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Editorial on the Research Topic
Computational methods to analyze RNA data for human diseases

RNA, as a type of nucleic acid, forms one of the four fundamental macromolecules
crucial for all known life forms. Unlike DNA (Deoxyribonucleic Acid), which typically serves
as the primary genetic material in cells, many viruses use RNA as their genetic material. RNA
viruses are known for their ability to mutate rapidly, and the emergence of novel strains and
variants (Yin et al., 2020) is potentially responsible for a wide range of diseases, leading to
epidemics or pandemics such as swine-origin flu pandemic (Yin et al., 2018) and COVID-19
(V’kovski et al., 2021; Yin et al., 2018; Ding and Xu, 2023). In addition, RNA plays critical
roles in various biological processes, including gene expression, protein synthesis (Frye et al.,
2018). Understanding the mechanisms and roles of RNA in disease pathogenesis and
progression is crucial for advancing our knowledge of human biology and developing
optimized therapeutic strategies to combat RNA-related diseases. Computational
approaches like machine learning and statistics, have captured much attention in this
field due to increasingly available diverse RNA datasets (Yin et al., 2022; Li et al., 2023; Yin
et al., 2023). This Research Topic of Frontiers in Genetics features a Research Topic of the
latest advances in applying and developing various kinds of computational methods to
analyze RNA data towards non-coding RNAs (e.g., miRNA, lncRNA) and RNA viruses (e.g.,
influenza, coronavirus).

The ncRNAs are crucial for regulating gene expression at both the transcriptional and
posttranscriptional levels within the transcriptome, without encoding proteins (Winkle et al.,
2021). In particular, miRNAs are a type of small, single-stranded noncoding RNAs, about
19–25 nucleotides long, that have highly conserved sequences and can regulate gene
expression at the post-transcriptional level. Through extensive research on miRNA in
the context of development and disease, it has emerged as a compelling target for innovative
therapeutic approaches (Shen et al., 2020a; Shen et al., 2020b; Li Peng et al., 2022). In this
Research Topic, Luo et al. presented a comprehensive perspective of recent progress in
miRNA-targeted therapeutics employing machine learning techniques. In addition to
discussing resources and preprocessing of pharmacogenomic data, they also presented
the main machine learning algorithms employed in identifying miRNA-disease associations.
Given the limitations of current methods in constructing negative sample sets, Wei et al.
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introduced a clustering-based sampling approach called CSMDA to
predict miRNA-disease associations. This method aims to address
the Research Topic associated with negative sample selection in the
context of miRNA-disease association prediction. Under a five-fold
cross-validation, CSMDA computed an impressive Area Under the
Curve (AUC) of 0.9610. Additionally, through validation with the
dbDEMC database, it was confirmed that all predicted miRNAs,
except hsa-mir-34c, were associated with colon cancer.

LncRNAs are a subset of ncRNAs characterized by their length,
which exceeds 200 nucleotides. They have important functions in
controlling gene expression at various levels, such as translational,
transcriptional, and epigenetic processes (Qin et al., 2020).
LncRNAs are crucial in controlling genes and proteins related to
a range of human diseases like cancer (Xiao et al., 2018), digestive
system Research Topic, and heart problems. Their role in disease
regulation is well-established and holds promise for future therapies.
Yao et al. proposed a computational model called GCHIRFLDA,
which utilizes geometric complement heterogeneous information
and random forest to predict lncRNA-disease associations. Under
five-fold cross-validation, GCHIRFLDA achieved impressive
performance metrics with an AUC of 0.9897 and an AUPR of 0.
7040. The study demonstrated that 18 of the predicted lncRNAs
were validated through records present in databases or published
literature. Meanwhile, the presence of inherent sparsity in known
heterogeneous bio-data poses a challenge for computational
methods aiming to enhance the accuracy of prediction. Thus,
Zhang et al. explored a novel multiple mechanisms to discover
underlying lncRNA-disease associations (MM-LDA). By integrating
the graph attention network (GAT) and inductive matrix
completion (IMC), this approach boosts the prediction accuracy.
Firstly, a multiple-operator aggregation was created as part of the
n-heads attention mechanism in the GAT. Then, IMC was
incorporated into the improved node feature, and subsequently,
the LDA network underwent a reconstruction to address the cold
start problem caused by insufficient data in either whole rows or
columns of a known association matrix. Under 5-fold cross-
validation, an AUC of 0.9395 and an AUPR of 0.8057 were
computed. The results from MM-LDA suggested a potential link
between HOTAIR and HTTAS and gastric cancer.

In recent years, there has been the proposal of a hypothesis about
competing endogenous RNA (ceRNA) network (Salmena et al., 2011).
Under this hypothesis, lncRNAs possess the capability to function as
endogenous molecular sponges for miRNAs, indirectly regulating the
expression of messenger RNAs (mRNAs). The intricate nature of the
lncRNA-miRNA-mRNA network makes their dysregulation closely
linked to the progression and onset of various human diseases. For
example, Ye et al. (2019) discovered that the lncRNA MIAT increases
the expression of CD47 by acting as a sponge formiR-149-5p, leading to
the inhibition of efferocytosis in advanced atherosclerosis. Yang et al.
(2021) conducted a study uncovering the role of lncRNA XIST as a
ceRNA, promoting atherosclerosis by upregulating TLR4 expression
through the mediation of miR-599. Additionally, they identified several
putative ceRNAnetworks, including those associated with implantation
failure (Feng et al., 2018), polycystic ovary syndrome (Ma et al., 2021),
and epithelial ovarian cancer (Zhao et al., 2019). Chen et al. employed
the CIBERSORT algorithm to investigate the potential ceRNA-related
mechanism of Peripheral arterial occlusive disease (PAOD) and to
identify the associated patterns of immune cell infiltration. They

developed an immune-related core ceRNA network that offered
valuable insights into the molecular mechanisms underlying
Peripheral Arterial Occlusive Disease (PAOD). This network
consisting of CREB1, LINC00221, miR-20b-5p, and miR-17-5p,
along with the infiltrating immune cells, specifically
M1 macrophages and monocytes. Luo et al. introduced a
lncRNA–mRNA network based on POI (POILMN) to identify
essential lncRNAs. This research yielded a Research Topic of
288 differentially expressed mRNAs and 244 differentially expressed
lncRNA. Ultimately, Through the application of topological analysis,
POILMN identified four intersecting lncRNAs based on two
centralities, namely, degree and betweenness.

CircRNA is a class of ncRNAs that forms a covalently closed
loop structures (Li et al., 2020; Xiao et al., 2020; Peng et al., 2022;
Peng et al., 2023). CircRNA molecules have been observed or
artificially synthesized in various organisms, including mammals
(Xu and Zhang, 2021) and viruses (Tan and Lim, 2021). The
interactions between miRNAs and circRNAs have been
demonstrated to modify gene expression and play a regulatory
role in diseases. Therefore, He et al. introduced a novel approach
called GCNCMI, which utilizes a graph convolutional neural (GCN)
network to uncover latent associations between miRNAs and
circRNAs. GCNCMI initially examines the underlying
connections between neighboring nodes in the GCN network.
Afterward, it iteratively spreads this connection information
across the graph convolutional layers. Lastly, the embeddings
produced by each layer were combined to output the ultimate
prediction results. GCNCMI achieved an AUC of 0.9312 and an
AUPR of 0.9412. The results from GCNCMI showed that
8 interactions involving hsa-miR-149-5p and 7 interactions
involving hsa-miR-622 were validated.

Additionally, mitochondrial dysfunction could be among the
molecular mechanisms implicated in obstructive sleep apnea (OSA)
and its concurrent conditions. Despite several studies reporting the
involvement of various proteins and miRNAs in OSA (Targa et al.,
2020; Pinilla et al., 2021), the impact of OSA on genes and pathways,
particularly concerning mitochondrial dysfunction, remains largely
unexplored. In a previous study by Li et al. (2017), differentially
expressed miRNAs were reported in OSA, but their specific
association with mitochondrial dysfunction was not established.
Liu et al.developed a novel diagnostic model consisting of a four-
gene signature related to mitochondrial dysfunction. Using gene
expression related to mitochondrial dysfunction, all samples were
categorized into two clusters, with an additional subdivision of three
clusters identified specifically among the samples with OSA. In the
OSA samples compared to control samples, Significant differences
were noted in the levels of M0 and M1 macrophages as well as
plasma cells. Additionally, within the clusters associated with
mitochondrial dysfunction in OSA samples, various immune cell
types, particularly T cells, showed significant differences.

Although multiple databases offer information on virus-host
protein interactions, they often lack detailed information about
strain-specific virulence factors or the specific protein domains
implicated in the interactions (Yin et al., 2017; Yin et al., 2021).
Several databases may have incomplete representation coverage of
influenza strains of influenza strains due to the challenge of sifting
through extensive literature to gather comprehensive information.
No existing database has provided complete records of strain-
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specific protein-protein interactions for all types of Influenza A
viruses. In particular, Ng et al. presented an innovative network that
predicts domain-domain interactions between proteins from the
mouse host and influenza A virus (IAV). By incorporating vital
virulence details like lethal dose, this network facilitates a methodical
exploration of disease factors. They created a network of interacting
protein domains from both mouse and viral proteins, representing
them as nodes and using weighted edges to show their interactions.

In summary, this Research Topic centers on the recent progress
in utilizing and refining diverse computational methods, including
machine learning and statistical techniques, to analyze RNA data
related to RNA viruses and non-coding RNA. As a result, these
analyses have delved into the biological disease mechanisms and
aided in the understanding of human diseases, leading to improved
preventive measures, diagnoses, and treatments.

Author contributions

PD: Conceptualization, Formal Analysis, Writing–original draft,
Writing–review and editing. MZ: Conceptualization, Formal
Analysis, Writing–original draft, Writing–review and editing. RY:
Conceptualization, Funding acquisition, Writing–original draft,
Writing–review and editing.

Funding

This study was partially supported by grants from Centers for
Disease Control and Prevention (1U18DP006512), National
Institute of Environmental Health Sciences (R21ES032762) and
the NIH National Center for Advancing Translational Sciences
(UL1TR001427).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Ding, P., and Xu, R. (2023). Causal association of COVID-19 with brain structure
changes: findings from a non-overlapping 2-sample mendelian randomization study.
medRxiv 2023.07.16.23292735.

Feng, C., Shen, J. M., Lv, P. P., Jin, M., Wang, L. Q., Rao, J. P., et al. (2018).
Construction of implantation failure related lncRNA-mRNAnetwork and identification
of lncRNA biomarkers for predicting endometrial receptivity. Int. J. Biol. Sci. 14,
1361–1377. doi:10.7150/ijbs.25081

Frye, M., Harada, B. T., Behm, M., and He, C. (2018). RNA modifications modulate
gene expression during development. Science 361, 1346–1349. doi:10.1126/science.
aau1646

Li, G., Luo, J., Wang, D., Liang, C., Xiao, Q., Ding, P., et al. (2020). Potential circRNA-
disease association prediction using DeepWalk and network consistency projection.
J. Biomed. Inf. 112, 103624. doi:10.1016/j.jbi.2020.103624

Li, K., Wei, P., Qin, Y., and Wei, Y. (2017). MicroRNA expression profiling and
bioinformatics analysis of dysregulated microRNAs in obstructive sleep apnea patients.
Medicine 96, e7917. doi:10.1097/MD.0000000000007917

Li, M., Zhao, B., Yin, R., Lu, C., Guo, F., and Zeng, M. J. (2023). GraphLncLoc: long
non-coding RNA subcellular localization prediction using graph convolutional
networks based on sequence to graph transformation. Briefings Bioinforma. 24,
bbac565. doi:10.1093/bib/bbac565

Li Peng, Y. T., Huang, L., Yang, L., Fu, X., and Chen, X. (2022). Daestb: inferring
associations of small molecule–miRNA via a scalable tree boosting model based on deep
autoencoder. Briefings Bioinforma. 23, bbac478. doi:10.1093/bib/bbac478

Ma, Y., Ma, L., Cao, Y., and Zhai, J. (2021). Construction of a ceRNA-based lncRNA-
mRNA network to identify functional lncRNAs in polycystic ovarian syndrome. Aging
(Albany NY) 13, 8481–8496. doi:10.18632/aging.202659

Peng, L., Yang, C., Chen, Y., and Liu, W. (2023). Predicting CircRNA-disease
associations via feature convolution learning with heterogeneous graph attention
network. IEEE J. Biomed. Health Inf. 27, 3072–3082. doi:10.1109/JBHI.2023.3260863

Peng, L., Yang, C., Huang, L., Chen, X., Fu, X., and Liu, W. (2022). Rnmflp: predicting
circRNA–disease associations based on robust nonnegative matrix factorization and
label propagation. Briefings Bioinforma. 23, bbac155. doi:10.1093/bib/bbac155

Pinilla, L., Barbe, F., and De Gonzalo-Calvo, D. J. (2021). MicroRNAs to guide
medical decision-making in obstructive sleep apnea: A review. Sleep. Med. Rev. 59,
101458. doi:10.1016/j.smrv.2021.101458

Qin, T., Li, J., and Zhang, K. Q. (2020). Structure, regulation, and function of linear and
circular long non-coding RNAs. Front. Genet. 11, 150. doi:10.3389/fgene.2020.00150

Salmena, L., Poliseno, L., Tay, Y., Kats, L., and Pandolfi, P. P. (2011). A ceRNA
hypothesis: the rosetta stone of a hidden RNA language? Cell 146, 353–358. doi:10.1016/
j.cell.2011.07.014

Shen, C., Luo, J., Lai, Z., and Ding, P. (2020a). Multiview joint learning-based method
for identifying small-molecule-associated MiRNAs by integrating pharmacological,
genomics, and network knowledge. J. Chem. Inf. Model. 60, 4085–4097. doi:10.1021/
acs.jcim.0c00244

Shen, C., Luo, J., Ouyang, W., Ding, P., and Wu, H. (2020b). Identification of small
molecule–miRNA associations with graph regularization techniques in heterogeneous
networks. J. Chem. Inf. Model. 60, 6709–6721. doi:10.1021/acs.jcim.0c00975

Tan, K. E., and Lim, Y. (2021). Viruses join the circular RNA world. FEBS J. 288,
4488–4502. doi:10.1111/febs.15639

Targa, A., Dakterzada, F., Benítez, I., De Gonzalo-Calvo, D., Moncusí-Moix, A.,
López, R., et al. (2020). Circulating MicroRNA profile associated with obstructive sleep
apnea in alzheimer’s disease. Mol. Neurobiol. 57, 4363–4372. doi:10.1007/s12035-020-
02031-z

V’kovski, P., Kratzel, A., Steiner, S., Stalder, H., and Thiel, V. (2021). Coronavirus
biology and replication: implications for SARS-CoV-2. Nat. Rev. Microbiol. 19,
155–170. doi:10.1038/s41579-020-00468-6

Winkle, M., El-Daly, S. M., Fabbri, M., and Calin, G. (2021). Noncoding RNA
therapeutics—challenges and potential solutions. Nat. Rev. Drug Discov. 20, 629–651.
doi:10.1038/s41573-021-00219-z

Xiao, Q., Luo, J., Liang, C., Li, G., Cai, J., Ding, P., et al. (2018). Identifying lncRNA
and mRNA co-expression modules from matched expression data in ovarian cancer.
IEEE/ACM Trans. Comput. Biol. Bioinforma. 17, 623–634. doi:10.1109/TCBB.2018.
2864129

Xiao, Q., Yu, H., Zhong, J., Liang, C., Li, G., Ding, P., et al. (2020). An in-silicomethod
with graph-based multi-label learning for large-scale prediction of circRNA-disease
associations. Genomics 112, 3407–3415. doi:10.1016/j.ygeno.2020.06.017

Xu, C., and Zhang, J. (2021). Mammalian circular RNAs result largely from splicing
errors. Cell Rep. 36, 109439. doi:10.1016/j.celrep.2021.109439

Yang, K., Xue, Y., and Gao, X. (2021). LncRNA XIST promotes atherosclerosis by
regulating miR-599/TLR4 axis. Inflammation 44, 965–973. doi:10.1007/s10753-020-
01391-x

Ye, Z. M., Yang, S., Xia, Y. P., Hu, R. T., Chen, S., Li, B. W., et al. (2019). LncRNA
MIAT sponges miR-149-5p to inhibit efferocytosis in advanced atherosclerosis through
CD47 upregulation. Cell death Dis. 10, 138. doi:10.1038/s41419-019-1409-4

Frontiers in Genetics frontiersin.org03

Ding et al. 10.3389/fgene.2023.1270334

https://www.frontiersin.org/articles/10.3389/fbinf.2023.1123993/full
https://doi.org/10.7150/ijbs.25081
https://doi.org/10.1126/science.aau1646
https://doi.org/10.1126/science.aau1646
https://doi.org/10.1016/j.jbi.2020.103624
https://doi.org/10.1097/MD.0000000000007917
https://doi.org/10.1093/bib/bbac565
https://doi.org/10.1093/bib/bbac478
https://doi.org/10.18632/aging.202659
https://doi.org/10.1109/JBHI.2023.3260863
https://doi.org/10.1093/bib/bbac155
https://doi.org/10.1016/j.smrv.2021.101458
https://doi.org/10.3389/fgene.2020.00150
https://doi.org/10.1016/j.cell.2011.07.014
https://doi.org/10.1016/j.cell.2011.07.014
https://doi.org/10.1021/acs.jcim.0c00244
https://doi.org/10.1021/acs.jcim.0c00244
https://doi.org/10.1021/acs.jcim.0c00975
https://doi.org/10.1111/febs.15639
https://doi.org/10.1007/s12035-020-02031-z
https://doi.org/10.1007/s12035-020-02031-z
https://doi.org/10.1038/s41579-020-00468-6
https://doi.org/10.1038/s41573-021-00219-z
https://doi.org/10.1109/TCBB.2018.2864129
https://doi.org/10.1109/TCBB.2018.2864129
https://doi.org/10.1016/j.ygeno.2020.06.017
https://doi.org/10.1016/j.celrep.2021.109439
https://doi.org/10.1007/s10753-020-01391-x
https://doi.org/10.1007/s10753-020-01391-x
https://doi.org/10.1038/s41419-019-1409-4
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1270334


Yin, R., Luo, Z., Zhuang, P., Lin, Z., and Kwoh, C. (2021). VirPreNet: a weighted
ensemble convolutional neural network for the virulence prediction of influenza A virus
using all eight segments. Bioinformatics 37, 737–743. doi:10.1093/bioinformatics/
btaa901

Yin, R., Luo, Z., Zhuang, P., Zeng, M., Li, M., Lin, Z., et al. (2023). ViPal: a framework
for virulence prediction of influenza viruses with prior viral knowledge using genomic
sequences. J. Biomed. Inf. 142, 104388. doi:10.1016/j.jbi.2023.104388

Yin, R., Luusua, E., Dabrowski, J., Zhang, Y., and Kwoh, C. (2020). Tempel: time-
series mutation prediction of influenza A viruses via attention-based recurrent neural
networks. Bioinformatics 36, 2697–2704. doi:10.1093/bioinformatics/btaa050

Yin, R., Tran, V. H., Zhou, X., Zheng, J., and Kwoh, C. (2018). Predicting antigenic
variants of H1N1 influenza virus based on epidemics and pandemics using a stacking
model. PloS one 13, e0207777. doi:10.1371/journal.pone.0207777

Yin, R., Zhou, X., Ivan, F. X., Zheng, J., Chow, V. T., and Kwoh, C. K. (2017).
“Identification of potential critical virulent sites based on hemagglutinin of
influenza a virus in past pandemic strains,” in Proceedings of the 6th
International Conference on Bioinformatics and Biomedical Science, Singapore,
June 22 - 24, 2017, 30–36.

Yin, R., Zhu, X., Zeng, M., Wu, P., Li, M., and Kwoh, C. (2022). A framework
for predicting variable-length epitopes of human-adapted viruses using
machine learning methods. Briefings Bioinforma. 23, bbac281. doi:10.1093/
bib/bbac281

Zhao, X., Tang, D. Y., Zuo, X., Zhang, T. D., and Wang, C. (2019). Identification
of lncRNA–miRNA–mRNA regulatory network associated with epithelial ovarian
cancer cisplatin-resistant. J. Cell. physiology 234, 19886–19894. doi:10.1002/jcp.
28587

Frontiers in Genetics frontiersin.org04

Ding et al. 10.3389/fgene.2023.1270334

https://doi.org/10.1093/bioinformatics/btaa901
https://doi.org/10.1093/bioinformatics/btaa901
https://doi.org/10.1016/j.jbi.2023.104388
https://doi.org/10.1093/bioinformatics/btaa050
https://doi.org/10.1371/journal.pone.0207777
https://doi.org/10.1093/bib/bbac281
https://doi.org/10.1093/bib/bbac281
https://doi.org/10.1002/jcp.28587
https://doi.org/10.1002/jcp.28587
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1270334

	Editorial: Computational methods to analyze RNA data for human diseases
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


