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Introduction:Metagenomic next-generation sequencing (mNGS) has emerged as
a powerful tool for rapid pathogen identification in clinical practice. However, the
parameters used to interpret mNGS data, such as read count, genus rank, and
coverage, lack explicit performance evaluation. In this study, the developed
indicators as well as novel parameters were assessed for their performance in
bacterium detection.

Methods: We developed several relevant parameters, including 10M normalized
reads, double-discard reads, Genus Rank Ratio, King Genus Rank Ratio, Genus
Rank Ratio*Genus Rank, and King Genus Rank Ratio*Genus Rank. These
parameters, together with frequently used read indicators including raw reads,
reads per million mapped reads (RPM), transcript per kilobase per million mapped
reads (TPM), Genus Rank, and coverage were analyzed for their diagnostic
efficiency in bronchoalveolar lavage fluid (BALF), a common source for
detecting eight bacterium pathogens: Acinetobacter baumannii, Klebsiella
pneumoniae, Streptococcus pneumoniae, Staphylococcus aureus, Hemophilus
influenzae, Stenotrophomonas maltophilia, Pseudomonas aeruginosa, and
Aspergillus fumigatus.

Results: The results demonstrated that these indicators exhibited good diagnostic
efficacy for the eight pathogens. The AUC values of all indicators were almost
greater than 0.9, and the corresponding sensitivity and specificity values were
almost greater than 0.8, excepted coverage. The negative predictive value of all
indicators was greater than 0.9. The results showed that the use of double-
discarded reads, Genus Rank Ratio*Genus Rank, and King Genus Rank
Ratio*Genus Rank exhibited better diagnostic efficiency than that of raw reads,
RPM, TPM, and in Genus Rank. These parameters can serve as a reference for
interpreting mNGS data of BALF. Moreover, precision filters integrating our novel
parameters were built to detect the eight bacterium pathogens in BALF samples
through machine learning.

Summary: In this study, we developed a set of novel parameters for pathogen
identification in clinical mNGS based on reads and ranking. These parameterswere

OPEN ACCESS

EDITED BY

Nathan Olson,
National Institute of Standards and
Technology (NIST), United States

REVIEWED BY

Abdolrahman Khezri,
Inland Norway University of Applied
Sciences, Norway
Jiemin Zhou,
Vision Medicals Co., Ltd., China
Han Xia,
Hugobiotech Co., Ltd., China

*CORRESPONDENCE

Ruizhi Wang,
wangrzh3@mail.sysu.edu.cn

Peisong Chen,
chps@mail3.sysu.edu.cn

†These authors have contributed equally
to this work

RECEIVED 28 July 2023
ACCEPTED 27 October 2023
PUBLISHED 17 November 2023

CITATION

Jiang X, Yan J, Huang H, Ai L, Yu X,
Zhong P, Chen Y, Liang Z, Qiu W,
Huang H, Yan W, Liang Y, Chen P and
Wang R (2023), Development of novel
parameters for pathogen identification in
clinical metagenomic next-
generation sequencing.
Front. Genet. 14:1266990.
doi: 10.3389/fgene.2023.1266990

COPYRIGHT

© 2023 Jiang, Yan, Huang, Ai, Yu, Zhong,
Chen, Liang, Qiu, Huang, Yan, Liang,
Chen and Wang. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Genetics frontiersin.org01

TYPE Original Research
PUBLISHED 17 November 2023
DOI 10.3389/fgene.2023.1266990

https://www.frontiersin.org/articles/10.3389/fgene.2023.1266990/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1266990/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1266990/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1266990/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2023.1266990&domain=pdf&date_stamp=2023-11-17
mailto:wangrzh3@mail.sysu.edu.cn
mailto:wangrzh3@mail.sysu.edu.cn
mailto:chps@mail3.sysu.edu.cn
mailto:chps@mail3.sysu.edu.cn
https://doi.org/10.3389/fgene.2023.1266990
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2023.1266990


found to be more effective in diagnosing pathogens than traditional approaches.
The findings provide valuable insights for improving the interpretation of mNGS
reports in clinical settings, specifically in BALF analysis.
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Introduction

Next-generation sequencing (NGS) technology, also known as
high-throughput or large-scale sequencing technology, can
simultaneously and independently sequence thousands to billions
of DNA fragments (Boers et al., 2019). Recently, the use of NGS for
clinical pathogen diagnosis is widely accepted, with three main
applications in the clinical microbiology laboratory: whole-
genome sequencing (WGS), metagenomic next-generation
sequencing (mNGS), and targeted metagenomics sequencing
(tNGS) (Mitchell and Simner, 2019). WGS involves sequencing
and assembly of a microbial genome, which is applied to the
pure culture growth of a bacterial organism or directly from a
viral specimen. WGS is used to identify and epidemiologically track
food-borne outbreaks and disease surveillance and to identify multi-
drug-resistant nosocomial infections and track the transmission of
these organisms. However, this approach is time-consuming due to
the microbial culture and has limitations when it is difficult to
culture the organism or uncultivable (Brown et al., 2015; Nimmo
et al., 2017; Votintseva et al., 2017). The implementation of shotgun
and targeted metagenomics sequencing directly from a clinical
sample, namely, as mNGS and tNGS, offers the major advantage
of eliminating the culture process entirely. The method of mNGS
does not rely on traditional microbial culture and can extract all
nucleic acids from specimens without bias for high-throughput
sequencing (Gu et al., 2019; Han et al., 2019). After biological
information analysis, human sequences are removed, and the
remaining sequences are compared with pathogen databases to
obtain the information on suspected pathogenic microorganisms
species (Gu et al., 2019; Han et al., 2019). On the other hand, tNGS
involves a selection process before library preparation and
sequencing to enrich for the microbial sequences of interest.
Enrichment can be achieved using various selection methods
such as PCR amplification (commonly known as amplicon
sequencing), probe hybridization, and CRISPR–Cas9 utilization
(Salipante et al., 2014; Gu et al., 2016). The advantage of tNGS
when compared to mNGS approaches is that it overcomes the
challenge of amplifying low numbers of microbial sequences
within highly cellular samples, often referred to as the “needle in
the haystack” dilemma. However, the enrichment process, such as
multiplex PCR for specific genes, may introduce target bias
(Schlaberg et al., 2017). There has been a growing interest in the
use of quasi-metagenomics, which lies between culture-independent
metagenomics and pure-culture isolate sequencing. Quasi-
metagenomics sequencing involves the analysis of modified
microbiomes in food and environmental samples using WGS
(Hyeon et al., 2018). In this protocol, the microbiome is modified
to concentrate the genomic DNA of a specific food-borne pathogen
contaminant, enabling the detection and subtyping of the pathogen
in a single workflow (Hyeon et al., 2018).

mNGS can theoretically detect all pathogens in clinical samples
and is especially suitable for detecting complex, rare, novel, and
atypical infectious diseases (Ge et al., 2021). In particular for some
viruses, mNGS might be the only feasible method of detection
(Babiker et al., 2020; van Boheemen et al., 2020). mNGS can be
used for a variety of common clinical microbiology samples, such as
cerebrospinal fluid, whole blood, alveolar lavage fluid, pus, and
tissue (Wilson et al., 2014; Doan et al., 2016). In recent years, the
successful application of mNGS in clinical cases and studies has
gradually increased. The advantage of mNGS in the field of
infectious disease diagnosis lies in its ability to detect pathogens
that may remain elusive to other conventional detection methods,
i.e., the capability to detect difficult-to-culture, rare, or
unprecedented pathogenic microorganisms (Wylie et al., 2013;
Wilson et al., 2014; Frémond et al., 2015; Doan et al., 2016;
Simner et al., 2018).

Current bioinformatics pipelines of mNGS mostly rely on the
number of mapped reads for pathogen identification. However,
there are significant challenges in interpreting and reporting data
from mNGS. Although mNGS is increasingly being applied in
clinical settings, there is no guideline as a standard for
interpreting mNGS data. Different analysts may have varying
interpretations based on their own independent criteria. For the
same bacteria being tested, one person may identify it as a
pathogenic bacterium and report it as such to the clinician,
while another may dismiss it as background detection and
provide the clinician with a negative report. When
interpreting the mNGS report, it is common practice to
classify the detected pathogen as either background or
pathogenic bacteria in the specimen based on reads per
million mapped reads (RPM), transcript per kilobase per
million mapped reads (TPM), genus rank, and coverage.
However, the performance of these parameters in pathogen
identification has been barely investigated, while it is not yet
clear if there are better parameters available. Hence, we
developed novel parameters and compared their effectiveness
with that of the traditional indexes, such as raw reads, RPM,
TPM, and in-Genus rank.

Materials and methods

Different indicators of mNGS

In this study, we discussed the diagnostic efficacy of different
indicators. According to the results of mNGS, except for the used
indicators including raw reads, RPM, TPM coverage, and in Genus
Rank, we developed the following novel indicators: 1) read
indicators: 10M normalize reads and double-discard reads; 2)
rank indicators: Genus Rank Ratio, King Genus Rank Ratio,

Frontiers in Genetics frontiersin.org02

Jiang et al. 10.3389/fgene.2023.1266990

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1266990


Genus Rank Ratio*in Genus Rank, and King Genus Rank Ratio*in
Genus Rank. The meaning and calculation methods of different
indicators are shown in Table 1.

Study participants

In this study, we collected bronchoalveolar lavage fluid
(BALF) samples from patients at the First Affiliated Hospital

of Sun Yat-sen University. These samples will undergo both PCR
and mNGS. A total of 605 patients were included in the study.
The inclusion criteria were as follows: meeting criteria 1–3 and at
least one of criteria 4–8, mentioned as follows: 1) being over
18 years of age; 2) showing pulmonary inflammatory lesions on
lung imaging; 3) being willing to participate (either the patient or
their guardian); 4) testing positive for the pathogen; 5)
experiencing cough, sputum, chest pain, dyspnea, or
hemoptysis; 6) presenting with acute fever; 7) showing signs

TABLE 1 Definitions of the 11 indicators.

Indicator Annotation

Raw reads Original read number of the specimen

10M normalize reads All reads were homogenized with 10M as the standard

Double discard reads Reads of potentially contaminating microorganisms in the environment and reagents, and reads of target species brought out by
similar sequences of other species were excluded

RPM Reads per million mapped reads

TPM Transcript per Kilobase per million mapped reads

Coverage Proportion of genes sequenced in the entire genome

In Genus Rank Ranking the species of the same genus detected in the sample, ranked from highest to lowest sequence number

Genus Rank Ratio The genus in which the microbial belongs is ranked from highest to lowest by the number of sequences in all the genera detected in
the sample

King Genus Rank Ratio Genus ranking ratio in different kingdoms

Genus Rank Ratio*in Genus Rank Joint indicator

King Genus Rank Ratio*in Genus Rank Joint indicator

bold values means a significant difference.

FIGURE 1
Flowchart of this study.
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of lung consolidation and/or moist rales; 8) exhibiting increased
white blood cell count and C-reactive protein (CRP). Exclusion
criteria were as follows: 1) less than 18 years of age; 2) having a
clear non-infectious diagnosis; 3) having an insufficient number
of specimens; 4) not wanting to participate (either the patient or
their guardian). Then, the mNGS results were analyzed to
determine the detection status of the following eight
pathogens: Acinetobacter baumannii, Klebsiella pneumoniae,
Streptococcus pneumoniae, Staphylococcus aureus, Hemophilus
influenzae, Stenotrophomonas maltophilia, Pseudomonas
aeruginosa, and Aspergillus fumigatus in each specimen. The
data for each index were obtained. The diagnostic efficacy of
mNGS was evaluated using the results of PCR as the gold
standard (Figure 1).

Sample processing and DNA extraction from
mNGS and PCR

An amount of 400 μl of each patient’s BALF was placed in a 2-ml
low-adsorption centrifuge tube, centrifuging at 14,000 g for 3 min.
The supernatant was then discarded, and 200 μl of PBS was added to
the centrifuge tube for re-suspension. The resulting mixture was
incubated with 5% saponins and nuclease at 37°C, 1,000 rpm for
10 min. PBS (1 ml) was added to dilute 15,000 g for 3 min. The
supernatant was removed. To the centrifuge tube, 400 μl of PBS was
added for re-suspension. The resulting mixture was mixed with
lysozyme and glass beads and placed on a vortex mixer’s horizontal
platform, stirring intensely at 2,800–3,200 rpm for 30 min. We then
used the Micro DNA kit (Guangzhou Darui Biotechnology Co., Ltd.,
DR-HS-A010, China) to extract DNA following standard protocols.
The detected samples included a negative control for detection of
cross-contamination and a positive control to monitor DNA
extraction efficiency. The DNA concentration was estimated
using a Qubit fluorometer (Thermo Fisher Scientific).

Library preparation and sequencing
construction

Based on the principle of high-throughput sequencing, we added
a universal sequencing connector to both ends of the extracted DNA
fragments, followed by fragment screening to construct the
sequencable DNA libraries. We used the TIANSeq DNA library
construction kit (TIANGEN, NG104-T3A, China) to construct the
DNA libraries, following the established protocols. In order to
monitor the accuracy of the experimental steps and filter
microbial contaminant sequence, we added equal amounts of the
nucleic acid of spike-in control (a plasmid with known amounts
constructed by T4 phages) to all the samples. The DNA libraries
were quantified using a Qubit fluorometer, and the sizes of the
libraries were measured using a Qsep100 (BiOptic Inc.) to all the
samples. The constructed mixed libraries were subsequently
sequenced on the Ion Torrent platform, ensuring that the
resulting qualified data consisted of at least 10 million reads per
sample and a Q30 score of 85% or higher. Quality control was
maintained by including a negative control sample, which was
processed and sequenced in parallel with each sequencing run.

Bioinformatics analysis and mNGS analysis

After completion of sequencing, the mNGS results were
compared and analyzed using the PIP (version: 1.0.0rc4) (DAAN
Gene Co.) software in the PIDB_v1.1.1 (DAAN Gene Co.) database.
The main steps of the pipeline include trimming of the adapter and
low-quality sequences using Fastp (version: 0.21.0), excluding
human sequences by mapping to the human reference
(GRCh38.p13) using SNAP (version: 1.0.3), aligning the
remaining sequence data to microbial databases (PIDB_v1.1.1)
consisting of bacteria, fungi, viruses, and parasites by Kraken 2
(version: 2.1.1) and annotating, and then homogenizing the raw
taxonomic profile with 10M as the standard.

Following the annotation analysis, double deductions were
made for the reads of the detected species to obtain a more
realistic taxonomic profile. mNGS experiments with a small
amount of nucleic acid input are known to be susceptible to false
conclusions due to potential contaminants, especially from
molecular biological reagents and the environment. The majority
of respiratory samples have a host ratio of over 90%, which means
that the effective data ratio is less than 10%. Information on nucleic
acid concentration, library concentration, and host ratio can be
found in the Supplementary Materials (see Supplementary Table
S1). For the first double deduction, we calculated the correlation
between the read number of spike-in control added to the negative
control sample and in the sample to obtain the read number of the
nucleic acid of potential pollutants in the sample. Then, the error is
corrected in the sample classification results, which may be due to
the introduction of pollutants. Due to the equal amount of spike-in
control input in qualified samples and negative control and the
positive correlation between the read number of species and the
proportion of nucleic acid, the fold change of the spike-in control
read number between samples and negative control was equal to the
fold change of the contaminated microbe read number between
samples and negative control (Zinter et al., 2019). The fold change in
the read number of the spike-in control and pollutant in samples
and negative control was consistent.

The correlation conversion formula is as follows:

Readsspike−in sample/Readsspike−in NC

� Readspollutants sample/Readspollutants NC.

Reads: read number, NC: negative control, and sample: clinical
sample.

Due to the homology among species and the extensive
contamination of microbial sequences in public databases, the
classification of sequences of a single species is often
accompanied by the detection of other species, which we
consider to be noise data that will interfere with the judgment of
results. For the second double deduction, we utilized a multiple
linear regression model to quantify the interference relationship
between species and then deducted a certain proportion of species
read number according to the model. A clinically prevalent
species–strain database of BALF was constructed using
1015 BALF samples from the hospital within the last month,
which covered 375 species and 1952 strains. The 50-fold reads
per strain was simulated using wgsim (version: 1.15-9-g4be6986)
and analyzed by PIP to obtain the taxonomic profile. Each target
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species y may be produced under the joint action of multiple species
xk, and the contribution value of each species xk is different, that is,
each species xk has a corresponding weight bk.

The variables of the multiple linear regression model between
species are composed of species variables:

y � b0 + b1x1 + b2x2 + . . . + bkxk + ut.

The weight bk is equal to the fold change of the read number of
species y and the reads number of species xk in the simulated data of
species xk, that is expressed as follows:

bk � Readsy xsimulate/Readsx xsimulate
.

We construct a weighted correlation matrix for the interfering
strains of each species. By excluding the noise introduced by species
xk, a more realistic read number of species y can be obtained.

After the double deduction, RPM and TPM calculations were
performed on the remaining data. Meanwhile, several new
pathogen-reporting indexes were introduced by applying feature
transformation and feature combination in feature engineering,
including “In Genus Rank,” “Genus Rank Ratio,” “King Genus
Rank Ratio,” “Genus Rank Ratio*in Genus Rank,” and “King
Genus Rank Ratio*in Genus Rank.” To reduce the effects of
experimental and human-induced errors in the sample, we take a
feature construction approach by implementing the bucket sort
algorithm to discretize the read number of species (Koenig and
Youn, 2011). Species from the same genus were placed in the same
bucket, and immediately after that, the species read number in each
bucket was ranked from largest to smallest, and a new index “In
Genus Rank” was assigned to each species according to the rank in
each bucket. Each bucket was sorted from the largest to the smallest
by the read number of the genus. According to the rank percent of
the target genus in all genera, a new indicator “Genus Rank Ratio”
was obtained. For example, with a total of 100 genera, the read
number of the target genus ranks first among all genera, and the
“Genus Rank Ratio” is equal to 1 divided by 100, that is, 1%. Similar
to the “Genus Rank Ratio,” the index “King Genus Rank Ratio”
quantifies the ranking proportion of all genera in the kingdom level
to which the target Genus belongs, which is different from the
“Genus Rank Ratio.” In feature engineering, new features may better
characterize the data by combining several different features,
i.e., synthetic features that encode non-linear laws in the feature
space by multiplying two or more input features. Here, we combine
“In Genus Rank” and “Genus Rank Ratio” as a new feature, named
“Genus Rank Ratio*in Genus Rank,” “King Genus Rank Ratio” and
“In Genus Rank” were combined, and it is called the “King Genus
Rank Ratio*in Genus Rank.”

All reports interpret that indicators were obtained for the eight
microorganisms (A. baumannii, K. pneumoniae, S. pneumoniae, S.
aureus, H. influenzae, S. maltophilia, P. aeruginosa, and A.
fumigatus) identified in the mNGS results of each specimen.

PCR assay of the eight pathogens

The PCR assay was performed on the Applied Biosystems™
ProFlex™ PCR system. The primers of the eight pathogens are
shown in Table 2. The final reaction volume of 20 µL contained

10 µL of Platinum™ II Taq Hot-Start Green PCR Master Mix
(Invitrogen™), 10 μM concentration of each primer (1 mL), and
2 µL of extracted DNA. Thermal cycling conditions were as follows:
preheating at 94°C for 2 min, amplification of 40 cycles including
denaturation at 94°C for 15 s, annealing at 60°C for 15 s, and
extension at 68°C for 15 s. Positive and negative controls were
included in each run. PCR products were detected by agarose gel
electrophoresis.

Build machine learning models

Taking all these parameters into consideration, we selected
double-discard reads and ranking indicators, such as Genus
Rank, Genus Rank Ratio, and King Genus Rank Ratio, for
machine learning training. Similarly, the PCR results were used
as the standard for comparison. We selected a logistic regression
model that randomly splits the data into a 70% training set and a
30% verification set to obtain the calculation formula of the model.

Statistical analysis

Statistical analysis was carried out by an online statistics tool
(http://dxonline.deepwise.com/) and GraphPad prism. The ROC
curve, sensitivity, specificity, positive predict value (PPV), and
negative predict value (NPV) were calculated using the results of
PCR as the reference standard. The significance was fixed at p < 0.05.

Result

The results of PCR in the eight pathogens

In this study, in order to explore the diagnostic efficacy of different
indicators of mNGS, we took the results of PCR as the gold standard for
judgment. The result of PCR in the eight pathogens is shown in Table 3.

The assay sensitivity in detecting pathogens

In clinical specimens, pathogens are often found alongside host
cells at varying abundances. Different specimens can have different
rates of host cells, which may interfere with the analysis. Therefore,
we first conducted a sensitivity analysis of our approach using
standard substances. Three pathogen standards in different
concentrations were mixed with human DNA (1.25*106 cells/ml)
to simulate the host background and were subjected to sequencing.
The results showed that even at relatively low concentrations, our
approach still demonstrated an excellent performance in detecting
microbes (Figure 2).

The diagnostic efficacy of different
indicators in mNGS of the eight pathogens

After performing the Kraken 2 analysis on all clinical
samples, the total number of mapped pathogen reads ranged
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from 31 to 10,528,777 (Figure 3; Supplementary Table S2). The
ROC curve of read indicators and rank indicators of the eight
pathogens using mNGS is shown in Figures 4, 5. The ROC curve
enables the determination of the cut-off value for each index,
along with its corresponding sensitivity, specificity, PPV, and
NPV. The areas under the curve (AUC), cut-off value,
sensitivity, specificity, PPV, and NPV of the different
indicators in A. baumannii, K. pneumoniae, S. pneumoniae,
S. aureus, H. influenzae, S. maltophilia, P. aeruginosa, and A.
fumigatus are listed in Table 4. The results demonstrated that
these indicators exhibited good diagnostic efficacy for the eight
pathogens. The AUC values of the five read indicators (raw
reads, 10M normalized reads, double discard reads, RPM, and
TPM) were all greater than 0.9. The corresponding sensitivity
and specificity values were also all greater than 0.8, except for
the sensitivity of 10M normalized reads in S. aureus (0.762) and
the sensitivity of raw reads in H. influenzae (0.724).
Furthermore, the NPV was also higher than 0.95, indicating
that these indicators can effectively predict true negative
results. Among the five rank indicators, both Genus Rank
Ratio*in Genus Rank and King Genus Rank Ratio*in Genus
Rank demonstrated better diagnostic efficiency, with AUC
values greater than 0.9. The corresponding sensitivity and
specificity values were greater than 0.8, except for the

specificity of King Genus Rank Ratio*in Genus Rank in P.
aeruginosa (0.774). Moreover, the NPV was higher than 0.99,
highlighting that these two indicators are reliable predictors of
true negative results.

Pairwise comparisons of different indicators

Using the DeLong test for pairwise comparisons, the AUC of
double discard reads was significantly higher than that of raw
reads and 10M normalized reads in S. pneumoniae and H.
influenzae (p < 0.01). The AUC of double discard reads was
significantly higher than that of 10M normalized reads in S.
maltophilia (p < 0.05) (Table 5). The AUC of the double discard
reads was greater than 0.9 for all eight pathogens, indicating a
high diagnostic efficacy. Compared to RPM and TPM, the AUC
of double discard reads was significantly higher in K.
pneumoniae and P. aeruginosa (p < 0.05), and compared to
RPM, the AUC of double-discarded reads was significantly
higher in S. pneumoniae (p < 0.05) and A. fumigatus (p <
0.01). By definition, double discard reads further remove
host-derived readings from the results, yielding a more
accurate representation of pathogen information in the
specimen. Therefore, double discard reads could be the
preferred option when considering the number of reads in
the mNGS report (Table 5).

Compared to in Genus Rank, the AUC of Genus Rank
Ratio*in Genus Rank and King Genus Rank Ratio*in Genus
Rank was significantly higher in all the eight pathogens (p <
0.01). Compared to the Genus Rank Ratio, the AUC of Genus
Rank Ratio*in Genus Rank and King Genus Rank Ratio*in Genus
Rank was significantly higher in K. pneumoniae (p < 0.01 and p <
0.05, respectively), S. pneumoniae (p < 0.01), S. aureus (p < 0.01),
H. influenzae (p < 0.01), and P. aeruginosa (p < 0.01). Compared
to the Genus Rank Ratio, the AUC of the Genus Rank Ratio*in
Genus Rank was significantly higher in A. fumigatus (p < 0.05)
(Table 5). Compared to the King Genus Rank Ratio, the AUC of
the Genus Rank Ratio*in Genus Rank and King Genus Rank
Ratio*in Genus Rank was significantly higher in K. pneumoniae
(p < 0.05 and p < 0.01, respectively), S. pneumoniae (p < 0.01), S.
aureus (p < 0.01), H. influenzae (p < 0.01), P. aeruginosa (p <

TABLE 2 Primer sequences of pathogens used for PCR assays.

Pathogen Forward primer (5′–3′) Reverse primer (5′–3′)

A. baumannii GCTCTGCAAATAGACGGCGAGATTA TGCAACTGAGCAGCCAATTTCAGA

K. pneumoniae GATGCCAACGTGCCGCTCA CTCGGCAGTACCAGACAGCTATG

S. pneumoniae TAGCCGTTACTTCATGTCCTCGTT TCTGCATAACTAATCTGGCTTATTCCT

S. aureus ATATGTGCGTGTTTATTGGCAAACGT GGATGACGTAGCTGAGCAAAGAAATGA

H. influenzae AAATACAAACTAACGGCGAATGGAAC TACCTGTAGATAATAATCCAGCGAGTG

S. maltophilia GGAAGCGGACTTCGGTCAG TAAGCCGCTGAATACTAAGGATCG

P. aeruginosa GATCAACAGCGCGAATATCTCGGA CGGACCCGCTGATCAGTCGATATA

A. fumigatus TCAAAGATATCGACGGATCGACAA GGACAATGTGCAAGGCATAAGATT

TABLE 3 Identification of the eight pathogens in clinical samples by PCR assay.

Positive Negative Total

A. baumannii 32 357 389

K. pneumoniae 35 488 523

S. pneumoniae 22 447 469

S. aureus 21 380 401

H. influenzae 29 252 281

S. maltophilia 33 357 390

P. aeruginosa 33 350 383

A. fumigatus 27 525 552
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FIGURE 2
Log10 of standardized read number at different concentrations, S1: A. baumannii, K. pneumoniae, H. influenzae, S. maltophilia, and P. aeruginosa:
250 CFU/ml; S. pneumoniae, S. aureus: 500 CFU/ml and A. fumigatus: 1,000 CFU/ml. S: A. baumannii, K. pneumoniae, H. influenzae, S. maltophilia, and
P. aeruginosa: 50 CFU/ml; S. pneumoniae, S. aureus: 100 CFU/ml and A. fumigatus: 200 CFU/ml. S2: A. baumannii, K. pneumoniae, H. influenzae, S.
maltophilia, and P. aeruginosa: 100 CFU/ml; S. pneumoniae, S. aureus: 20 CFU/ml and A. fumigatus: 40 CFU/ml.

FIGURE 3
All reads of the detected pathogens in each sample.
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0.01), and A. fumigatus (p < 0.01). The results showed that the
two joint indicators (Genus Rank Ratio*in Genus Rank and King
Genus Rank Ratio*in Genus Rank) outperformed the other three

individual rank indicators (in Genus Rank, Genus Rank Ratio,
and King Genus Rank Ratio), indicating that the two joint
indicators can be selected for analysis when considering the

FIGURE 4
ROC curve of read indicators in the eight pathogens, (A) A. baumannii, (B) K. pneumoniae, (C) S. pneumoniae, (D) S. aureus, (E) H. influenzae, (F) S.
maltophilia, (G) P. aeruginosa, and (H) A. fumigatus.
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genus ranking of pathogens in the analysis of mNGS reports
(Table 5).

Construction of identification algorithms
through a machine learning model

The score of the logistic regression model is as follows:
score = 1/(1 + exp (-logit)). The calculation formula of logit
for the training model of each pathogen (Table 6) and the
evaluation of the model’s effectiveness (Table 7) were obtained
through machine learning. The ROC curves corresponding to
each model are shown in Figure 6. The AUC value indicates that
the model has a better effect. It is evident that after machine
learning training, each model demonstrates improved diagnostic
performance.

Discussion

Identifying the etiology of infectious diseases is critical in their
diagnosis. Traditionally, clinicians make differential diagnoses based
on patients’ clinical manifestations and then conduct corresponding
tests for each pathogen. However, many pathogenic microorganisms
are difficult to cultivate in vitro and hard to diagnose through clinical
symptoms, which restricts the use of traditional microbiology tests.
In comparison, mNGS is able to cover a wider range of pathogens,
making it an essential tool for diagnosis (Goldberg et al., 2015).

The positive threshold for mNGS is determined based on the
number of microbial-specific sequences and their genome coverage
(Chinese Society of Laboratory Medicine, 2020). Since viruses rarely
survive in the environment, even a small number of specific
sequences can be detected as positive (Miller et al., 2019). It is
crucial to avoid reporting environmental bacteria, symbiotic

FIGURE 5
ROC curve of rank indicators in the eight pathogens, (A) A. baumannii, (B) K. pneumoniae, (C) S. pneumoniae, (D) S. aureus, (E) H. influenzae, (F) S.
maltophilia, (G) P. aeruginosa, and (H) A. fumigatus.
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TABLE 4 Diagnostic efficacy of 11 indicators in mNGS of eight pathogens.

Pathogens Different index AUC Cut-off value Sensitivity Specificity PPV NPV

A. baumannii Raw reads 0.920 187 0.844 0.905 0.443 0.985

10M normalize reads 0.919 141 0.844 0.888 0.403 0.984

Double discard reads 0.938 78 0.871 0.938 0.557 0.988

RPM 0.939 11326.63 0.844 0.958 0.643 0.986

TPM 0.929 1312.836 0.844 0.924 0.499 0.985

Coverage 0.542 16.059 0.25 1 1.000 0.937

In Genus Rank 0.836 1.5 0.935 0.741 0.244 0.992

Genus Rank Ratio 0.942 0.236 0.938 0.896 0.447 0.994

King Genus Rank Ratio 0.941 0.268 0.969 0.873 0.406 0.997

Genus Rank Ratio*in Genus Rank 0.945 0.273 0.938 0.904 0.467 0.994

King Genus Rank Ratio*in Genus Rank 0.944 0.267 0.938 0.918 0.506 0.994

K. pneumoniae Raw reads 0.978 296.5 0.886 0.971 0.687 0.992

10M normalize reads 0.973 120.5 0.914 0.936 0.506 0.993

Double discard reads 0.938 112.5 0.857 0.953 0.567 0.989

RPM 0.915 1571.132 0.914 0.809 0.256 0.992

TPM 0.916 403.752 0.943 0.809 0.262 0.995

Coverage 0.461 1.016 0.086 1 1.000 0.938

In Genus Rank 0.728 1.5 0.943 0.514 0.122 0.992

Genus Rank Ratio 0.931 0.169 0.886 0.953 0.575 0.991

King Genus Rank Ratio 0.931 0.201 0.914 0.936 0.506 0.993

Genus Rank Ratio*in Genus Rank 0.941 0.169 0.886 0.971 0.687 0.992

King Genus Rank Ratio*in Genus Rank 0.941 0.201 0.914 0.955 0.593 0.994

S. pneumoniae Raw reads 0.921 577.5 0.818 0.872 0.239 0.990

10M normalize reads 0.915 512 0.818 0.868 0.234 0.990

Double discard reads 0.997 18.5 1.000 0.975 0.663 1.000

RPM 0.984 10.923 1.000 0.890 0.309 1.000

TPM 0.986 22.009 1.000 0.897 0.323 1.000

Coverage 0.506 5.312 0.227 1.000 1.000 0.963

In Genus Rank 0.973 3.5 1.000 0.913 0.361 1.000

Genus Rank Ratio 0.795 0.049 0.818 0.729 0.129 0.988

King Genus Rank Ratio 0.780 0.06 0.864 0.691 0.121 0.990

Genus Rank Ratio*in Genus Rank 0.997 0.352 1.000 0.955 0.522 1.000

King Genus Rank Ratio*in Genus Rank 0.997 0.305 1.000 0.962 0.564 1.000

S. aureus Raw reads 0.952 15.5 0.952 0.803 0.211 0.997

10M normalize reads 0.947 115.5 0.762 0.979 0.667 0.987

Double discard reads 0.961 31 0.810 0.974 0.633 0.989

RPM 0.964 2132.809 0.905 0.942 0.463 0.994

TPM 0.966 806.17 0.905 0.918 0.379 0.994

(Continued on following page)

Frontiers in Genetics frontiersin.org10

Jiang et al. 10.3389/fgene.2023.1266990

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1266990


TABLE 4 (Continued) Diagnostic efficacy of 11 indicators in mNGS of eight pathogens.

Pathogens Different index AUC Cut-off value Sensitivity Specificity PPV NPV

Coverage 0.5 0.051 0.143 0.971 0.214 0.953

In Genus Rank 0.896 1.5 0.905 0.823 0.220 0.994

Genus Rank Ratio 0.892 0.342 0.952 0.700 0.149 0.996

King Genus Rank Ratio 0.895 0.314 0.905 0.747 0.165 0.993

Genus Rank Ratio*in Genus Rank 0.965 0.343 0.905 0.934 0.431 0.994

King Genus Rank Ratio*in Genus Rank 0.966 0.361 0.905 0.932 0.424 0.994

H. influenzae Raw reads 0.923 324.5 0.724 0.960 0.676 0.968

10M normalize reads 0.936 97.5 0.828 0.865 0.414 0.978

Double discard reads 0.983 19.5 1.000 0.892 0.516 1.000

RPM 0.992 3646.02 1.000 0.948 0.689 1.000

TPM 0.986 2062.13 1.000 0.905 0.548 1.000

Coverage 0.709 0.055 0.621 0.786 0.250 0.947

In Genus Rank 0.900 1.5 1.000 0.801 0.366 1.000

Genus Rank Ratio 0.938 0.137 0.862 0.893 0.481 0.983

King Genus Rank Ratio 0.936 0.12 0.828 0.925 0.560 0.979

Genus Rank Ratio*in Genus Rank 0.992 0.3 0.966 0.948 0.681 0.996

King Genus Rank Ratio*in Genus Rank 0.992 0.268 0.966 0.972 0.799 0.996

S. maltophilia Raw reads 0.974 175.5 0.909 0.952 0.636 0.991

10M normalize reads 0.969 139.5 0.909 0.950 0.627 0.991

Double discard reads 0.981 120 0.909 0.966 0.712 0.991

RPM 0.987 4996.882 1.000 0.919 0.533 1.000

TPM 0.966 661.789 0.939 0.863 0.388 0.994

Coverage 0.41 0.206 0.061 0.994 0.484 0.920

In Genus Rank 0.773 51 1.000 0.579 0.180 1.000

Genus Rank Ratio 0.988 0.232 0.970 0.936 0.584 0.997

King Genus Rank Ratio 0.988 0.274 1.000 0.927 0.559 1.000

Genus Rank Ratio*in Genus Rank 0.985 0.309 1.000 0.882 0.439 1.000

King Genus Rank Ratio*in Genus Rank 0.985 0.275 0.970 0.927 0.551 0.997

P. aeruginosa Raw reads 0.974 293.5 0.939 0.894 0.455 0.994

10M normalize reads 0.968 242.5 0.939 0.891 0.448 0.994

Double discard reads 0.984 86.5 0.970 0.905 0.490 0.997

RPM 0.943 24694.8 0.818 0.949 0.602 0.982

TPM 0.945 3300.692 0.848 0.911 0.473 0.985

Coverage 0.553 0.084 0.364 0.966 0.502 0.942

In Genus Rank 0.758 1.5 1.000 0.516 0.163 1.000

Genus Rank Ratio 0.937 0.159 0.909 0.814 0.315 0.990

King Genus Rank Ratio 0.928 0.202 0.939 0.743 0.256 0.992

Genus Rank Ratio*in Genus Rank 0.962 0.224 1.000 0.806 0.327 1.000

King Genus Rank Ratio*in Genus Rank 0.955 0.269 1.000 0.774 0.294 1.000

(Continued on following page)
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bacteria, and conditioned pathogens that are not clinically relevant.
Typically, the higher the number of general sequences, the greater
the likelihood of pathogenic microorganisms (tens of specific
sequences) (Chinese Society of Laboratory Medicine, 2020). For
pathogens of significant clinical concern and those that are difficult
to detect, such as Mycobacterium tuberculosis, Yersinia pestis, and
Brucella, independent interpretation criteria can be adopted
(Chinese Society of Laboratory Medicine, 2020). For instance, if
one specific sequence is detected, it can be judged as positive (Miao
et al., 2018; Fan et al., 2019). Since the parasite genome is relatively
complex and similar to the human genome, it should be interpreted
strictly after the sequence specificity is confirmed (Infect Inflamm
Rep, 2020). If the detected sequence is a new species, the threshold is
not limited, but the homology comparison results must be provided.

In addition to specimen collection, pretreatment, and detection
processes, the accuracy of mNGS reports can also be influenced
during the result analysis stage. Numerous published studies have
investigated the detection efficiency of mNGS on clinical specimens.
These studies have found that when the sample contains a high
content of pathogenic microorganisms, mNGS displays overall
detection performance that is similar to that of PCR, with no
significant difference between the two methods. However, in
cases where the viral load is low, mNGS may yield false negatives
with a specificity of only around 20million specific sequences, which
is lower than that of PCR. To enhance the detection sensitivity in
such cases, it is necessary to increase the amount of data used for
analysis (Yang et al., 2011; Fischer et al., 2015; Thorburn et al., 2015;
Graf et al., 2016; Xie et al., 2019). It is critical to note that mNGS
results should not be solely relied upon for clinical decision-making,
and negative results should be verified with the patient’s clinical
exclusion of infection (Schlaberg et al., 2017). In the current practical
application, priority is given to analyzing the mNGS report for
pathogens and their species ranking. However, the presence of
background contamination and host interference can impact the
analysis results, introducing a certain level of subjectivity when
combined with clinical symptoms. Therefore, there is a need for new
indicators with improved sensitivity and specificity to accurately
reflect the true results.

At present, interpretation of mNGS results primarily focuses on
the reads and genus rank of the detected pathogens. However, as
mentioned previously, different types of pathogens have different
criteria for judgment. Relying solely on these two indicators may
lead to misinterpretation of the results. Therefore, it is necessary to
develop new parameters that can enhance the sensitivity and
specificity of these indicators, thereby improving the accuracy of
mNGS results. In this study, we developed several new indicators for
the diagnosis of mNGS, including 10M normalized reads, double
discard reads, TPM, Genus Rank Ratio, King Genus Rank Ratio,
Genus Rank Ratio*in Genus Rank, and King Genus Rank Ratio*in
Genus Rank. We compared these novel indexes with the existing
indicators such as raw reads, RPM, and in Genus Rank. We then
analyzed the diagnostic efficacy of these indicators for eight
pathogens, namely, A. baumannii, K. pneumoniae, S.
pneumoniae, S. aureus, H. influenzae, S. maltophilia, P.
aeruginosa, and A. fumigatus. Based on the analysis of the results
for these pathogens, among the five read indicators, double discard
reads demonstrated better diagnostic efficiency than the other
indicators. It provided a more accurate representation of the
actual reads from the pathogens. Among the five ranking
indicators, the two combined indicators exhibited superior
diagnostic efficiency compared to the three separate indicators.
There was no significant difference between the two combined
indicators, indicating that either of them can be selected for
analyzing the species ranking of pathogens. The analysis results
highlight that double discard reads showed higher sensitivity and
specificity than raw reads. Additionally, double discard reads better
reflected the actual number of detected pathogens during the
analysis. The Genus Rank Ratio*in Genus Rank and King Genus
Rank Ratio*in Genus Rank also demonstrated improved sensitivity
and specificity compared to the in Genus Rank, which is a novel
index developed in this study. Importantly, the new indexes
exhibited enhanced diagnostic efficiency over the original
indexes, thereby increasing the reliability of mNGS results.

However, it is important to acknowledge that in some cases, a
single index may not fully reflect the true results. In practical
applications, a combination of double discard reads and the two

TABLE 4 (Continued) Diagnostic efficacy of 11 indicators in mNGS of eight pathogens.

Pathogens Different index AUC Cut-off value Sensitivity Specificity PPV NPV

A. fumigatus Raw reads 0.992 34.5 1.000 0.964 0.588 1.000

10M normalize reads 0.991 29.5 1.000 0.960 0.563 1.000

Double discard reads 0.992 29.5 1.000 0.968 0.616 1.000

RPM 0.969 566.965 1.000 0.857 0.265 1.000

TPM 0.984 93.432 1.000 0.924 0.404 1.000

Coverage 0.601 0.023 0.222 0.998 0.851 0.961

In Genus Rank 0.818 2.5 1.000 0.616 0.118 1.000

Genus Rank Ratio 0.981 0.304 1.000 0.926 0.410 1.000

King Genus Rank Ratio 0.905 0.348 0.815 0.905 0.306 0.990

Genus Rank Ratio*in Genus Rank 0.989 0.303 1.000 0.971 0.639 1.000

King Genus Rank Ratio*in Genus Rank 0.964 0.709 0.963 0.869 0.274 0.998
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TABLE 5 Pairwise comparisons of different indicators.

Raw
reads–10M
normalize
reads

Raw
reads–double
discard reads

10M normalize
reads–double
discard reads

Double
discard–RPM

Double
discard–TPM

In Genus
Rank–Genus
Rank Ratio*in
Genus Rank

In Genus
Rank–King
Genus Rank
Ratio*in
Genus Rank

Genus Rank
Ratio–Genus
Rank Ratio*in
Genus Rank

Genus Rank
Ratio–King
Genus Rank
Ratio*in
Genus Rank

King Genus
Rank
Ratio–Genus
Rank Ratio*in
Genus Rank

A. baumannii AUC 0.92 0.919 0.92 0.938 0.919 0.938 0.938 0.939 0.938 0.929 0.836 0.945 0.836 0.944 0.942 0.945 0.942 0.944 0.941 0.945

p 0.691 0.133 0.12 0.905 0.158 0.000 ** 0.000 ** 0.731 0.792 0.651

K. pneumoniae AUC 0.978 0.973 0.978 0.938 0.973 0.938 0.938 0.915 0.938 0.916 0.728 0.941 0.728 0.941 0.931 0.941 0.931 0.941 0.931 0.941

p 0.332 0.19 0.253 0.033 * 0.050 * 0.000 ** 0.000 ** 0.007 ** 0.024 * 0.037 *

S. pneumoniae AUC 0.921 0.915 0.921 0.997 0.915 0.997 0.997 0.984 0.997 0.986 0.973 0.997 0.973 0.997 0.795 0.997 0.795 0.997 0.78 0.997

p 0.161 0.002 ** 0.002 ** 0.041 * 0.076 0.001 ** 0.001 ** 0.000 ** 0.000 ** 0.000 **

S. aureus AUC 0.952 0.947 0.952 0.961 0.947 0.961 0.961 0.964 0.961 0.966 0.896 0.965 0.896 0.966 0.892 0.965 0.892 0.966 0.895 0.965

p 0.431 0.566 0.357 0.766 0.593 0.000 ** 0.000 ** 0.001 ** 0.001 ** 0.001 **

H. influenzae AUC 0.923 0.936 0.923 0.983 0.936 0.983 0.983 0.992 0.983 0.986 0.9 0.992 0.9 0.992 0.938 0.992 0.938 0.992 0.936 0.992

p 0.092 0.002 ** 0.002 ** 0.187 0.695 0.000 ** 0.000 ** 0.001 ** 0.001 ** 0.001 **

S. maltophilia AUC 0.974 0.969 0.974 0.981 0.969 0.981 0.981 0.987 0.981 0.966 0.773 0.985 0.773 0.985 0.988 0.985 0.988 0.985 0.988 0.985

p 0.115 0.092 0.026 * 0.377 0.098 0.000 ** 0.000 ** 0.273 0.291 0.414

P. aeruginosa AUC 0.974 0.968 0.974 0.984 0.968 0.984 0.984 0.943 0.984 0.945 0.758 0.962 0.758 0.955 0.937 0.962 0.937 0.955 0.928 0.962

p 0.079 0.108 0.068 0.017 * 0.015 * 0.000 ** 0.000 ** 0.001 ** 0.018 * 0.001 **

A. fumigatus AUC 0.992 0.991 0.992 0.992 0.991 0.992 0.992 0.969 0.992 0.984 0.818 0.989 0.818 0.964 0.981 0.989 0.981 0.964 0.905 0.989

p 0.53 0.473 0.146 0.003 ** 0.052 0.000 ** 0.000 ** 0.015 * 0.144 0.002 **
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joint ranking indicators can be used for analysis to complement each
other and improve the accuracy of diagnosis. Furthermore, the
results of the machine learning analysis also indicate that double
discard reads, the King Genus Rank Ratio, and in Genus Rank
demonstrate good diagnostic performance after training the model.

As high-throughput technology continues to advance, third-
generation sequencing technology, such as Nanopore, is already
being implemented in clinical laboratories. The key advantages of
third-generation technology include long reads (≥500 bp), low
capital cost, and short turnaround time (Petersen et al., 2019).

Third-generation sequencing has been utilized to bridge the gaps
in unfinished genomes sequenced on short-read platforms, thanks to
its ability to generate long reads (Bouchez et al., 2018). However, it is
important to note that our results were derived from the utilization
of mNGS technology and are specifically applicable to mNGS.
Different research platforms may have distinct analysis
parameters, and it is necessary to conduct further investigations
to determine the compatibility of our developed parameters with
third-generation sequencing platforms. Additionally, our findings
are based on BALF specimens obtained from clinical patients, and

TABLE 6 Calculation formula of the machine learning in the eight pathogens.

Pathogen Calculation formula

A. baumannii logit = −2.9338 x King Genus Rank Ratio + −0.0867 x In Genus Rank + 1.5019 x Double Discard reads
+ −3.0728

K. pneumoniae logit = −3.0426 x King Genus Rank Ratio + 1.1003 x Double Discard reads + −1.0055 x In Genus Rank
+ −3.9922

S. pneumoniae logit = −1.9131 x In Genus Rank + 1.6708 x Double Discard reads + −1.5241 x Genus Rank Ratio + −3.3444

S. aureus logit = −1.9353 x In Genus Rank + 0.8833 x Double Discard reads + −1.9196 x King Genus Rank Ratio
+ −3.1245

H. influenzae logit = −1.8315 x In Genus Rank + −2.3154 x King Genus Rank Ratio + 0.8692 x Double Discard reads
+ −3.1204

S. maltophilia logit = −3.6216 x King Genus Rank Ratio + 1.2770 x In Genus Rank + 1.0065 x Double Discard reads + −2.9445

P. aeruginosa logit = 1.6085 x Double Discard reads + −2.4081 x King Genus Rank Ratio + −1.3008 x In Genus Rank
+ −2.4765

A. fumigatus logit = −2.7780 x Genus Rank Ratio + −1.3057 x In Genus Rank + 0.0499 x Double Discard reads + −4.5830

TABLE 7 Evaluation of the model’s effectiveness of the eight pathogens.

Pathogen Total Positive AUC ACCa Precision Sensitivity Specificity PPV NPV AUC-95% CI

A. baumannii Train 272 22 0.9776 0.8824 0.4074 1 0.872 0.4074 1 0.98 (0.9611-0.9941)

Val 117 10 0.8771 0.8632 0.375 0.9 0.8598 0.375 0.9892 0.88 (0.7268-1)

K. pneumoniae Train 366 24 0.9846 0.8852 0.3594 0.9583 0.8801 0.3594 0.9967 0.98 (0.9647-1)

Val 157 11 0.8437 0.8599 0.3103 0.8182 0.863 0.3103 0.9844 0.84 (0.645-1)

S. pneumoniae Train 328 15 0.9955 0.9177 0.3571 1 0.9137 0.3571 1 1.00 (0.9866-1)

Val 141 7 0.9829 0.8582 0.2593 1 0.8507 0.2593 1 0.98 (0.958-1)

S. aureus Train 280 15 0.9648 0.8679 0.2885 1 0.8604 0.2885 1 0.96 (0.9385-0.9911)

Val 121 6 0.987 0.8926 0.3158 1 0.887 0.3158 1 0.99 (0.967-1)

H. influenzae Train 196 20 0.9852 0.8673 0.4318 0.95 0.858 0.4318 0.9934 0.99 (0.9686-1)

Val 85 9 0.9927 0.8706 0.45 1 0.8553 0.45 1 0.99 (0.9771-1)

S. maltophilia Train 273 23 0.9922 0.9084 0.4792 1 0.9 0.4792 1 0.99 (0.9837-1)

Val 117 10 0.9794 0.9145 0.5 1 0.9065 0.5 1 0.98 (0.956-1)

P. aeruginosa Train 268 23 0.9283 0.7724 0.2683 0.9565 0.7551 0.2683 0.9946 0.93 (0.8853-0.9713)

Val 115 10 0.9943 0.8696 0.4 1 0.8571 0.4 1 0.99 (0.9844-1)

A. fumigatus Train 386 19 0.989 0.943 0.4634 1 0.9401 0.4634 1 0.99 (0.9796-0.9983)

Val 166 8 0.9866 0.9639 0.5714 1 0.962 0.5714 1 0.99 (0.971-1)

aACC: accuracy, the probability that the algorithm makes a correct judgment on the current dataset.
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additional research is required to evaluate the feasibility of applying
our approach to other types of specimens, such as blood,
cerebrospinal fluid, and various other body fluids.

Conclusion

mNGS is a novel technology currently being developed for
clinical applications. While it has the potential to identify rare
pathogens more quickly than traditional biological detection
methods, it still requires improvements to enhance its clinical
utility. Therefore, accurate analysis of the mNGS results is
crucial. In this study, we analyzed the diagnostic efficiency of
several novel indicators. We recommend selecting double
discarded reads when considering pathogen reads in the
report analysis. For genus ranking, we suggest selecting the
two novel indicators: Genus Rank Ratio*in Genus Rank and
King Genus Rank Ratio*in Genus Rank. In
practical application, when analyzing the mNGS report,
using these new indicators in combination can enhance the
accuracy of the report, thereby promoting the clinical
application of this technology. This will enable the precise
detection of pathogens in patients and facilitate timely
symptomatic treatment.
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