problem, we
select three classical multi-label classification algorithms for
comparison, including Label Powerset (Madjarov et al., 2012),
ML-KNN (Zhang and ZhouKNN, 2007), BP-MLL (Zhang and
Zhou, 2006). LP is problem transformation method, which
converts multi-label problems into multiple classification
problems. ML-KNN is an algorithmic adaptive method, which

TABLE 3 Comparison of four algorithms on three classical multi-label classifiers.

Classifiers Algorithms mlACC mlPRE mlREC mlF1 ACC

BR Boutell et al. (2004) PCA 0.3129 ± 0.0075 0.3712 ± 0.0094 0.3759 ± 0.0072 0.3735 ± 0.0083 0.1873 ± 0.0086

RFL 0.3085 ± 0.0071 0.3674 ± 0.0046 0.3724 ± 0.0094 0.3698 ± 0.0070 0.1839 ± 0.0068

MLRF 0.3345 ± 0.0103 0.3935 ± 0.0077 0.3981 ± 0.0095 0.3958 ± 0.0086 0.2096 ± 0.0120

PCC-MLRF 0.3281 ± 0.0056 0.3849 ± 0.0060 0.3894 ± 0.0053 0.3871 ± 0.0057 0.2062 ± 0.0051

CC Read et al. (2011) PCA 0.3038 ± 0.0089 0.3657 ± 0.0091 0.3693 ± 0.0067 0.3675 ± 0.0079 0.1838 ± 0.0069

RFL 0.3142 ± 0.0051 0.3776 ± 0.0042 0.3765 ± 0.0094 0.3770 ± 0.0069 0.1976 ± 0.0034

MLRF 0.3239 ± 0.0012 0.3867 ± 0.0011 0.3891 ± 0.0020 0.3879 ± 0.0014 0.2045 ± 0.0017

PCC-MLRF 0.3396 ± 0.0132 0.4010 ± 0.0117 0.4042 ± 0.0152 0.4026 ± 0.0135 0.2182 ± 0.0138

ML-KNN Zhang and ZhouKNN (2007) PCA 0.4208 ± 0.0010 0.4807 ± 0.0150 0.4836 ± 0.0060 0.4820 ± 0.0046 0.2956 ± 0.0172

RFL 0.3676 ± 0.0113 0.4286 ± 0.0074 0.4332 ± 0.0126 0.4308 ± 0.0077 0.2406 ± 0.0222

MLRF 0.4125 ± 0.0068 0.4747 ± 0.0065 0.4744 ± 0.0075 0.4745 ± 0.0023 0.2904 ± 0.0137

PCC-MLRF 0.4371 ± 0.0131 0.4997 ± 0.0030 0.4976 ± 0.0152 0.4986 ± 0.0091 0.3144 ± 0.0207

The meaning of bold displays better performance.

FIGURE 4
Top 40 important features.
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extends specific learning algorithms in single-label problem to
handle multi-label data directly. BP-MLL is a neural network
algorithm derived from back propagation. All the following
algorithms use the results of 5-fold cross-validation for
statistical analysis.

From the perspective of clinical TCM syndrome differentiation
in Table 4, hamming loss reflects the misjudgment rate of the
syndrome differentiation results. One error reflects the error rate
of the model in searching for the most relevant syndromes. Coverage
reflects the redundancy rate of unrelated syndromes in the predicted
results. Ranking loss reflects the proportion of inverted order label
pairs, that the smaller the value is, the higher the similarity between
the predicted label ranking and the real ranking is. Average precision
reflects the similarity between the predicted results and the real
results.

Compared with other multi-label learning algorithms (Table 5),
ML-PRDF performs best in hamming loss, coverage, ranking loss
and average precision. The predicted results of the model are highly
consistent with the real syndrome differentiation results, and
redundant syndrome results are few.

Figure 5 shows the AUC value of 10 syndromes differentiating by
ML-PRDF. It can be seen that themodel has high classification accuracy

for the common syndromes of chronic renal failure (CRF), such as
damp turbidity and blood stasis, spleen-kidney yang deficiency, spleen-
kidney yin deficiency and liver-kidney yin deficiency (Chen et al., 2019;
Tian and Fan, 2019). It also has relatively good performance for other
low-frequency syndrome labels.

To further validate the multi-label classification performance of
ML-PRDF, we conducted experiments on stomach disease data with
the following results:

From the above Table 5, it can be seen that the performance of
ML-PRDF is optimal in all aspects, especially in Hamming loss, One
error, Average precision is greatly improved compared with the
other three models, which proves that ML-PRDF has strong multi-
label classification performance.

3.3 Ablation experiments

In order to verify the necessity and effectiveness of the PCC-
MLRF feature selection algorithm to improve the performance of
TCM evidence typing analysis models, we designed ablation
experiments. According to the evaluation measures in Table 2,
the MLDF model with the removal of PCC-MLRF is compared

TABLE 4 Comparison of different classification models for kidney disease datasets.

Classifiers Hamming loss↓ One error↓ Coverage↓ Ranking loss↓ Average precision↑

Label Powerset 0.0127 ± 0.0002 0.5944 ± 0.0185 0.1714 ± 0.0020 0.2285 ± 0.0163 0.4182 ± 0.0125

ML-KNN 0.0122 ± 0.0003 0.6254 ± 0.0031 0.1748 ± 0.0092 0.1714 ± 0.0126 0.4379 ± 0.0099

BP-MLL 0.0153 ± 0.0003 0.6636 ± 0.0052 0.1887 ± 0.0102 0.1676 ± 0.0096 0.4471 ± 0.0091

ML-PRDF 0.0102 ± 0.0004 0.6367 ± 0.0125 0.1540 ± 0.0034 0.1506 ± 0.0073 0.5168 ± 0.0085

The meaning of bold displays better performance.

TABLE 5 Comparison of different classification models for stomach disease datasets.

Classifiers Hamming loss↓ One error↓ Coverage↓ Ranking loss↓ Average precision↑

Label Powerset 0.0120 ± 0.0002 0.6104 ± 0.0175 0.1614 ± 0.0032 0.2125 ± 0.093 0.4976 ± 0.0045

ML-KNN 0.0132 ± 0.0002 0.6054 ± 0.0012 0.1621 ± 0.0078 0.1921 ± 0.0016 0.5179 ± 0.0019

BP-MLL 0.0134 ± 0.0003 0.6426 ± 0.0032 0.1797 ± 0.0121 0.1976 ± 0.0078 0.4821 ± 0.0102

ML-PRDF 0.0093 ± 0.0003 0.4613 ± 0.0075 0.1507 ± 0.0074 0.1890 ± 0.0026 0.6014 ± 0.0105

The meaning of bold displays better performance.

TABLE 6 Comparison of ablation experiments.

Dataset Classifiers Hamming loss↓ One error↓ Coverage↓ Ranking loss↓ Average precision↑

Kidney Disease MLDF 0.0105 ± 0.0002 0.6480 ± 0.0166 0.1718 ± 0.0041 0.1647 ± 0.0048 0.4884 ± 0.0065

ML-PRDF 0.0102 ± 0.0004 0.6367 ± 0.0125 0.1540 ± 0.0034 0.1506 ± 0.0073 0.5168 ± 0.0085

Stomach Disease MLDF 0.0106 ± 0.0003 0.5912 ± 0.0026 0.1986 ± 0.0124 0.2258 ± 0.0085 0.5023 ± 0.0130

ML-PRDF 0.0093 ± 0.0003 0.4613 ± 0.0075 0.1507 ± 0.0074 0.1890 ± 0.0026 0.6014 ± 0.0105

The meaning of bold displays better performance.
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with the ML-PRDF model with the addition of PCC-MLRF, and the
experimental results are as follows:

As can be seen from the results of ablation experiment in Table 6,
after adding the PCC-MLRF feature selection algorithm to the
multi-label deep forest model, all metrics are significantly
improved. This method effectively screens out the optimal
feature subset, removes redundant and irrelevant symptom
features, and reduces classification errors.

In conclusion, ML-PRDF model has the best classification
performance in hamming loss, coverage, ranking loss and average
precision, and also has considerable performance on the
classification of a single syndrome. The fusion of PCC-MLRF
and MLDF enables the correlation between symptoms and
symptoms as well as symptoms and syndromes to be fully
explored, and then a TCM syndrome classifier with good
performance is constructed.

4 Conclusion

The main contributions of this paper are summarized as follows:

1) According to the characteristics of TCM clinical text, we improve
the MLRF feature selection algorithm, changing the calculation
method of sample similarity that only focuses on the consistency
of direction to the method that focuses on both numerical values,
and finally obtain PCC-MLRF.

2) We introduce the multi-label deep forest model into the field of
TCM for the first time, using the powerful representation
learning capabilities of deep forest.

3) Considering feature redundancy and poor operation efficiency
problems of the original MLDF model, combined with the
difficulties caused by the multicollinearity problem of TCM
syndrome differentiation task, we propose a new model (ML-
PRDF), which is an improved multi-label deep forest model
based on PCC-MLRF feature selection algorithm.

4) Our experiments show that the PCC-MLRF algorithm does have
better performance in the classification algorithm considering
label correlation. In the meantime, compared with several multi-
label classification models, ML-PRDF also achieves the best
performance.

5) ML-PRDF can solve the problems of multi-syndrome
combination, small-scale and non-standard TCM data set,
and redundant or irrelevant features in the data. It takes full
account of the correlation between labels, enhances the
representativeness of features within the model, expresses the
original information with fewer features, and effectively
improves the performance of syndrome differentiation. Our
work can provide useful reference for the development of
TCM multi-label syndrome differentiation task and provide a
certain auxiliary role for TCM syndrome differentiation and
treatment.

Due to the complexity of the source of the experimental data
set, the experiment in this paper has certain limitations. If the
follow-up case texts can be collected in a standardized manner
according to certain standards, and the main syndromes and
secondary syndromes can be distinguished and classified, it
should improve the results of TCM syndrome differentiation
experiment.

FIGURE 5
AUC of ML-PRDF in 10 syndrome samples.
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