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Motivation: Family-based study design is one of the popular designs used in
genetic research, and the whole-genome sequencing data obtained from family-
based studies offer many unique features for risk prediction studies. They can not
only provide a more comprehensive view of many complex diseases, but also
utilize information in the design to further improve the prediction accuracy. While
promising, existing analytical methods often ignore the information embedded in
the study design and overlook the predictive effects of rare variants, leading to a
prediction model with sub-optimal performance.

Results:We proposed a Bayesian linear mixed model for the prediction analysis of
sequencing data obtained from family-based studies. Our method can not only
capture predictive effects from both common and rare variants, but also easily
accommodate various diseasemodel assumptions. It uses information embedded
in the study design to form surrogates, where the predictive effects from
unmeasured/unknown genetic and environmental risk factors can be
modelled. Through extensive simulation studies and the analysis of sequencing
data obtained from the Michigan State University Twin Registry study, we have
demonstrated that the proposed method outperforms commonly adopted
techniques.

Availability: R package is available at https://github.com/yhai943/FBLMM.
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Introduction

Family-based study (e.g., twin study) is one of the most popular designs used in genetic
research, and it offers many unique features for risk prediction studies. For example, the
relatedness among family members helps capture the predictive effects from unmeasured/
unknown polygenic and shared environmental factors, and thus contributes additional
information, beyond the measured data, for risk prediction studies (Ruderfer et al., 2010).
Despite these advantages, few statistical methods are available for risk prediction research
using family-based designs. The existing methods usually build risk prediction models based
on genetic effects that are estimated with familial correlations adjusted for. For example
(Meigs et al., 2008), developed a risk prediction model for family-based genetic studies,
where the genotypic risk score is determined without considering the information in families
(Ruderfer et al., 2010). presented a family-based liability threshold model and illustrated it in
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the analyses of Crohn’s disease. Although these methods have
contributed to the advances of family-based risk prediction, they
can lead to less accurate models when unmeasured genetic and/or
shared environmental factors contribute significantly to disease risk.
Moreover, the recent whole genome sequencing studies have
demonstrated that rare variants can play a significant role in
many common complex diseases, such as obesity, coronary heart
disease, and drug addiction (Ramachandrappa et al., 2013; Peloso
et al., 2014; Wang et al., 2014). Family-based design can enhance the
chance of capturing the predictive effects from rare variants as they
tend to be aggregated within family. However, existing prediction
models do not utilize the design information and they simply extend
models designed for population-based studies by adjusting
correlations within the data. Therefore, it remains challenging for
them to capture the predictive effects from rare variants, primarily
due to their low minor allele frequencies (Mihaescu et al., 2013).

It has long been recognized that family history alone can greatly
facilitate disease risk prediction. For many complex diseases (e.g.,
cardiovascular diseases and type II diabetes), individuals with a
positive family history are usually classified as the population at high
risk (Valdez et al., 2007; Marateb et al., 2018). Family history can be
viewed as a surrogate that reflects the contributions of many known/
unknown risk factors accumulated within a family. Evidences have
shown that familial effects account for a significant amount of
disease variability. For example (Chen et al., 2007), have shown
that 33% of variance of spherical equivalent can be attributed to
childhood environmental effects. Furthermore, genetic variants can
account for a substantial proportion of heritability for human traits
(Couillard et al., 2001; Dirani et al., 2006). For example, genetic
factors can explain as much as 87% of the variation in the
susceptibility to asthma in twins with positive family history
(Laitinen et al., 1998; Lichtenstein et al., 2009) found that genetic
heritability for bipolar disorder and schizophrenia was 59% and
64%, respectively. The familial aggregation for many complex
diseases is mainly due to the relatedness in genetic and
environmental factors among family members, which carry
important information and can be used to further improve
prediction accuracy. However, most existing analytical methods
are developed by simply extending those models designed for
population-based studies, where family correlations are first
adjusted. For example (Meigs et al., 2008), built a risk prediction
model for family-based genetic study, where the relatedness among
family members is adjusted using a generalized estimating equation
model. Although statistically valid and these methods could capture
the predictive effects from those measured known risk factors, they
are not capable of using family information as surrogates to account
for unmeasured predictors (e.g., shared environmental risk factors).

Population-based whole-genome sequencing studies have shown
that rare variants are associated with many complex human diseases
(Dickson et al., 2010; Helgadottir et al., 2016), and they have great
potential in explaining the missing heritability (Cruceanu et al., 2013).
For example, recent study has reported that rare variants in renal salt
handling genes have contributed to variation of blood pressure (Ji et al.,
2008; Stefansson et al., 2008) found that rare variants are associated with
schizophrenia and autism (Ionita-Laza andOttman, 2011). showed that
four rare variants in IFIH1 gene can lower the risk of type 1 diabetes.
Recent developments in prediction research have also shed light on the
importance of rare variants in building an accurate prediction model.

For example, the risk prediction model for coronary artery disease in
European and South Asian populations was built with rare variants
incorporated, and it yields improved predictive accuracy (Lali et al.,
2020). Despite their importance, fewmethods designed for family-based
studies have considered the contributions of rare variants in disease risk
prediction. Recently, we developed a Bayesian linear mixed model with
multiple random effects (denoted as BLMM) to predict disease risk for
population-based studies, where both common and rare variants have
been explicitly considered (Hai and Wen, 2020). We have showed that
the BLMM can capture the predictive effects from rare variants and is
robust against various disease models. Though promising, it was
developed for population-based studies, and thus cannot make use
of the information embedded in the family-based study design.

To address these limitations, we proposed a family-based
Bayesian linear mixed model with multiple random effects
(denoted as FBLMM) for the prediction analysis on sequencing
data obtained from family-based genetic studies. The proposed
FBLMM uses the correlations among family members to
construct surrogates for unmeasured risk predictors, and it can
account for the predictive effects from both common and rare
variants. In the following sections, we first presented the details
of the proposed model, and then conducted extensive simulation
studies to evaluate its performance. Finally, we illustrated its
application using the whole-genome exome data from Michigan
State University Twin Registry study (Burt and Klump, 2012).

Materials and methods

The proposed FBLMM is built using a similar idea in BLMM
presented in (Hai and Wen, 2020), where we assume genetic
similarities can lead to phenotypic similarities. Fundamentally
different from existing methods that adjust for family
correlations, we utilize the information embedded in the family-
based study design to further improve the prediction accuracy.
Given M genetic regions that can be defined using various
criteria (e.g., gene and pathway), we form the FBLMM model as:

Y � Xβ + ∑
M

m�1
gm + f + n with n ~ N 0, Iσ2ϵ( ), (1)

where Y is the outcome; X is the genotypes for all common variants;
and β is their corresponding effect. gm is the cumulative predictive
effect from all measured predictors, including rare variants, on
region m. f is the familial effect due to shared environmental
factors and genetic relatedness, and I is an n × n identity matrix.

Similar to existing sparsity regression models (Carvalho et al.,
2008; Zhou, Carbonetto, and Stephens, 2013), the Xβ is designed to
capture the predictive effects from isolated markers. To tease out the
impact of noise, we followed the same procedure in (Hai and Wen,
2020), instead of using the spike and slab prior that can lead to an
underestimation of posterior variances for β (Carbonetto et al.,
2012). We re-parameterized Xβ as XΓβ, where Γ � diag(γ) and γ �
(γ1, γ2, ..., γp)T is a vector of binary variables indicating whether
each genetic variant is predictive. We used the Bernoulli Gaussian
distribution as the priors for β and γ (i.e., βj ~ N (0, σ2β) and
γj ~ Bernoulli(θ0 � 0.1)), and this allows to obtain an unbiased
estimation of the posterior variance of β as well as achieving variable
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selection for β (Zhou, Carbonetto, and Stephens, 2013; Fernandes
et al., 2017).

Similar to linear mixed models that assume the infinitesimal
effects (VanRaden, 2008), the cumulative predictive effects from
common and rare variants for region m are modeled via gm, where
we set a multivariate normal prior for each region-based cumulative
predictive effect as

gm
∣∣∣∣Km ~ N 0,Kmσ2m( ) m � 1, ...,M
σ2m ~ IG a1, b1( ). (2)

Km is the genetic similarity for region m and it is defined as
Km � GmWmGT

m/pm, where Gm is the genotype matrix for region
m and pm is the number of genetic markers in the region. Wm �
(w1, w2, ..., wpm)T is the pre-specified weights used to capture the
contribution of rare variants. Similar to existing literature (Wu et al.,
2011; Lee et al., 2012), we define the weighted sum statistics types
(denoted as WSS) of weights as wj � 1

MAFj(1−MAFj), where MAFj is
the minor allele frequency for the j th variant. The hyper-parameters
of a1 and b1 are set to be 0.1 for all regions. To expedite its
computation, we re-parameterized the cumulative predictive
effects part with the slab and spike prior as

Y � XΓβ + ∑
M

m�1
ZmrmUm( ) + f + , (3)

where Um ~ N(0, Iσ2m), Zm � QmΛm
1
2 and E(rm � 1) � ℘(rm). The

re-parameterization facilitates the selection of predictive regions
(i.e., rm � 1 indicates the region is predictive), and the details of its
derivations can be found in appendix A.

Mounting evidences suggest that there are familial aggregations
for many complex traits (Laitinen et al., 1998; Couillard et al., 2001;
Dirani et al., 2006; Lichtenstein et al., 2009), and the relatedness in
genetic and environmental factors among family members are
thought to be the main reasons for this aggregation. Therefore,
we split the familiar effect f into predictive effects due to genetic
correlation (denoted as gf) and shared environmental factors
(denoted as ef). Model 3 can be written as

Y � XΓβ + ∑
M

m�1
ZmrmUm( ) + gf + ef + n. (4)

We set the prior for gf as

gf ~ N 0,Kgfσ2gf( )
σ2gf ~ IG a0f, b0f( )

, (5)

where Kgf is the theoretical kinship coefficient matrix. The gf uses
the genetic correlation between family members to improve the
prediction accuracy, and it can be viewed as a surrogate for those
predictive but unmeasured genetic variants. To account for the
impact of environmental factors, we assume all family members
share the same environment (e.g., diet) and set ef as

ef ~ N 0,Kefσ2ef( ) , (6)

where Kef is a block diagonal matrix with each block being a matrix
with all elements equal to 1. The ef is designed to capture the
predictive effects from shared environmental factors, and it can also
be viewed as a surrogate for those unmeasured environmental

predictors shared by family members. We used the idea from (Z.
Chen and Dunson, 2003) and decomposed Kef and Kgf as Kef �
QefΛefQT

ef and Kgf � QgfΛgfQT
gf, where Λef and Λgf are

diagonal matrices with eigenvalues on their diagonals, and Qef

andQgf are matrices of the corresponding eigenvectors. Eq. 4 can be
written as

Y � XΓβ + ∑
M

m�1
ZmrmUm( ) + ZgfUgf + ZefUef + n, (7)

where Zgf � QgfΛgf

1
2 and Zef � QefΛef

1
2 . We adopted the mean-

field variational Bayes algorithm (VB) to estimate parameters for
FBLMM. Let ξ � (β, γ,Ug,Ugf,Uef, r, σ2, σ2gf, σ

2
ef, σ

2
) denotes all

parameters of interest, where γ � (γ1,/, γp), Ug � (U1,/,UM),
r � (r1,/, rM), and σ2 � (σ21, . . . , σ2M). The goal is to obtain an
optimal approximation q(ξ) of the posterior distribution on ξ by
maximizing the evidence lower bound (ELBO). In details, we
iteratively update the approximated distributions for q(ξ) as

q ξ( ) � qβ × ∏
p

j�1
qγj × ∏

M

m�1
qUm × ∏

M

m�1
qrm × qUgf

× qUef

× ∏
M

m�1
qσ2m × qσ2

gf
× qσ2

ef
× qσ2ϵ , (8)

where qβ � N (Mβ, Sβ); qγj � Bernoulli(ψj); qUm � N (Mm, Sm);
qrm � Bernoulli(ϕm); qUgf � N (Mgf, Sgf); qUef � N (Mef, Sef);
qσ2m � IG(am, bm); qσ2

gf
� IG(agf, bgf); qσ2

ef
� IG(aef, bef); and

qσ2ϵ � IG(aϵ, bϵ). Each parameter of ξ can be estimated by using
the coordinate ascent algorithm, the estimating equations used to
update the parameters are listed in appendix A.

The pseudo-code implementing our proposed model is shown in
Figure 1. It is worth noting that when a new subject is not from families
in the training data, its predicted value only depends on demographic
and genetic predictors (i.e., the family information does not contribute
to the outcomes). When a new individual comes from families in the
training set, the FBLMM method not only uses genetic and
demographic predictors, but also utilizes the extra information
provided by family design to capture unmeasured genetic and
shared environmental risk factors. Therefore, FBLMM has great
potential to further improve predictions. The weight function
employed by FBLMM can facilitate the identification of rare variants
that are predictive, enabling FBLMM to consider contributions from
both common and rare variants in prediction modeling.

Simulation study

We conducted extensive simulation studies to evaluate the
performance of our proposed method under various family-based
designs, and further compared FBLMM with other widely used
methods, including 1) adaptive MultiBLUP (Speed and Balding,
2014); 2) DPRVB (Zeng and Zhou, 2017); and 3) BLMM (Hai and
Wen, 2020), where family correlations are first adjusted. Note that
both MultiBLUP and DPRVB have shown to outperform other
existing gBLUP-based methods (Speed and Balding, 2014; Zeng and
Zhou, 2017).

To closely mimic the real human genome, the founders’
genotypes were drawn directly from Alzheimer’s Disease
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Neuroimaging Initiative (ADNI) study (n � 808). Pedigree
simulator was used to simulate various types of pedigree
structures and the gene-dropping method (Huang, Thomas, and
Vieland, 2013) was implemented to generate the genotypes of
offsprings. Each simulation scenario was replicated 100 times.
We randomly split the simulated data into a testing set with 20%
samples and a training set with the remaining 80% samples. Pearson
correlations and root mean square errors (RMSE) that are calculated
based on testing samples were reported for each method.

Scenario 1: The impact of disease
model

In this set of simulations, we evaluated the performance of our
proposed method under three types of disease models, including
outcomes are affected by 1) shared environmental factors only, 2)
genetic factors only, and 3) both environmental and genetic factors.

The outcome is affected by shared
environmental factors only

To evaluate the impact of shared environmental factors, we
randomly selected 3 genes from ADNI dataset and none of them was
set to be causal. For simplicity and without loss of generality, we
considered mixed two-generation pedigree structures, including a)
half-sibling (Supplementary Figure S1A), parents with two offspring
(Supplementary Figure S1B) and parents with four offspring
(Supplementary Figure S1C). We used 808 samples from ADNI
study as founders and formed a total of 394 families including
2040 individuals, which contained 150 individuals from 30 pedigrees
of half-siblings, 708 individuals from 177 pedigrees of parents with
two offsprings, and 1182 individuals from 197 pedigrees of parents
with four offsprings. We simulated the outcomes as Yij � αi + ϵij,
where αi is the shared environmental effects for family i and

αi ~ N(0, σ2a). It is straightforward to show that
Y ~ N(0,Kσ2a + Iσ2), where K is a block diagonal matrix with
each block being a matrix with all elements equal to 1.
Therefore, we simulated the outcomes using Y ~ N(0,Kσ2a + Iσ2),
where the percentage of the outcome variance explained by shared
environmental factors increased from 25% to 75%.

Pearson correlations and RMSEs are shown in Figure 2. As
expected, FBLMM significantly outperformed DPRVB, MultiBLUP
and BLMM when shared environmental factors significantly
contributed to disease risk. In addition, the prediction accuracy
for FBLMM increases as the effects from shared environmental
factors increase, but it remains almost unchanged for the other three
methods. This is mainly because FBLMM is specifically designed to
utilize information from family design for improved prediction.
Although adjusting for the relatedness among family members
makes it statistically valid to apply population-based methods on
family-based studies, overlooking information embedded in the
family design can lead to sub-optimal prediction performance.
While DPRVB, MultiBLUP and BLMM have similar
performance, BLMM tends to be slightly better. This is mainly
because BLMM is flexible to the underlying disease models. While
MultiBLUP assumes an infinitesimal effect model and DPRVB
assumes an isolated effect model, BLMM-based method
(i.e., BLMM and FBLMM) can easily accommodate these two
commonly used model assumptions.

The outcome is affected by genetic factors
only

We evaluated the performance of FBLMM when only genetic
variants, including both measured and unmeasured, contributed to
the familial aggregation of traits. We first randomly selected three
genes and set all of them as causal regions. We simulated the
outcomes as Y � ∑3

m�1gm + , where gm is the genetic effect for

region m and gm ~ N(0,Kmσ2m). Gm is an n × pm matrix of genetic

FIGURE 1
Algorithm 1: Inference procedure using variational Bayes.
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markers on gene m and Km � (GmWmGT
m)/pm. Causal genetic

variants can be unmeasured in practice (Wen, and Lu, 2017).
Therefore, we randomly selected one of the three causal genes as
unmeasured (i.e., only two causal genes are in the final simulated
dataset). We set the total heritability to be 60% with the proportion
of heritability accounted by unmeasured variants changing from
25% to 75%. To evaluate the performance of FBLMM across a range
of phenotypes, we first considered the case where outcomes were
mainly caused by common variants, and set wj � 1 for each
predictor. We then simulated the cases where rare variants
contributed substantially to disease risk. We simulated two
models under such settings, where a beta-type of weights
(denoted as BETA) wj � dbeta(MAFj, 1, 25)2 and a weighted
sum statistics type of weights were used.

Pearson correlations and RMSEs are shown in Figure 3. As
the proportion of genetic variance explained by unmeasured
effects increases, the prediction accuracy for all methods
decreases with FLBMM decreased the least. For FBLMM, it
has robust performance across all settings. When outcomes
are mainly caused by common genetic variants (Figure 3. A),
FBLMM outperforms the other methods across all simulation
settings and captures most of the heritability. This is mainly
because FBLMM has an advantage in capturing the genetic effects
from unmeasured variants via using the theoretical kinship
coefficients. Not surprisingly, the performance of BLMM,
MultiBLUP and DPRVB are very similar. When the disease
outcomes were simulated under the assumption that rare
variants had large contributions (Figure 3. B; Figure 3. C),

FIGURE 2
The comparison of prediction accuracy when outcomes are only impacted by shared environmental factors. The heritability increases from 25%
to 75%.

FIGURE 3
The comparison of prediction accuracy when outcomes are affected by unmeasured genetic variants. The total heritability is 60%, and the
percentage of heritability accounted by unmeasured variants increases from 25% to 75%. (A): Common variants affect the outcomes (wj � 1). (B): Rare

variants affect the outcomes (wj � dbeta(MAFj , 1, 25)2). (C): Rare variants affect the outcomes (wj � 1
MAFj(1−MAFj )).
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FBLMM performs much better than the existing methods, and
BLMM outperforms MultiBLUP and DPRVB. This is mainly
because the weights in both FBLMM and BLMM are designed to
capture the effects from rare variants. Therefore, FBLMM is
expected to have a more robust performance through
modeling familial correlations and up-weighting rare genetic
variants.

Outcome is affected by shared
environmental and genetic factors

In this set of simulations, we evaluated the performance of
FBLMM when outcomes were affected by both shared
environmental and genetic factors. Three genes were randomly
selected as causal, and outcomes were simulated under the
following additive model:

Y � α + ∑
3

m�1
gm + , (9)

where α ~ N(0,Kσ2a) and K is a block diagonal matrix.
gm ~ N(0,Kmσ2m) and Km � (GmGT

m)/pm. Similar to previous
section, among the three causal genes, we randomly set one of
them as unmeasured in the data. We gradually increased the
percentages of variabilities explained by the shared environmental
and genetic effects from 20% to 60%, and both factors contributed
equally (i.e., σ2a � ∑2

m�1σ
3
m).

Pearson correlations and RMSEs are shown in Figure 4. As the
proportion of variability explained by shared environmental and
genetic factors increases, the proposed method tends to perform
much better than the others. This is because FBLMM is designed to
capture predictive effects from both genetic and environmental risk
factors simultaneously, whereas the other methods have little ability
to model them if they are not measured. Although it is well accepted
that family history itself is an important predictor for many complex
diseases, little efforts have been made to utilize information
embedded in the family design. Our simulation shows that by
using the design information, FBLMM can achieve robust
performance and substantially improve the prediction models
across a range of settings.

Scenario 2: The impact of pedigree
structures

In this set of simulations, we assessed the effects of pedigree
structures on the performance of FBLMM. We considered the twin
design (Supplementary Figure S1D), the trio design (Supplementary
Figure S1E), and three-generation pedigree with mixed structures
that include 24 avuncular, 30 double cousins, 42 grandparents and
278 sibling (Supplementary Figures S1F–I). We used Eq. 9 to
simulate outcomes, where genetic variants on one causal gene is
set as unmeasured. Let gu ~ N(0,Kuσ2u) denote the cumulative
predictive effects for the unmeasured gene, and Eq. 9 can be
written as Y � α +∑2

m�1gm + gu + .
We considered three types of disease models (Supplementary

Table S1: both measured and unmeasured genetic variants have
equally contributed to disease risk (i.e., σ2u � ∑2

m�1σ
2
m); S2: shared

environmental factors have major influences on disease risk, and
measured genetic factors only make small contributions
(i.e., σ2a >∑2

m�1σ2m); and S3: both genetic and shared
environmental factors were considered with unmeasured genetic
variants making major contributions (i.e., σ2u > σ2a + ∑2

m�1σ2m). We
set the total heritability for all disease models ranging from 20% to
60%, and the details of parameter settings for each disease model are
summarized in Supplementary Table S1.

The results when heritability is 40% are summarized in Figure 5,
and the others (i.e., h � 20% and h � 60%) are shown in
Supplementary Figures S2, S3. Under disease model S1, where
measured and unmeasured genetic variants contributed equally to
disease risk, Figure 5A showed that the two-generation pedigree
design has a higher prediction accuracy as compared to three-
generation designs. This is mainly because relatives in two-
generation pedigree have higher level of genetic relatedness than
those that are far apart. Compared to existing methods, FBLMM
worked the best across all pedigree structures under disease model S1
and captured most of the heritability. Under disease model S2, where
shared environmental factors mainly contributed to disease risk,
Figure 5B showed that the existing methods (i.e., BLMM,
MultiBLUP and DPR) have lower prediction performance as
compared to FBLMM. FBLMM tended to perform similarly
across all three pedigree structures considered, as shared
environmental factors affect all individuals within the family in a

FIGURE 4
The comparison of prediction accuracy when outcomes are affected by both shared environmental factors and genetic variants, including both
measured and unmeasured. The totally heritability increases from 20% to 60%, with both genetic and environmental factors contributing equally.
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similar fashion. Under disease model S3, where both unmeasured
and environmental factors contribute significantly to the trait, two-
generation pedigree structure tended to have higher prediction
accuracy than the three-generation pedigree design (Figure 5C).
Regardless of the pedigree structures and disease models considered,
our proposed FBLMM always outperformed the other methods
(i.e., BLMM, MultiBLUP and DPR). This indicates that FBLMM
has robust performance in capturing the predictive effects from
shared environmental and unmeasured genetic factors regardless of
the pedigree structures. When the heritability is set to be 20% and
60%, the trend remains the same (Supplementary Figures S2, S3). By
using the family design information, FBLMM has substantially
enhanced the prediction accuracy, and the improvement is robust
against various pedigree structures.

Real data application

The proposed method is applied to predict aggressive behavior
utilizing the dataset obtained from the Behavioral and Emotional
Development in Children (TBED-C) study. TBED-C is a family-
based twin study, aimed at discovering genetic factors that
contribute to conduct problems in children (Burt and Klump,
2012). TBED-C recruited 1000 twins aged between 6 and
10 years from 500 twin families in Michigan, including 50%
monozygous twins. DNA samples were collected from each pair
of twins. The sequencing was performed using the Illumina Human
Core Exome chip, which includes common variants, rare variants,
mitochondrial DNA, and indels. Samples with missing rate > 3%
were excluded. Single nucleotide variants (SNVs) were removed if
any of the following exclusion criteria was met: 1) call rate < 98%

and 2) a p-value for Hardy–Weinberg equilibrium test < 10−5. After
the quality control filtering, there are 957 samples and 513,886 SNVs
remained for the analysis. Parents completed the child behavior
checklist for each twin separately by rating a series of questionnaires,
where children’s competencies, behavioral and emotional problems
were assessed (Burt and Klump, 2012). Teacher(s) of each twin also
completed the report form. Using the recommended approach (Burt
and Klump, 2012), we assessed children’s aggressive behavior by
averaging the raw scale scores from both the parents’ and teachers’
reports. The distribution of the aggressive scales (AGG,
Mean � 3.70; sd � 3.59) is shown in Supplementary Figure S4.

First, to avoid over-fitting and the chance finding problems, 20%
samples were randomly select for testing and the rest 80% was used
for training. In the training dataset, we assessed the marginal
significance for each marker using a linear hybrid model in the
GCTA software package (Yang et al., 2011). Common variants with
p values > 0.1 were filtered out from risk prediction analysis. As a
result, approximately 25,168 SNVs remained. This pre-selection
aimed to prune a large number of predictors down drastically to
a more manageable size, and improve computational speed. We
applied all evaluated methods (i.e., FBLMM, BLMM, MulitBLUP
and DPRVB) to the remaining genetic variants. Finally, we validated
the trained FBLMM model using the test set. The prediction
performance was evaluated using Pearson correlation and RMSE.
This process was repeated 100 times.

Pearson correlations and the RMSEs are shown in Figure 6.
Similar to results from simulations, Figure 6 shows FBLMM
performed much better than the others. This clearly indicates
that simply adjusting for relatedness among family members can
overlook key information, leading to a less accurate risk prediction
model. On contrary, utilizing information embedded in the family

FIGURE 5
The comparison of prediction accuracy under different pedigree structures (h � 40%). Three diseasemodels are considered: (A) bothmeasured and
unmeasured genetic variants contributed to disease risk; (B) shared environmental and measured genetic factors affected outcomes; (C) all genetic
variants (measured and unmeasured) and shared environmental factors contributed to disease risk.
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design can substantially improve prediction accuracy, as this makes
the model more flexible to capture the predictive effects from
unknown genetic and shared environmental risk factors.

Discussion and conclusions

In this paper, we have developed a novel FBLMM method for
risk prediction analysis on sequencing data obtained from family-
based genetic studies. Fundamentally different from existing
methods that adjust for family correlations, FBLMM utilizes this
relatedness to further improve prediction accuracy. Specifically, it
forms two surrogates, including a theoretical kinship coefficient
matrix (i.e., Kgf ) and a block diagonal matrix (i.e., Kef ), to capture
effects from unmeasured genetic and shared environmental factors.
In addition, FBLMM extends the BLMM method proposed by (Hai
andWen, 2020), and thus it inherits all the advantages in the BLMM
method. For example, it infers its parameters using variational Bayes
algorithm rather than the traditional MCMC, making it much more
computationally efficient. Supplementary Table S2 provided the
details of computational resources needed as the sample size and
the number of variants increase. Furthermore, it can capture
predictive effects from both common and rare variants, and
easily accommodate various model assumptions (e.g., isolated
large effects and infinitesimal model). It is worth noting that
although we mainly focused on genetic variants, our proposed
framework has the intrinsic capacity in modeling the predictive
effects from important demographic variables, where their
predictive effects can be selected and modelled through the fixed
effects (i.e., Xβ) in our model. For example, in addition to genetic
information, we can add family history, age and gender into the fixed
effect part (i.e., X) of our model, and their predictive effects can be
directly estimated by our proposed framework. Through simulation
studies, we have shown that FBLMM can yield higher prediction
accuracy than existing methods, and our analysis on Michigan Twin
data has also showed that FBLMM can better predict AGG.

The importance of genetic and environmental factors in risk
prediction has long been appreciated (Nilsson et al., 2004). Many
previous studies have shown that a substantial amount of

heritability can be explained by family information due to a
combination of genetic factors and shared environmental
conditions (Bermejo and Hemminki, 2005; Gim et al., 2017).
The family information can be helpful in identifying sub-
populations that are at high risk (MacInnis et al., 2011; So
et al., 2011; Gim et al., 2017). Despite its clinical importance,
few methods fully use this information when building risk
prediction models based on high-dimensional genomic data
obtained from family-based studies. Existing analytical
methods are usually an extension of the models designed for
population-based studies, and thus they tend to make the
observations un-correlated before estimating the predictive
effects from genetic variants (Meigs et al., 2008). While this
most common practice can allow researchers to build a
statistically valid risk prediction model using genomic data
from family-based study designs, it overlooks important
information embedded in the design, leading to a model with
decreased prediction accuracy. In this study, one of the key
features of our proposed model is that it utilizes the family
design to improve prediction model, rather than simply
adjusting for the correlations among family members. Based
on the design information, we formed two surrogate measures,
including a theoretical kinship coefficient matrix (i.e., Kgf ) and a
block diagonal matrix (i.e., Kef ), to capture the impacts of genetic
and environmental risk factors. As shown in our simulation
studies (Figure 2 to Figure 5) and the analysis of TBED-C
dataset (Figure 6), we have shown that FBLMM have
outperformed commonly used methods via using the design
information, indicating our proposed method has the capacity
to substantially improve prediction models for family-based
studies.

Rare variants of large effects can play an important role in
complex human diseases (Gaukrodger et al., 2005). It has been
reported that the largest contributions to genetic risk of human
diseases can come from rare variants (Mancuso et al., 2016;
Hernandez et al., 2019). However, few family-based genetic
studies are powerful enough to model these effects, primarily
due to the lack of efficient analytical methods (McIntosh et al.,
2016). We have recently developed BLMM for risk prediction

FIGURE 6
The comparison of prediction accuracy for aggressive scale.
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studies using genomic data from population-based study designs
(Hai and Wen, 2020), and BLMM has achieved an improved
prediction accuracy through simultaneously considering both
common and rare variants. Instead of modeling individual
predictive effects that are hard to estimate for rare variants,
BLMM models the cumulative predictive effects from a group
of variables that include both common and rare variants. BLMM
uses a WSS weight function that has been used in association
analysis of sequencing data to address the contributions of rare
variants (Wu et al., 2011), and this leads to an improvement for
prediction studies. Our proposed FBLMM is built within the
BLMM framework, and thus it inherits BLMM’s capacity in
modeling rare variants. Same as BLMM, FBLMM uses the
WSS function to up-weight the rare variants so that their
predictive effects can be effectively captured. As shown in
simulations, FBLMM can achieve better assessment, when
outcomes were simulated under the assumption that rare
variants significantly contribute to the risk (Figures 2B, C).

One of the limitations of our method is that it overlooks the
contributions of non-additive effects, especially interactions. As
indicated in existing literature (Weissbrod, Geiger, and Rosset,
2016), non-linear predictive effects (e.g., epistasis) widely exist.
Therefore, it is important to incorporate non-additive effects into
risk prediction models. A potential solution within the FBLMM
framework is to kernelize the variance-covariance matrix of the
random effect terms, so that the assumed relationships between
predictors and outcomes can be non-linear. For example, similar to
MKLMM (Weissbrod, Geiger, and Rosset, 2016), polynomial kernel
of two degrees of freedom and the saturating pathway kernel can be
used to capture non-linear predictive effects. This will be a future
direction of our research.

In summary, we have proposed a Bayesian linear mixed model
for risk prediction analysis on genomic data obtained from family-
based study designs. Our proposed FBLMM extends the BLMM
method, and thus it can not only capture the predictive effects from
both common and rare variants, but also accommodate various
disease model assumptions. In addition, using study design
information, FBLMM forms two surrogates to model the
predictive effects from unmeasured/unknown genetic and
environmental risk factors, which substantially facilitates family-
based prediction studies. The algorithm implementing our proposed
method is available at https://github.com/yhai943/FBLMM.
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