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Background: Intellectual disability (ID) is defined by cognitive and social
adaptation defects. Variants in the SYNGAP1 gene, which encodes the
brain-specific cytoplasmic protein SYNGAP1, are commonly associated with
ID. The aim of this study was to identify novel SYNGAP1 gene variants in
Chinese individuals with ID and evaluate the pathogenicity of the detected
variants.

Methods: Whole exome sequencing (WES) was performed on 113 patients
diagnosed with ID. In the study, two de novo variants in SYNGAP1 were
identified. Sanger sequencing was used to confirm these variants. Minigene
assays were used to verify whether the de novo intronic variant in SYNGAP1
influenced the normal splicing of mRNA.

Results: Two de novo heterozygous pathogenic variants in SYNGAP1, c.333del
and c.664-2A>G, were identified in two ID patients separately. The c.333del
variant has been reported previously as a de novo finding in a child with ID,
while the c.664-2A>G variant was novel de novo intronic variant, which has not
been reported in the literature. Functional studies showed that c.664-2A>G could
cause aberrant splicing, resulting in exon 7 skipping and a 16bp deletion within
exon 7.

Conclusion: We identified two de novo pathogenic heterozygous variants in
SYNGAP1 in two patients with ID, among which the c.664-2A>G variant was a
novel de novo pathogenic variant. Our findings further enrich the variant
spectrum of the SYNGAP1 gene and provide a research basis for the genetic
diagnosis of ID.
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Introduction

Intellectual disability (ID) is characterized by cognitive and social adaptation defects,
which typically occur before the age of 18 (Chelly et al., 2006). ID is the most common severe
disability in children, affecting approximately 1%–3% of the population (Goldenberg and
Saugier-Veber, 2010). ID is classified as either a syndromic or non-syndromic (NSID) form.
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The majority of ID patients have the NSID form of the disease,
which is mainly characterized by the lack of relevant morphological,
radiological, and metabolic features (Hane et al., 1996). ID patients
often need lifelong rehabilitation support treatment, causing
substantial psychological and economic burdens for families and
society. Determining the genetic andmolecular basis of ID remains a
significant challenge in neuroscience.

The SYNGAP1 gene encodes the brain-specific RAS GTPase-
activating protein SYNGAP1, which is an important component
of the N-methyl-D-aspartate receptor (NMDA) complex and
plays a pivotal role in neuronal synaptic development,
structure, and plasticity (Clement et al., 2012). De novo
variants of SYNGAP1 are a common cause of NSID, autism
spectrum disorders (ASD), and epilepsy (Berryer et al., 2013;
Mignot et al., 2016). De novo nonsense variants in SYNGAP1
cause haploinsufficiency, resulting in a neurodevelopmental
disorder known as intellectual developmental disorder (OMIM
#612621), with phenotypes including ID, motor disorders, and
epilepsy. The effects of these variants demonstrate the
importance of SYNGAP1 in developing the nervous system
and brain (Agarwal et al., 2019). Currently, approximately
0.7%–1% of ID cases are caused by SYNGAP1 variants
(Mignot et al., 2016).

In this study, we identified two de novo heterozygous
pathogenic variants in the SYNGAP1, c. 333del and c.664-
2A>G, in two patients with ID, among which the c.664-2A>G
variant was a novel de novo pathogenic variant. The patients
exhibited generalized developmental delay, motor retardation,
hypotonia, and severe language impairment. To assess the
impact of c.664-2A>G variant on splicing, we performed a
minigene splicing assay. We found that the c.664-2A>G
variant causes aberrant splicing, which would result in
impaired function of the SYNGAP1 protein and consequently
contribute to the occurrence of ID.

Methods and materials

Subjects

Two female patients from unrelated families were diagnosed
with intellectual developmental disorder from a clinical cohort
of 113 cases with ID from between January 2019 and January
2023 at Qilu Hospital of Shandong University. All the patients
were diagnosed by experienced experts of the hospital according
to the DSM-5 criteria. Among these patients with ID, 25 cases
were combined with epilepsy and 49 cases were combined with
other structural anomalies. The age of the children ranged from
12 months to 18 years, with a median age of 8 years. The
etiology of these patients was unknown. All of these patients
underwent karyotyping and chromosome microarray (CMA)
analysis, and these results were inconclusive, following these
samples were processed for WES. We collected peripheral blood
and clinical information from their families. The families
accepted the inheritance consultation and signed the
informed consent form before the genetic test. This study
was authorized by the Ethics Committee of Qilu Hospital of
Shandong University.

DNA extraction and whole exome
sequencing (WES)

The genomic DNA for sequencing was obtained from peripheral
blood. The extraction steps were conducted according to the
instructions of the DNA extraction kit (Tiangen Biotech). WES was
performed on the DNA from the affected individual and sequenced on
NovaSeq 6000 platforms (Illumina) with 150 bp paired-end reads.
Reads data were aligned with the GRCh37/hg19 human reference
sequence. The single-nucleotide variants (SNVs) and other variants
were called with the Genome Analysis Toolkit (GATK). The variants
were annotated using Annovar software. During the annotation, several
public databases such as Clinvar, gnomAD, PubMed, HGMD, dbNSFP,
etc., were used. Variants with allele frequencies higher than 1% in any
public databases (ExACBrowser and gnomAD)were excluded.Denovo
variants were analyzed from sequencing data by DeNovoGear software
(Ramu et al., 2013). The candidate variants were confirmed in the
patients with ID by Sanger sequencing.

Minigene assay

The SYNGAP1 c.664-2A>G variant is located at the splice-
acceptor site of exon 7. We obtained the SYNGAP1 fragment
[intron6 (192bp)-Exon7 (99bp)-intron7 (547bp)] with restriction
sites (KpnI and BamHI) from human genomic DNA by nested PCR
amplification and then cloned it into a pcMINI plasmid using
nucleic acid endonuclease and DNA ligase. The pcMINI vector
contain ExonA-IntronA-multiple cloning site-IntronB-ExonB
(Bioeagle Biotech Company). Exon A and Exon B simulate exon
6 and exon 8, respectively. The pcMINI-SYNGAP1-MUT (c.664-
2A>G) plasmids were produced using a QuikChange Lightning Site-
Directed Mutagenesis Kit (Agilent) with pcMINI-SYNGAP1-WT
(wild-type) plasmid as the template. Both WT and mutant plasmids
contained the whole sequence of exon 7 and a portion of the
upstream and downstream intron sequences. The recombinant
plasmids were transiently transfected into HEK293T and HeLa
cells according to the transfection reagent instructions. After the
transfected cells were cultured for 48 h, total RNA was extracted
with Trizol (TaKaRa), and cDNA was acquired with HifairTM 1st
Strand cDNA Synthesis SuperMix (TEASEN). The RT-PCR
products was analyzed by electrophoresis on 2% agarose gels
containing ethidium bromide and visualized by exposure to
ultraviolet light. Each DNA band was purified by DNA Gel
Exctration Kit (SIMGEN). Direct sequencing of purified RT-PCR
products was performed with the Big Dye Terminator Cycler
Sequencing Ready Reaction Kit (Applied Biosystems) on the
ABI3730xl Genetic Analyzer (Applied Biosystems). Primers used
for minigene assay of SYNGAP1 were as follows: SYNGAP1-F1: 5′-
AACTCCTGGGCTCAAGTGAC-3′; SYNGAP1-R1: 5′-TGGGTA
AAGCTTGGCCAGAT-3′; SYNGAP1-F2:5′-AGCACTTTGGGAGG
CTGAAT-3′; SYNGAP1-R2: 5′-GAGGTTGCAGTGAGCCAA
GA-3′; MINI-SYNGAP1-KpnI-F: 5′-GGTAGGTACCCTGGGGAG
GGCCAAAGGACA-3′; MINI-SYNGAP1-BamHI-R: 5′-TAGTGG
ATCCGAGAATAGCTGACAGAACTG-3′; SYNGAP1-c.664-2A>G-F:
5′-TCCACACTCCTTTCTGGGTAACAACTTCATC-3′; SYNGAP1-
c.664-2A>G-R: 5′-GATGAAGTTGTTACCCAGAAAGGAGTGTGG
A -3′.
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Results

De novo heterozygous variants were
identified

Two de novo heterozygous pathogenic variants in SYNGAP1,
NM_006772.3: c. 333del and c.664-2A>G, were identified in two ID
patients separately, as detailed in Table 1. The c.333del variant has
been reported previously as a de novo finding in a child with ID
(Carvill et al., 2013). The c.333del variant is predicted to cause loss of
normal protein function either through protein truncation or
nonsense-mediated mRNA decay. Conversely, the c.664-2A>G
variant was a novel de novo intronic variant identified in a child
with ID, which has not been reported in the literature and databases
(ClinVar, DVD, PubMed, HGMD, etc.) (Figure 1).

Clinical characteristics of the NSID affected
individual

Both patients in their respective families, carrying de novo
variants in SYNGAP1, exhibit delays in intellectual and motor
developmental. These two patients had impaired speaking ability
and were speech disabled, along with symptoms such as hypotonia,
muscle flaccidity, and a wide-based/unsteady gait. Notably, they
didn’t exhibit feeding difficulty, autism spectrum disorder (ASD),
epilepsy, or microcephaly. We conducted a comprehensive
assessment for ASD on these two patients, which included
psychological tests, clinical examinations, and consideration of
their family medical history. We utilized standardized assessment
tools such as the Autism Diagnostic Observation Schedule (ADOS)
for ASD evaluation and found no symptoms of ASD in these
patients. Additionally, we conducted initial psychological tests on
both patients to assess cognitive functioning and identify any
coexisting conditions, and the results indicate that both of these
patients don’t exhibit symptoms of autism. Both patients had
normal electroencephalograms (EEGs) and normal karyotypes
(Table 1). There is no family history related to developmental
disorders. The two patients are girls and are the only children in
their respective families. One patient is 5 years old and the other is
7 years old, and their parents are healthy. They have experienced an
overall delay in developmental milestones. For example, the patient
which carrying the c.664-2A>G variant was independently sitting
and walking later than children of the same age. She didn’t achieve
independent walking until the age of 3 years, and her gait was
extensive and unstable. At the age of 7, her intelligence quotient (IQ)
was measured at 55 on the Tanaka-Binet IQ Scale V. Furthermore,
she exhibits delayed language development and only uses short and
simple sentences with limited vocabulary.

Expression of SYNGAP1mRNA in transfected
cells with recombinant plasmids

The c.333del variant has been reported previously as a de novo
finding, so we did not perform functional experiments on it. We
performed in vitro experiments on the novel de novo splicing variant
in SYNGAP gene. To investigate the influence of the c.664-2A>GTA
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variant on splicing, we conducted a minigene splicing assay. The
pcMINI-SYNGAP1-WT and pcMINI-SYNGAP1-MUT (c.664-
2A>G) plasmids were transiently transfected into 293T and HeLa
cells (Figure 2A). The total RNA was extracted and reverse-
transcribed into cDNA after transfection over 48 h. The cDNA
was amplified by PCR and analyzed by agarose gel electrophoresis.
Agarose gel electrophoresis showed that the mutant-type (MUT)
had two bands, all bands were smaller than the WT band, and their
migrations were relatively faster (Figure 2B). DNA sequencing
results showed that the WT minigene (pcMINI-SYNGAP1-WT)

transcribed normal mRNA composed of exon 7 (Figure 2C, band a),
while the c.664-2A>G mutant minigene caused abnormal splicing,
resulting in exon 7 skipping (Figures 2C, D, band b) and a 16 bp
deletion within exon 7 (Figures 2C, D, band c), which reveals that
this variant may be a crucial mechanism for the pathogenesis of ID.
Exon 7 skipping could result in the loss of 33 amino acids (c.664_
762del p.Val222_Lys254del), and the deletion of 16bp in exon
7 could result in a frameshift of amino acids at position 222 and
a premature stop codon (c.664_679del p.Val222Glufs*24). The
aberrant splicing is predicted to abolish the pleckstrin homology

FIGURE 1
Two de novo variants of SYNGAP1 were identified in two patients with ID. (A) Families pedigree and genotype are shown. The probands with ID
underwent WES. Filled symbols represent affected individuals. (B) Sanger sequencing chromatograms of the SYNGAP1 variants in these families. (C)
Localization of the SYNGAP1: c. 333del and c.664-2A>G variant found in the study. The amino acid (aa) positions are referenced to RefSeq number NM_
006772.3 (isoform-1: 1343 aa). Various predicted SYNGAP1 domains are showed: PH, pleckstrin homology domain (amino acid positions 150–251),
C2 domain (amino acid positions 263–362), Ras-GAP (amino acid positions 392–729), SH3 (amino acid positions 785–815), coiled coil (CC; amino acid
positions 1189–1262).
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(PH, pos. 150–251aa) and C-terminal domains, suggesting that it
would prevent the SYNGAP1 protein from performing its normal
functions. SYNGAP1 c.664-2A>G may damage cognitive and social
adaptation development by impairing maturation of dendritic spine
synapses in neurons (Figure 3).

Discussion

In this study, we identified two de novo heterozygous pathogenic
variants in SYNGAP1 among 113 patients with ID. The c.333del
variant has been previously reported as a de novo finding in a child
with ID (Carvill et al., 2013), while the other splicing variant c.664-
2A>G has not been reported in any literature or databases. The
c.333del variant is predicted to cause loss of normal protein function
either through protein truncation or nonsense-mediated mRNA
decay. The phenotypes of the ID patient, which carrying the c.664-
2A>G variant, are similar to the previously published truncating
variant in SYNGAP1. Although the intronic variants may have more
deleterious effects than the exonic variants, they are underexplored
(Kallel-Bouattour et al., 2017). To further evaluate the deleterious
effects of the intronic variant c.664-2A>G, we conducted a minigene
assay to investigate its impact on mRNA splicing. The minigene
experiment results showed that the intronic variant c.664-2A>G

causes aberrant splicing of SYNGAP1. The c.664-2A>G variant
would result in exon 7 skipping and partial exon 7 deletion, which
would abolish critical functional domains and impair the function of
the SYNGAP1 protein.

There is a potential acceptor site located 16 bp upstream of exon
7 in SYNGAP1. After c.664-2A>G variant, this site is activated for
splicing. The c.664-2A>G variant disrupts the original acceptor site,
potentially leading to the recognition of the alternative splicing site that
causes a 16 bp deletion on upstream of exon 7. Alternatively, the
disruption of the original acceptor site might result in direct skipping of
exon 7 during splicing, resulting in the overall deletion of exon 7, much
like how a gene in a database might have multiple normal transcripts.

SYNGAP1 is an important gene that is necessary for neuronal
development, and its dysfunction is associated with ID (Jeyabalan and
Clement, 2016). SYNGAP1 is located on human chromosome 6,
contains 19 exons, and generates approximately a 6 kb transcript,
which encodes a brain-specific synaptic Ras GTP-ase activating
protein. The impairment of SYNGAP1 function may make patients
with ID susceptible to seizures by increasing the recruitment of AMPA
receptors at postsynaptic glutamatergic synapses, which leads to
increased transmission of excitatory synapses (Hamdan et al., 2009).
In large-scale studies, almost all SYNGAP1 variants associated with
NSID, ASD, and epilepsy are loss-of-function and lead to
SYNGAP1 haploinsufficiency, resulting in intellectual developmental

FIGURE 2
The effect of the c.664-2A>G variant on splicing was assessed through aminigene assay. (A)Construction of the pcMINI-SYNGAP1-WT/MUT vector,
which contain exon 7 and flanking intronic sequences of WT or mutant type (c.664-2A>G) of the SYNGAP1 gene. (B)Minigene assay performed in 293T
and Hela cells transfected with the pcMINI-SYNGAP1-WT/MUT vector. The PCR products were isolated by gel electrophoresis. The SYNGAP1 splicing
products of wild-type (band a) and variant type (band b and c) are shown. (C, D) Schematic diagram ofminigene construction and sanger sequencing
of PCR products.
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disorder (Hamdan et al., 2011; Berryer et al., 2013; Carvill et al., 2013;
Fieremans et al., 2016).In our study, as well as previous observations,
suggest that the SYNGAP1 c.664-2A>G variant would cause IDmainly
through a mechanism of haploinsufficiency.

NSID poses a challenge for clinicians because of the absence of
specific clinical features to guide them toward an etiological diagnosis.
The identification of novel variants in known pathogenic genes or
novel ID genes suggests that molecular diagnostic approaches are
becoming increasingly significant in unraveling the underlying causes
of this condition. In the present study, the two patients presented with
comprehensive developmental delays, particularly motor milestones
and language development, and exhibited behavioral disorders.
We identified pathogenic variants in SYNGAP1 in both of these
patients by WES. Based on clinical and genetic features, the patients
were diagnosed with intellectual developmental disorder. De novo
SYNGAP1 variants were initially reported to cause ID, accounting
for approximately 0.62% of all the patients in the Deciphering
Developmental Disorders (DDD) study (Hamdan et al., 2011;
Wright et al., 2015). Six patients with SYNGAP1 variants exhibited
moderate to-severe ID due to severe language impairment (Hamdan
et al., 2011). Studies involving rodent models with the deletion of
the SYNGAP1 allele showed abnormal formation and maturation
of dendritic spines in neurons, altered excitatory-inhibitory (E/I)
balance, and changed the critical period of development,
suggesting that heterozygous variants also have the potential to
disrupt brain function in humans and lead to ID through the
mechanism of haploinsufficiency (Rumbaugh et al., 2006; Guo
et al., 2009; Muhia et al., 2010).

In conclusion, we identified two de novo pathogenic
heterozygous variants in SYNGAP1, c. 333del and c.664-2A>G,
among which the c.664-2A>G variant was a novel de novo
pathogenic variant. Based on previous findings from others and
our research, nonsense variants in SYNGAP1 remain the most
common variant type leading to ID. This study further enriched
the variant landscape of SYNGAP1 in ID and provided a basis for the
clinical diagnosis and genetic counseling of ID.
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FIGURE 3
A graphical summary of the mechanism of dendritic spine loss caused by the SYNGAP1 c.664-2A>G variant. The SYNGAP1 c.664-2A>G variant
causing aberrant splicing and dendritic spine loss.
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