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Background: Breast cancer, the most prevalent malignancy in women worldwide,
presents diverse onset patterns and genetic backgrounds. This study aims to
examine the genetic landscape and clinical implications of rare mutations in
Chinese breast cancer patients.

Methods: Clinical data from 253 patients, including sporadic and familial cases,
were analyzed. Comprehensive genomic profiling was performed, categorizing
identified rare variants according to the American College of Medical Genetics
(ACMG) guidelines. In silico protein modeling was used to analyze potentially
pathogenic variants’ impact on protein structure and function.

Results: We detected 421 rare variants across patients. The most frequently
mutated genes were ALK (22.2%), BARD1 (15.6%), and BRCA2 (15.0%). ACMG
classification identified 7% of patients harboring Pathogenic/Likely Pathogenic
(P/LP) variants, with one case displaying a pathogenic BRCA1 mutation linked to
triple-negative breast cancer (TNBC). Also identifiedwere two pathogenicMUTYH
variants, previously associated with colon cancer but increasingly implicated in
breast cancer. Variants of uncertain significance (VUS) were identified in
112 patients, with PTEN c.C804A showing the highest frequency. The role of
these variants in sporadic breast cancer oncogenesis was suggested. In-depth
exploration of previously unreported variants led to the identification of three
potential pathogenic variants: ATM c.C8573T, MSH3 c.A2723T, and CDKN1C
c.C221T. Their predicted impact on protein structure and stability suggests a
functional role in cancer development.

Conclusion: This study reveals a comprehensive overview of the genetic variants
landscape in Chinese breast cancer patients, highlighting the prevalence and
potential implications of rare variants. We emphasize the value of comprehensive
genomic profiling in breast cancer management and the necessity of continuous
research into understanding the functional impacts of these variants.
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Introduction

Breast cancer (BC) is one of the most prevalent and deadly
malignancies in women worldwide. Globally, BC is the most
commonly diagnosed cancer among women, with an estimated
2.3 million new cases and nearly 685,000 deaths reported in 2020
(Arnold et al., 2022; Siegel et al., 2023). In China, the incidence rate
of BC has been significantly rising, making it an alarming public
health concern. It is currently the most common cancer among
women in China, with about 367,900 new cases and 97,972 deaths
reported in 2020 (Lei et al., 2021). This increasing trend necessitates
further research into understanding the risk factors and genetic
predispositions underlying BC in the Chinese population.

While environmental and lifestyle factors play a significant role in
BC development, a growing body of evidence indicates that genetic
susceptibility also contributes to the onset of this disease.
Approximately 5%–10% of BC cases are hereditary, often
attributed to inherited pathogenic or likely pathogenic (P/LP)
variants in highly penetrant predisposition genes (Yoshimura et al.,
2022). The BRCA1 and BRCA2 genes are the most well-known and
extensively studied of these genes (Yoshimura et al., 2022). Mutations
in these genes significantly increase the risk of breast and ovarian
cancer (Zhong et al., 2015), and are also related to the prognosis and
recurrence of breast cancer (Shah et al., 2016). A study by Zhang et al.
found that among 30,223 adult participants of the BioMe Biobank,
218 (0.7%) individuals harbored expected PVs in BRCA1/2 (Abul-
Husn et al., 2019). However, mutations in these genes account for only
a fraction of hereditary BC cases, suggesting the involvement of other
genetic variants. In addition to BRCA1 and BRCA2, several other
susceptibility genes have been associated with BC, including TP53,
PALB2, CHEK2, ATM and so on (Foulkes, 2021), indicating that the
utilization of multi-gene panel testing could potentially confer
enhanced benefits to patients (Bono et al., 2021).

Currently the majority of the current understanding of genetic
susceptibility to BC is based on studies conducted in Western
populations. The genetic landscape of BC in China, a country with
a complex population structure and unique lifestyle factors, remains
relatively unexplored. Preliminary studies suggest that the prevalence of
inherited P/LP variants in highly penetrant predisposition genes among
Chinese BC patients may be similar to global estimates. The occurrence
of harmful BRCA1/2 mutations in the broad Chinese population has
been documented to vary between 0.29% and 1.10% (with BRCA1
variations between 0.02% and 0.34% and BRCA2 variations from 0.11%
to 0.27%) (Lei et al., 2022). In the Chinese population, research on
susceptibility genes beyond BRCA1 and BRCA2 is still evolving. In a
cohort of 7,657 unselected BC patients who tested negative forBRCA1/2
germline mutations, a multigene panel revealed that 29 cases (0.38%)
carried harmful RAD51D germline mutations (Chen et al., 2018). A
study by Li et al. have suggested the presence of additional susceptibility
genes, such as EFEMP1, contributing to BC risk among Chinese women
(Li et al., 2016).

Genetic diversity among different population in China may
result in different gene-disease associations, emphasizing the need
for population-specific genetic studies. In this study, we aim to fill a
significant gap in the existing literature by examining the spectrum
of hereditary gene variants that may trigger sporadic BC in the
northern Chinese population by testing three different gene panels
in a total of 253 patients.

Materials and methods

Patients and samples

A total of 253 women with breast cancer were recruited in
Department of Breast Surgery of First Hospital of Qinhuangdao,
from September 2020 to July 2022. Clinical information of
participants was obtained from Electronic Medical Record System
and questionnaire. 2–4 mL peripheral blood from each participant
was collected by EDTA anticoagulated tube.

DNA extraction and quality control

Genomic DNA (gDNA) of peripheral blood was extracted by
QIAamp DNA Blood Mini Kit (QIAGEN GmbH), then quantity
and purity were evaluated by Qubit 3.0 and NanoDrop
2000 spectrophotometer (Thermo Fisher Scientific, Wilmington,
United States). 300 ng gDNA per sample was mechanically
fragmented using an E220 Focused-ultrasonicator (Covaris, LLC.,
Massachusetts, United States). The Agilent 2100 Bioanalyzer
instrument with Agilent High Sensitivity DNA Kit (Agilent
Technologies, Inc., CA, United States) were used for sizing and
quantitation of fragmented DNA. The targeted size of fragmented
DNA was from 150 to 200 bp.

Library preparation and sequencing

10–100 ng fragmented DNA was used for library construction
using the SureSelect XT Low Input Reagent Kits (Agilent
Technologies, Inc., CA, United States), including end-repair, dA-
tail the 3′end of the DNA fragments, ligating the paired-end adaptor,
and pre-amplification. 500–2000ug DNA of the whole genomic
libraries were captured using Agilent SureSelect XT custom panel
probes and finally amplified. Three panels were used throughout this
study (Supplementary Table S1), encompassing 21 genes
(97 patients; 38.3%), 37 genes (66 patients; 26.1%) and 64 genes
(90 patients, 35.6%). The use of three panels is due to the upgrade in
the panel’s detection capability. Patients who were recruited after the
upgrade would use the new panel. After quality control and
quantification by Agilent 2100 Bioanalyzer and Qubit 3.0, the
libraries were sequenced on Illumina Nextseq CN500 platform
(Illumina Inc., CA, United States) in PE150 mode. All the
sequencing data were upload to SRA database with an accession
number PRJNA998571.

Bioinformatics analysis

Clean data was obtained following filtering adapter, low quality
reads and reads with proportion of N>10%. Reads were aligned to
the reference human genome (UCSC hg19) (Meyer et al., 2013)
using the Burrows-Wheeler Aligner v. 0.7.17 (Li and Durbin, 2009).
Next, the Picard and Genome Analysis Toolkit (GATK v.3.7)
(McKenna et al., 2010) method was adopted for duplicate
removal, local realignment and Base Quality Score Recalibration,
and generated the quality statistics, including mapped reads, mean
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mapping quality and mean coverage. Finally, the GATK
HaplotypeCaller was used for SNV and InDel identification.

Variants were annotated using the ANNOVAR software tool
(Wang et al., 2010). Annotations for mutation function (including
frameshift insertion/deletion, non-frameshift insertion/deletion,
synonymous SNV, nonsynonymous SNV, stopgain, stoploss),
mutation location [such as exonic, intronic, splicing, upstream,
downstream, 3′untranslated region (UTR), 5′UTR and so on],
amino acid changes, 1000 Genomes Project data, the Exome
Aggregation Consortium (ExAC) data, the NHLBI Exome
Sequencing Project (ESP) data and dbSNP reference number
were performed. Mutation databases including HGMD (http://
www.hgmd.cf.ac.uk/), and ClinVar (http://www.ncbi.nlm.nih.gov/
clinvar/) were also included in the analysis pipeline. In this study, in
order to making the interpretation of the sequence variants much
more efficient and conclusive, annotated variants were filtered about
mutation location (exonic and splicing region were reserved),
mutation function (synonymous SNV and UNKOWN were
removed) and allele frequency (≤0.05 AF in 1000 g, ESP and
ExAC database).

Germline mutation classification

All mutations were classified according to the American
College of Medical Genetics (ACMG) professional practice and

guidelines [five-tier mutation: P (Pathogenic); LP (Likely
Pathogenic); Variants of uncertain significance (VUS); LB
(Likely Benign); and B (Benign)] (Richards et al., 2015).
Mutation classification was generated by genetic Counselor and
verified by two curators.

Statistical analysis

Descriptive statistics were used to summarize the demographic
and clinical characteristics of the participants. Categorical
variables were analyzed using Chi-square tests, while
continuous variables were examined using Student’s t-tests or
Mann-Whitney U tests as appropriate. All tests were two-sided,
and a p-value <0.05 was considered statistically significant. All
statistical analyses were performed using the R statistical software
(version 4.0.2).

Results

Patient characteristics

The clinical profiles of 253 patients are detailed in Table 1.
Among these, 242 cases were diagnosed with sporadic breast
cancer, while the remaining 11 patients presented with a

TABLE 1 Clinical characteristics of 253 breast cancer.

Clinical characteristics Number (n = 253) P/LP Negative p-value

Age 0.865

Early-onset (≤40 years old) 25 (9.88%) 1 24

Late-onset (>40 years old) 228 (90.12%) 16 212

Mean ± SD 56.37 ± 12.14 55.88 ± 12.70 56.40 ± 12.13

Family history of breast cancer

Yes 11 (4.35%) 1 10 1

No 242 (95.65%) 16 226

Stage

0–2 165 (65.22%) 13 152 0.93

3–4 35 (13.83%) 2 33

Unknown 53 (20.95%) 2 51

Molecular Subtypes

Luminal A 71 (28.06%) 4 67 0.95

Luminal B 53 (20.95%) 4 49

HER2-enriched 58 (22.92%) 4 54

Triple-negative or basal-like 39 (15.42%) 4 35

Unknown 32 (12.65%) 1 31

Location 0.49

Bilateral 3 (1.19%) 1 2

Unilateral 250 (98.81%) 16 234
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familial history of the disease. The median age at diagnosis
across all patients was 58 years, with an interquartile range
(IQR) of 48–65 years. The patient cohort was stratified into two
groups based on the age at the time of diagnosis: 25 cases were

classified as early-onset (diagnosed before 40 years of age),
while the remaining 228 were designated as late-onset cases.
Notably, three patients were diagnosed with bilateral breast
cancer.

FIGURE 1
The mutations tested by 21-gene-panel in 253 cases. (A) The profile and distribution of these mutations. (B) The correlation analysis of these genes.
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Frequency of breast cancer predisposition
genes with rare variants

All rare variants identifiedwithin exonic and splicing regions were
filtered based on an allele frequency of ≤0.05, as per the 1000Genomes

Project, ESP, and ExAC databases. A total of 421 rare variants were
detected amongst the 253 patients with sporadic BC, consisting of
409 exonic and 12 splicing region variants. The exonic variants were
classified into several types: 372 nonsynonymous single-nucleotide
variants (SNVs), 7 stopgain, 11 frameshift deletions, 6 frameshift

FIGURE 2
The mutations tested by 37-gene-panel in 187 cases. (A) The profile and distribution of these mutations. (B) The correlation analysis of these genes.
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insertions, 5 nonframeshift deletions, 7 nonframeshift insertions, and
1 unidentified deletion. The frequency of rare variants within BC
predisposition genes is outlined in Supplementary Table S2 and
Figures 1–3. The most frequently mutated genes were ALK (20/90,

22.2%), BARD1 (14/90, 15.6%), and BRCA2 (38/253, 15.0%). We
identified 14 unique BRCA2 mutations in 38 cases (Figure 1A), with
these mutations exhibiting a mutual exclusivity withMLH1mutations
(Figure 1B, p < 0.1).

FIGURE 3
The mutations tested by 64-gene-panel in 90 cases. (A)The profile and distribution of these mutations. (B) The correlation analysis of these genes.
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ACMG level distribution of rare variants

Out of the 253 patients examined, 17 cases (17/253, 7%) carried
pathogenic/likely pathogenic (P/LP) variants. A total of 97 patients
(97/253, 38%) exhibited at least one variant of uncertain significance
(VUS), without any P/LP variants, while 109 cases (109/253, 43%)
harbored at least one benign/likely benign (B/LB) variant without
any P/LP variants or VUS (Figure 4A). Notably, in 30 BC patients
(30/253, 12%), no rare variants were detected.

Distribution of pathogenic and likely
pathogenic variants

The spectrum and details of the 17 identified pathogenic/
likely pathogenic (P/LP) variants are depicted in Figure 4B and
Table 2. To be specific, these P/LP variants includeNF1 c.C1381T,
RAD51D c.C562T, PALB2 c.C2257T, MUTYH c.850-2A>G, BLM
c.960-1G>A, PTEN c.211-2A>T, ATM c.2921+1G>T,
BRCA1 c.5015delT, CHEK2 c.C409T, MSH2 c.C1566A,

FIGURE 4
(A) Percentage of Beneficial/likely Beneficial (B/LB), Variants of uncertain significance (VUS), Pathogenic/Likely pathogenic (P/LP) and not recorded
(none) mutations. (B) The number of the Genes that carry P/LP mutations.

TABLE 2 Pathogenic and likely pathogenic variants identified in multi-gene panel testing.

Gene Alleles (ref/alt) Mutation type AA change Sample count 1000 g ExACALL ExAC_EAS ACMG Level

NF1 c.C1381T stopgain p.R461X 1 — — — Pathogenic

RAD51D c.C562T stopgain p.R188X 1 — 3.30E-05 0.0001 Pathogenic

PALB2 c.C2257T stopgain p.R753X 1 — 3.30E-05 — Pathogenic

MUTYH c.850-2A>G splicing — 2 0.00299521 0.001 0.0141 Pathogenic

BLM c.960-1G>A splicing — 1 — — — Pathogenic

PTEN c.211-2A>T splicing — 1 — — — Pathogenic

ATM c.2921 + 1G>T splicing — 1 — — — Pathogenic

BRCA1 c.5015delT frameshift deletion p.V1672fs 1 — — — Pathogenic

CHEK2 c.C409T stopgain p.R137X 1 — 3.30E-05 0 Pathogenic

MSH2 c.C1566A stopgain p.Y522X 1 — — — Pathogenic

RAD51D c.C184T stopgain p.Q62X 1 8.33E-06 0.0001 Likely Pathogenic

ATR c.2320delA frameshift deletion p.I774fs 1 0.0053 0.0039 Likely Pathogenic

BAP1 c.123-2A>C splicing NA 1 Likely Pathogenic

MUTYH c.C689T nonsynonymous SNV p.A230V 3 0.00139776 0.0004 0.0047 Likely Pathogenic

ATM c.1236-2A>T splicing 1 2.76E-05 0 Uncertain significance
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RAD51D c.C184T, ATR c.2320delA, BAP1 c.123-2A>C, MUTYH
c.C689T, ATM c.1236-2A>T. Of these, only one P/LP variant was
found in a BRCA gene (specifically BRCA1), which was a
frameshift deletion (BRCA1 c.5015delT) classified as a PV
according to the American College of Medical Genetics and
Genomics (ACMG). This variant was absent in the
1000 Genomes Project, ESP, and ExAC databases. The patient
harboring this BRCA1 PV had no family history of the disease
and was initially diagnosed with triple-negative breast cancer
(TNBC) at age 48, stage IIA. These findings further substantiate
the potential pathogenicity of the BRCA1 c.5015delT, variant in
sporadic BC cases. Additionally, of the 14 rare BRCA2 variants,
only one missense variant was classified as a variant of uncertain
significance (VUS), with the remaining 13 variants categorized as
benign or likely benign (B/LB).

WhileMUTYHmutations are typically associated with colon
cancer, increasing evidence suggests their pathogenic potential
in BC (Chen et al., 2020; Felicio et al., 2021). In this study, two
pathogenic/likely pathogenic (P/LP) MUTYH variants were
identified in five BC patients (Table 2). The MUTYH c.850-
2A>G variant, located in the splicing region, was found in two
patients in our cohort. This variant exhibited allele frequencies
of 0.003, 0.001, and 0.014 in the 1000 Genomes Project, ExAC_
ALL, and ExAC_EAS databases, respectively. Classified as a PV
by ACMG guidelines, it is commonly associated with MYH-
associated polyposis. Among the two patients carrying this
variant, one, a 49-year-old patient diagnosed with Luminal A

breast cancer, had no family history of the disease. The other, a
63-year-old patient diagnosed with basal-like breast cancer, had
a sister who was also a BC patient. TheMUTYH c.C689T variant,
found within the exonic region, was identified in three patients.
This variant displayed allele frequencies of 0.0014, 0.0004, and
0.0047 in the 1000 Genomes Project, ExAC_ALL, and ExAC_
EAS databases, respectively. While the ACMG guidelines list
MUTYH c.C689T as a likely pathogenic variant (LPV), the
ClinVar database classifies it as likely benign. Notably, none
of the three patients harboring this variant had a family history
of BC.

Distribution of variants of uncertain
significance in our cohort

A total of 97 distinct variants, annotated as variants of uncertain
significance (VUS) and located across 39 different genes, were
identified in 112 patients, as detailed in Supplementary Table S3.
Of these patients, one individual harbored four VUS, nine patients
carried three VUS, 29 patients exhibited two VUS, and the remaining
73 patients presented with a single VUS. Notably, the PTEN c.C804A
variant displayed the highest frequency, appearing in 36 patients
within our cohort. The allele frequencies of this variant were found to
be 0.0009 and 0.0006 in the ExAC_ALL and ExAC_EAS databases,
respectively. This significant contrast suggests a potentially critical
role for this variant in the oncogenesis of sporadic BC. Furthermore,

FIGURE 5
(A) Lollipop plot showing the location of ATM c.C8573T in ATM gene. (B) Protein conservation assessment of the amino acid affected by ATM
c.C8573T, which is emphasize by a red box. (C,D) The in silico protein model of wildtype (C) and mutated type (D).
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the ALK c.2760_2766del variant was found in six patients in our
cohort. This variant’s allele frequencies in the ExAC_ALL and ExAC_
EAS databases were 0.00008 and 0.0001, respectively. Intriguingly, all
patients carrying the ALK c.2760_2766del mutation also harbored at
least one other genetic mutation.

Reclassification of ATM c.1236-2A>T variant
as likely pathogenic based on ACMG criteria
and HGMD data

The ATM c.1236-2A>T variant, currently classified as a variant
of uncertain significance (VUS) by the American College of Medical
Genetics and Genomics (ACMG), has been associated with cancer
according to the high-confidence Human Gene Mutation Database
(HGMD). Moreover, this variant is predicted to undergo nonsense-
mediated decay, thus satisfying the PVS1 criterion for pathogenicity
as per ACMG guidelines. Its low frequency in the ExAC_EAS
database and its location within a highly conserved region
further fulfill the PM2 and PP3 criteria, respectively. Accordingly,
we propose a reclassification of ATM c.1236-2A>T as a LPV.

Implications of rare mutations for their
downstream protein structures

To identify significant rare mutations within the Chinese
population, we conducted an in-depth investigation of all yet-to-

be-reported variants without a reference number. Any variant that
was classified as Benign or Tolerate by the predictive software SIFT,
Polyphen2_HDIV, and Polyphen2_HVAR, failed to reach the
threshold (ClinPred >0.95, and + CADD-based scores >25),
located outside a functional domain, or were present in patients
who already had P/LP variants were excluded from further analysis.
The filtering process identified three rare variants for further
investigation, specifically ATM c.C8573T, CDKN1C c.C221T, and
MSH3 c.A2723T. To elucidate their biological implications, we
performed in silico protein modeling analysis.

The ATM c.C8573T variant resides in the Phosphatidylinositol
3- and 4-kinase domain, as illustrated in Figure 5A. This mutation
engenders a nonsynonymous Threonine to Isoleucine substitution
at the conserved position 2858, suggesting potential functional
impact on the resultant protein (Figure 5B). 3D protein model
prediction and energy change analysis indicate that the Threonine/
Isoleucine substitution resulted in a reduced inter-atomic distance in
the mutated domain (Figures 5C, D). This corresponds to a
mutation Cutoff Scanning Matrix (mCSM) protein stability score
of ΔΔG = −0.367 kcal/mol, indicating a potential decrease in
stability.

The CDKN1C c.C221T variant is situated in the Cyclin_
dependent kinase inhibitor domain (Figure 6A), leading to a
Proline to Leucine nonsynonymous mutation at a conserved
position 74 (Figure 6B). Analysis of the predicted 3D protein
model reveals a covalent linkage between the proline’s carbon
atom and the protein structure, maintaining an intact aromatic
ring in the wild-type protein (Figures 6C, D). However, this

FIGURE 6
(A) Lollipop plot showing the location of CDKN1C c.C221T in CDKN1C gene. (B) Protein conservation assessment of the amino acid affected by
CDKN1C c.C221T, which is emphasize by a red box. (C,D) The in silico protein model of wildtype (C) and mutated type (D).
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mutation disrupts the aromatic ring structure, resulting in a decrease
in protein stability (ΔΔG = −0.618 kcal/mol).

TheMSH3 c.A2723T variant is located within the MutS domain
V (Figure 7A) and introduces a Glutamine to Leucine
nonsynonymous mutation at protein position 908 (Figure 7B).
This mutation, occurring at a conserved site, results in an
unstable protein structure (ΔΔG = −0.324 kcal/mol) and alters
the inter-atomic distances between several amino acids (Figures
7C, D).

Discussion

In this study, we investigated the genetic landscape of BC in a
cohort of 253 patients, identifying significant genetic variants that
may contribute to disease susceptibility and progression. Our
results, which highlight the heterogeneity and complexity of BC
genetics, underscore the potential for personalized medicine in its
management.

Most cases in our cohort (northern Chinese population) are
sporadic BC, and the top 3 frequent mutated genes in were
MUTYH (5/17, 22.2%), BARD1 (14/90, 15.6%) and BRCA2 (38/
253, 15.0%), and the frequency of top 2 P/LP variants areMUTYH
(5/187, 2.26%) and RAD51D (2/90, 2.22%). In Yi’s research, out of
the 27 individuals studied, 9 (constituting 13.6% of the sample

population) were identified as carriers of the TP53 gene mutation,
5 (representing 7.6%) carried the MSH6 mutation, and another 5
(equivalent to 7.6%) were found to carry the BRCA1 mutation (Yi
et al., 2019), while no P/LP variants were found. Another research
on Chinese population focused on the prevalence and
characteristics of BRCA1/2 germline mutations, and BRCA1/2
mutation shows low frequency (2%) in sporadic BC (Zhang
et al., 2016). Through the analysis of our multi-omics TNBC
cohort consisting of 325 individuals, Ma et al. mapped the
range of germline variants in TNBC to assess their biological
and clinical impacts, with the most common mutations
identified in the genes BRCA1 (7.4%), RAD51D (2.8%), and
BRCA2 (2.2%) (Ma et al., 2021). A research by Su et al. also
reported the frequency of RAD51D is 1.3% in high-risk BC patients
(Su et al., 2021). In Hongkong population, RAD51D is one of the
most common mutation gene (0.8%) (Kwong et al., 2020). The
frequency of MUTYH in Chen’s research is 0.7% (Chen et al.,
2020), while in Jian’s research, it is 1.7% (Jian et al., 2017). By
testing 30 cancer susceptible genes in 384 Chinese subjects with
2 high-risk factors, Lang et al. reported that both MUTHY and
RAD51D have pathogenic/likely-pathogenic, with frequency of
2.9% and 0.5% (Lang et al., 2020). All these results suggest that
genes that carry P/LP variants and their frequency are slightly
different among Chinese population in different area, and may be
affected by the high-risk factors of BC, indicating that the multi-

FIGURE 7
(A) Lollipop plot showing the location of MSH3 c.A2723T in MSH3 gene. (B) Protein conservation assessment of the amino acid affected by
MSH3 c.A2723T, which is emphasize by a red box. (C,D) The in silico protein model of wildtype (C) and mutated type (D).
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gene test screening for BC patients are important any may found
new target for the early screening or therapies.

ATM is a gene that involved in DNA double-strand break repair
pathways, and usually the PVs in ATM are considered to be
associated with a moderate risk of BC (Graffeo et al., 2022). The
Phosphatidylinositol 3- and 4-kinase domain (also called ATM
kinase domain) is a kinase domain that shares significantly
homologous structure to that of PI3K, and activated ATM
protein use this kinase activity to phosphorylate a series of
downstream targets that are essential for DNA-damage repair
(Phan and Rezaeian, 2021). The instability of the kinase domain
caused by ATM c.C8573T (p.T2858I) may affect this domain and
eventually the dysfunction of down-stream DNA-damage response.
Although currently there is no record for this site in Clinvar, the
nearby annotated mutation sites show the potential influence on the
function of this protein. When only considering pathogenic, likely
pathogenic, benign, and likely pathogenic, ATM c.8564G>T
(p.S2855I) and ATM c.8565T>A/G (p.S2855R) are the closest
mutation site near ATM c.C8573T, and are Likely pathogenic and
Pathogenic/Likely pathogenic, respectively. A total of
14 Pathogenic/Likely pathogenic or Likely pathogenic and
1 Likely benign were found in this domain. A mutation on the
same amino acid site ATM: c.8572A>G (p.T2858A) is annotated as
uncertain significance. Hence, based on the current information,
though the significance of ATM c.C8573T is not clearly identified,
but based on the nearby mutation and the fact that it is the only
mutation in that patient of our study, it may serve as a rare PV in at
least Chinese population.

CDKN1C, is a gene that codes for the Cyclin-dependent kinase
inhibitor p57Kip2. This protein can obstruct the interaction domain
on cyclins, preventing ATP binding and catalytic function, which in
turn leads to the inhibition of the cyclin/CDK complex and slows
down cell growth (Lai et al., 2021). As a gene associated with
suppressing tumor growth, CDKN1C is linked to a variety of
human cancers and Beckwith-Wiedemann Syndrome. Prior
research has attempted to explore the relationship between
CDKN1C methylation and BC (Zohny et al., 2017). However,
how CDKN1C variants may affect BC oncogenesis is not well-
studied. By searching the nearby variants of CDKN1C c.C221T,
only one pathogenic, one likely pathogenic and one conflicting
interpretations of pathogenicity annotation were found in this
domain, and the conditions were all annotated to Beckwith-
Wiedemann syndrome. The patient carrying this variant is a 57-
year-old female with Luminal B breast cancer on stage IA. Though
this variant is the only one she carries based on our testing panel,
whether this variant somehow led to breast remain unclear.

MSH3 is a crucial contributor to the mismatch repair (MMR)
pathways, which is an essential biological process that exerts
significant control over cell cycle regulation and apoptosis, thereby
mitigating various forms of DNA damage (Brown et al., 2003). In
the absence of appropriate repair mechanisms, these mismatches may
increase spontaneous mutation rates, ultimately fostering microsatellite
repeat instability in cells and promoting carcinogenesis. Some potentially
functional variants ofMSH3may influence the DNA repair capacity and
thereby predispose individuals to a variety of cancers. For example,
rs26279 (MSH3 c.3133G>A) has been frequently studied and implicated
in carcinogenesis in recent years (Miao et al., 2015). However, the
potential influence of MSH3 c.A2723T variant have not been recorded.

Another mutation on the same site MSH3 A2723C (p.Gln908Pro) is
related to Hereditary cancer-predisposing syndrome but is considered
uncertain significance. The same situation can be found on all mutations
that around this site. Hence,MSH3 c.A2723Tmay cause a potential effect
on carcinogenesis of BC, but further studies are still needed.

While our study provides valuable insights into the mutation
frequency among women with BC in northern Chinese population,
it is not without limitations. First, our study focuses on a specific
geographical location, which could limit the generalizability of our
findings to other population groups. This is particularly important
given the genetic heterogeneity of BC. Second, our sample size
relatively small when considering the broad spectrum of BC patients
globally, which might limit the statistical power of our results. Third,
our study relies on genomic DNA extracted from peripheral blood
and not from the tumor itself, which could potentially miss tumor-
specific mutations and underestimate intra-tumor heterogeneity.
Lastly, while we utilized stringent filtering criteria to identify
relevant mutations, the potential for false-positive or false-
negative findings remains, due to the inherent complexities of
genomic analysis. Despite these limitations, our study lays crucial
groundwork for further research on genetic predisposition to BC in
this specific population.
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