
Efficient sequencing data
compression and FPGA
acceleration based on a two-step
framework

Shifu Chen1,2*†, Yaru Chen1†, Zhouyang Wang1, Wenjian Qin2,
Jing Zhang1, Heera Nand3, Jishuai Zhang3, Jun Li1, Xiaoni Zhang1,
Xiaoming Liang3 and Mingyan Xu1*
1HaploX Biotechnology, Shenzhen, Guangdong, China, 2Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, Guangdong, China, 3Xilinx Inc., San Jose, CA, United States

With the increasing throughput of modern sequencing instruments, the cost of
storing and transmitting sequencing data has also increased dramatically.
Although many tools have been developed to compress sequencing data,
there is still a need to develop a compressor with a higher compression ratio.
We present a two-step framework for compressing sequencing data in this paper.
The first step is to repack original data into a binary stream, while the second step is
to compress the stream with a LZMA encoder. We develop a new strategy to
encode the original file into a LZMA highly compressed stream. In addition an
FPGA-accelerated of LZMA was implemented to speedup the second step. As a
demonstration, we present repaq as a lossless non-reference compressor of
FASTQ format files. We introduced a multifile redundancy elimination method,
which is very useful for compressing paired-end sequencing data. According to
our test results, the compression ratio of repaq is much higher than other FASTQ
compressors. For some deep sequencing data, the compression ratio of repaq can
be higher than 25, almost four times of Gzip. The framework presented in this
paper can also be applied to develop new tools for compressing other sequencing
data. The open-source code of repaq is available at: https://github.com/
OpenGene/repaq.

KEYWORDS

compression, fastq, sequencing, repaq, LZMA, FPGA acceleration

Introduction

In recent years, with the increasing throughput of next-generation sequencers and the
decreasing cost of per base sequencing, the amount of sequencing data has shown explosive
growth. For example, the Illumina NovaSeq 6000 can generate more than 6T bases per run
within 40 h, which means about 15T bytes of raw text files. Unlike the rapid decline in
sequencing costs, the cost of data storage has fallen very slowly. Therefore, this large amount
of sequencing data will bring high storage costs. Although the analysis result files (i.e., VCF
files) can be much smaller than the raw data, the original raw data still have to be stored, in
case the data needs to be reanalyzed. Especially for sequencing data generated in clinical
medical applications (Liu et al., 2018; Priestley et al., 2019), storage of raw sequencing data is
not only a consideration of data value, but also a legal requirement.

OPEN ACCESS

EDITED BY

Shaolong Cao,
Biogen Idec, United States

REVIEWED BY

Giltae Song,
Pusan National University, Republic of
Korea
Yuriy Fofanov,
University of Texas Medical Branch at
Galveston, United States

*CORRESPONDENCE

Shifu Chen,
chen@haplox.com

Mingyan Xu,
ming@haplox.com

†These authors have contributed equally
to this work

RECEIVED 18 July 2023
ACCEPTED 07 September 2023
PUBLISHED 21 September 2023

CITATION

Chen S, Chen Y, Wang Z, Qin W, Zhang J,
Nand H, Zhang J, Li J, Zhang X, Liang X
and Xu M (2023), Efficient sequencing
data compression and FPGA acceleration
based on a two-step framework.
Front. Genet. 14:1260531.
doi: 10.3389/fgene.2023.1260531

COPYRIGHT

© 2023 Chen, Chen, Wang, Qin, Zhang,
Nand, Zhang, Li, Zhang, Liang and Xu. This
is an open-access article distributed
under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Genetics frontiersin.org01

TYPE Technology and Code
PUBLISHED 21 September 2023
DOI 10.3389/fgene.2023.1260531

https://www.frontiersin.org/articles/10.3389/fgene.2023.1260531/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1260531/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1260531/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1260531/full
https://github.com/OpenGene/repaq
https://github.com/OpenGene/repaq
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2023.1260531&domain=pdf&date_stamp=2023-09-21
mailto:chen@haplox.com
mailto:chen@haplox.com
mailto:ming@haplox.com
mailto:ming@haplox.com
https://doi.org/10.3389/fgene.2023.1260531
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2023.1260531


On the other hand, the increasing popularity of cloud
computing makes the need for data transmission to the cloud
particularly urgent. Next-generation sequencing data, due to its
large size, was considered not suitable for being analyzed on the
cloud. In recent years, the increase of public network bandwidth and
the application of private networks have made it possible to transfer
sequencing data to the cloud. However, the cost of network
bandwidth to transfer sequencing data is still huge, and the data
transfer time also needs to be greatly reduced.

Based on the above two reasons, it is imperative to efficiently
compress the sequencing data. For the same reasons, many
researchers have already studied the problem of sequencing data
compression, and have developed a lot of algorithms and tools.
These algorithms can be divided into lossy or lossless. Lossless
algorithms are preferred due to sequencing has now widely applied
in medical applications, which require data to be stored as losslessly
as possible. For example, Sebastian et al. presented a specialized
compression algorithm GSQZ for FASTQ data, and implemented
DSRC based on this algorithm (Deorowicz and Grabowski, 2011).
This tool was updated to DSRC2 to provide higher compression
speed and better programming interfaces (Roguski and Deorowicz,
2014). FQC was presented as a novel approach for not only efficient
compression, but also archival and dissemination of FASTQ datasets
(Dutta et al., 2015). Marius et al. presented LFQC as a lossless
FASTQ compressor (Nicolae et al., 2015), and demonstrated that it
achieved better compression ratio on LS454 and SOLiD datasets.
Sultan et al. presented LFastqC which has a better compression and
decompression speed than LFQC (Al Yami and Huang, 2019). But
on the most important Illumina (SOLEXA) dataset, both LFQC and
LfastqC results were not optimal. Mark Howison developed a tool
called SeqDB (Howison, 2013), which combined the existing
multithreaded Blosc compressor with a new data-parallel byte-
packing scheme.

For the compression of FASTQ files, the key components to
compress are sequence and quality. Because individual genomes
differ little within the same species, many researchers have proposed
reference-based compression algorithms, in which the sequence
strings in FASTQ files are aligned to reference genome and the
alignment results are stored instead of the original sequences. For
instance, Markus et al. presented a tool for efficient storage of
sequencing data using reference-based compression (Hsi-Yang
et al., 2011). This tool only works for resequencing data that
targets well-studied genomes (i.e., Homo Sapiens). Since the
sequence alignment is usually time-consuming, reference-based
compression algorithms are usually slower than non-reference-
based algorithms. Yongpeng et al. developed FQZip as a lossless
reference-based FASTQ com-pressor (Zhang et al., 2015a), and
showed that the speed can be improved by introducing a light-
weight mapping algorithm (Zhang et al., 2015b). Most reference-
based algorithms require aligning the sequences to reference genome
completely. Different from this, an algorithm that applied cascading
bloom filters was introduced to circumvent the need for complete
alignment (Rozov et al., 2014). This algorithm could be much faster
than other reference-based algorithms. However, the alignment was
not concise and the compression ratio of this tool was a bit lower,
especially for low coverage data (i.e., depth <50x).

Compression of quality values is also a focus of researchers.
Raymond et al. compared different compression policies for quality

scores, and found both lossy and lossless transformations were
useful (Wan et al., 2012).

Most algorithms proposed to compress FASTQ quality scores
were lossy compression methods (Cánovas et al., 2014; Malysa et al.,
2015; Fu and Dong, 2017; Suaste and Houghten, 2021). The effect of
lossy compression of quality scores on variant calling was also
studied (Ochoa et al., 2016), and showed that the lossy
compression can maintain variant calling performance
comparable to that with the original data. Another study even
reported a positive side effect that the lossy compression could
unexpectedly improve genotyping accuracy (Greenfield et al., 2016).
Since quality scores are considered as relatively less important,
modern sequencers tend to apply simpler quality scoring
schemes. For example, the data generated by Illumina NovaSeq
have only 6 different quality bins, and most bases share the same
quality score. In this case, lossless compression can almost achieve
comparable compression ratio as lossy compression.

Besides compression of FASTQ files, some tools can also handle
compression of alignment files in SAM/BAM format (Li et al., 2009).
For example, samcomp was introduced as a SAM format
compressor, whose performance was better than most
competitors (Bonfield and Mahoney, 2013). Some new formats to
store SAM format data were also proposed, such like CSAM
(Canovas et al., 2016). The compression of aligned data is similar
as reference-based of FASTQ data.

Data compression algorithms need to find a balance among
compression rate, compression time, and memory consumption.
Since modern computer systems usually have enough memory, the
major problem is to obtain a high compression ratio within an
acceptable time. Although dozens of tools have been developed for
compressing sequencing data, there is still a strong need to develop a
tool with a higher compression ratio. After deep investigation, we
found that there is still potential that has not been tapped by
previous studies. For instance, most of data are generated by
paired-end (PE) sequencing technology (Campbell et al., 2008).
In this case, the read pairs usually have overlapped region that are
sequenced and stored twice (Chen et al., 2017), and this redundant
information can be eliminated to improve compression ratio. The
scheme of quality scoring has also changed a lot that only a few bins
are used for modern sequencers like Illumina NovaSeq. New
algorithms can be developed to efficiently compress such quality
scores with a fast transformation. Existing tools also rarely utilized
Lempel–Ziv–Markov chain algorithm (LZMA) for secondary
compression since LZMA compression is usually slow. However,
we found that if the original data could be repacked to a much small
binary file, the secondary LZMA compression could be completed
within an acceptable time.

In this paper, we present a two-step framework for compressing
sequencing data. In the first step, a carefully designed algorithm can
repack the original text files into a binary stream quickly, which is
usually much smaller than a Gzip stream. Importantly, this stream
can be further compressed by LZMA, while Gzip streams can hardly
be recompressed by LZMA. The second step is to encode the
repacked binary stream using a multi-threaded LZMA encoder.
For demonstration, we introduce repaq, as a lossless non-reference
FASTQ compressor based on such design. Different from all
previously introduced tools, repaq applies read assembly to
eliminate the redundancy of each read pair for paired-end

Frontiers in Genetics frontiersin.org02

Chen et al. 10.3389/fgene.2023.1260531

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1260531


sequencing data. We compared the performance of repaq and major
other FASTQ compressors, and the result showed repaq offered a
much higher compression ratio, while its speed remained
comparable to Gzip and Bzip2.

LZMA compression is usually slow because the throughput in
single-threaded software-based (CPU) implementation is limited to
~2 MB/s. To achieve fast compression, we also implemented LZMA
on Field Programmable Gate Arrays (FPGA). Although some
previous studies already reported FPGA-based LZMA
acceleration (Li et al., 2014; Bing et al., 2015; Zhao and Li, 2017),
our FPGA implementation utilizes the features of new FPGA
hardware and has advantages in speed and compression ratio.
We used Xilinx SDx (C/C++/HLS) to implement high speed
LZMA, and we achieved ~105 MB/s throughput for compressing
original FASTQ data on a Xilinx U200 FPGA device.

Materials and methods

Two-step framework for sequencing data
compression

As the design of this framework can be applied to data
compression in other formats, we will first introduce the
framework briefly, and then present the algorithm and
implementation details of repaq. The two steps of this
compression framework are repacking and LZMA compression.
Figure 1 gives a brief diagram of this two-step framework.

As shown in Figure 1, the first operation is to remove
redundancy within each record. Sequencing raw data generally
has multiple files, and these files are arranged by records. For
example, paired-end next-generation sequencing FASTQ data can
have two files (R1 and R2), and a record (read pair) consists of
read1 and read2 from R1 and R2 respectively. Read1 and read2 of
the same record share the same tag information (i.e., the sequencer
chip ID, coordinates, sample barcodes), but are stored twice. Also if
the insert size is shorter than the pair-end sequencing length, then
there are sequences being recorded repeatedly in multiple files. To

improve the compression ratio, our suggestion is to compress the
data by record, rather than compressing each file independently.

The second operation is to divide data to chunks, which means
sequentially splitting the file by records. Repaq has a parameter k to set
chunk size. The default k is 1000whichmeans 1000 kilo bases. According
to the characteristics of the data, a chunk can have hundreds tomillions of
records. Comparing to the whole data, a small chunk usually has a higher
degree of similarity, which means that a greater percentage of common
information can be extracted. The other purpose of this operation is to
streamize the repacked output. When a chunk is repacked, the output
data can be immediately passed to the LZMA compressor.

The key operation of the entire framework is to remove redundancy
between multiple records of one chunk. For sequencing data, some
information is duplicated (i.e., the sequencer chip ID, sample barcodes),
and can be extracted and stored just once at the head of chunk. Some
information is sequentially increasing or decreasing (i.e., the coordinates
in the Meta information). It is appropriate to encode them with a
baseline and a list of progressive difference. Most importantly, the
alphabet of sequence information usually has only a few letters. Using
appropriate bit encoding to convert sequence text into binary
information can greatly reduce the amount of data. The most
critical strat-egy is avoiding any Huffman coding (Knuth, 1985) in
the bit encoding. LZMA algorithm uses a dictionary compression
scheme, which searches for duplicated string byte by byte. Since the
Huffman coding can result in character being represented by crossbyte
bits, it will break the LZMA’s dictionary search algorithm and
consequently generate an output that can hardly be further
compressed by LZMA. For example, a Gzip-compressed file is
almost not compressible by LZMA.

The last operation of this framework is to compress the binary
stream using LZMA algorithm. Although there are some storage
formats (i.e., CRAM) that use LZMA as their built-in compressor,
LZMA is not widely adopted for compressing sequencing or
genomic data due to LZMA being too slow to compress such
large data. To make the LZMA compression acceptable in time
consumption, the key is to make the output of the first step as small
as possible. With the expense of compression ratio, multi-threaded
parallelization can make LZMA run faster. Since sequencing files are

FIGURE 1
The two-step compression framework for sequencing data. Step 1/2 operations are marked with a white/gray background respectively. Removing
redundancy is implemented in two major operations. An operation consists of removing redundancy (i.e., the same record tag and overlap sequence)
between multiple files of one record. The other operation consists of removing redundancy (i.e., sequencer chip ID) between multiple records of one
chunk. Using appropriate bit encoding greatly reduce the amount of data, Avoiding any Huffman coding is the most critical strategy in the bit
encoding.

Frontiers in Genetics frontiersin.org03

Chen et al. 10.3389/fgene.2023.1260531

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1260531


usually very big, increasing the dictionary size of LZMA can usually
improve the compression ratio greatly.

Repaq: a lossless FASTQ compressor with
ultra-high compression ratio

Based on above two-step compression framework, repaq is
implemented as a non-reference-based lossless FASTQ
compressor. This tool accepts single-end or paired-end next-
generation sequencing data as input, and outputs repacked
FASTQ data (with.rfq as extension) or LZMA-compressed
repacked FASTQ data (with.rfq.xz as extension).

As shown in Figure 2, the input FASTQ files are first divided
into read pair chunks, and then each chunk will be repacked by
repacking Meta info, sequence and quality scores separately.
Before the first chunk is encoded and written, the input files
are partially read and analyzed to generate a header. Besides the
paired-end FASTQ, repaq also accepts single-end FASTQ as
input. However, if the data was generated by paired-end
sequencing technology, it is recommended to compress them
together to obtain higher compression ratio.

Header generation

Repaq traverses the first chunk to generate the header. In this
operation, the quality table is gathered. The most common quality
score in the quality table is marked as major quality score. Typically
all the N bases share the same quality score. In this case, this quality
score is marked as N-score. Once an N-score is recorded, there will
be no need to store N bases, since they can be recovered by the
positions of N-scores. The identifiers of this FASTQ are also parsed
to get the sequencing file format, which will be stored in the header
as flags. The algorithm version is also stored in the header for
software backward compatibility.

Meta info repacking

Meta information is stored in the FASTQ identifiers. After
traversing all identifiers of one chunk, repaq extracts the constant
items and separates the varying items. The constant items are stored in
the chunk head, whereas the varying items are encoded in other ways. If
a varying item is numeric (i.e., the coordinates of lane, X, Y), it will be
encoded by progressive difference. Otherwise it will be stored directly.

FIGURE 2
The repaqworkflow. The input files are a pair of PE FASTQ, while the output can be repacked data (.rfq) or LZMA-compressed repacked data (.rfq.xz).
The workflow can be briefly divided into five parts: header generation (red), Meta information repacking (blue), sequence repacking (brown), quality score
repacking (green) and LZMA compression.

Frontiers in Genetics frontiersin.org04

Chen et al. 10.3389/fgene.2023.1260531

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1260531


Sequence repacking

The sequences of a chunk are concatenated, and then encoded by 2-
bit for A/T/C/G bases. As mentioned above, if N-score is found and is
consistent in this chunk, the N bases will be not recorded. Otherwise,
the positions of N bases will be stored for this chunk. If the input data
are paired-end, the read1 sequence and read2 sequence will be
assembled by detecting their overlapping region. The merged
sequence will be stored instead of storing them separately to reduce
redundancy. Since all sequences are concatenated together, the read
lengths are also need to be stored. If the sequence lengths are not
constant, each length will be encoded by one or several bytes, depends
on the bytes needed to represent the maximum length.

Quality score repacking

Repaq implements two different quality score repacking strategies.
The first strategy, which is also illustrated in Figure 2, is called column-
based encoding. In this strategy, positions for each quality score are
segmented to many segments of consecutive positions. The progressive
offset of the kth segment OFFSETk, which means POSk—POSk-1, as
well as the segment length LENk, are stored. The combo < OFFSETk,
LENk > is stored in one to 4 bytes adaptively, depends on how many
bytes are needed to represent it. The second strategy is called run-length
coding. In this strategy, all quality scores are stored interleaved. And the
combo < SCOREk, LENk >, which is encoded in 1 byte, is used to store
each segment. Depending on how often each quality value appears, the
bits used to represent a score in the quality table is different. The more
common quality scores, the fewer bits are used, so that the remained bits
can be used to represent longer LENk. Repaq chooses the first strategy if
the number of quality bins is less than 64, which is mostly true for
modern sequencing data.

LZMA compression

The repacked data is already compressed, and can be output
directly as an.rfq file. The repacking process is ultra-fast and

memory-efficient, while offering much higher compression ratio
than Gzip and Bzip2. However, this repacked data can be further
compressed by LZMA, and output as an.rfq.xz file. This is achieved
by calling a multi-threaded LZMA compressor. In most cases, the
LZMA-compressed repacked data is as small as 40% of the
repacked data.

FPGA implementation of LZMA

LZMA application is derived from a byte-oriented compression
scheme Limpel-ziv (LZ). We use FPGA to accelerate LZMA
compression to further improve the compression speed of repaq.
The FPGA-based LZMA has computer part and FPGA part. The
computer coordinates the FPGA device setup and communication,
while main LZMA compression algorithm is executed on FPGA
device. The workflow of FPGA-based LZMA is described in Figure 3.

In the global memory on FPGA device, several 4 GB
dictionaries are used to store the hash-indexed historical data.
String keys of fixed length k (k = 11 as default) will be searched in
the dictionaries. The string will be extended until a mismatched
byte is found. The matching result will be represented as 64-bit
data, which will be encoded to a LZMA stream. In our
implementation, we used four dictionaries, and the max length
of a match was limited to 256.

Results

To evaluate the performance of repaq, we conducted an
experiment to compare repaq against other general or FASTQ
specific compression tools. Gzip, Bzip2 and XZ were selected as
general compression tools to compare since they are most used. Gzip
is based on the DEFLATE algorithm, which is a combination of
LZ77 and Huffman coding (Knuth, 1985), whereas Bzip2 is based on
Burrows-Wheeler algorithm (Manzini, 2001) and XZ is based on
LZMA. Fqzcomp (Bonfield and Mahoney, 2013), HARC (Chandak
et al., 2018) and DSRC2 (Roguski and Deorowicz, 2014) were
selected as FASTQ specific compressors to compare since they

FIGURE 3
The workflow of FPGA-based LZMA. The most computationally intensive part is executed on the FPGA device. A LZMA engine is executing on the
FPGA device, which is responsible for data accessing, dictionary searching and LZMA encoding.

Frontiers in Genetics frontiersin.org05

Chen et al. 10.3389/fgene.2023.1260531

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1260531


FIGURE 4
Performance comparison of repaq and other tools. (A) Shows the comparison ratio of comparison, (B) shows the compress time of comparison,
while (C) shows the comparison of time to decompress. Three samples were tested in this experiment. X-axis indicates compression level setting, while
Y-axis indicates compression ratio. The DSRC2 has only three compression levels (0,1,2), so it is aligned to the middle compression level (6,7,8) in the
figure. Sample 1 is a paired-end deep target cap-turing data (39 GB + 39GB), while sample 2 is a paired-end whole exome sequencing data (46 GB+
46 GB) and sample 3 is a single-end whole exome sequencing data (46 GB). For repaq, both non-LZMAmode (.rfq) and LZMA mode (.rfq.xz) mode were
tested. For LZMA mode repaq, different threading setting were applied (T = 1, 2, 3).

Frontiers in Genetics frontiersin.org06

Chen et al. 10.3389/fgene.2023.1260531

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1260531


are widely discussed and cited, and are known as FASTQ
compressors with good performance. Experiments were
conducted on a system with Intel Xeon E5-2699 V4 CPU (55M
Cache, 2.20 GHz) and 512G RAM. The compression ratio, compress
time and decompress time were recorded, and the result is shown in
Figure 4.

As shown in Figure 4A, LZMA mode repaq achieved much
higher compression ratio than all other tools. The best compression
ratio was achieved by repaq with single thread (T = 1), while repaq
with two (T = 2) and three (T = 3) threads achieved almost same
compression ratio. The tool achieved closest performance to repaq is
fqzcomp, whose compression ratio is still about 20% lower than
repaq. It should be noted that HARC only compresses the sequences,
and does not compress the quality scores. This might be the major
reason that HARC achieved worst overall compression ratio.

From Figures 4B, C, we can learn that LZMA mode repaq has
comparable compress time and decompress time against other tools.
Even with single thread applied, LZMA mode repaq is faster than
Gzip when compression level is greater than 5. Comparing to LZMA
mode repaq, fqzcomp takes less time to compress, but takes much
more time to decompress. DSRC2 performs well in terms of
compression time and decompression time, but its compression
ratio compression ratio is several times lower. It is important to note
that all decompression files have no information loss relevant to
original file.

To evaluate the performance in Illumina short-read sequencing
data and long-read sequencing data produced on PacBio SMRT and
Oxford Nanopore platforms, we conducted another experiment to
compare repaq against SPRING, which supports lossless
compression and long read compression (Chandak et al., 2019).
First, we used a range of different types of datasets, including well-
known benchmark dataset SRR12300962, SRR12048570 and paired-
end whole exome sequencing data (100G+100G). We then
separately compressed these datasets using repaq and SPRING in
single thread. Table 1 presents statistical information on the
compression ratio at the highest compression level of 9. Both
SPRING and repaq can achieve similar compression ratio.
However, in terms of time consumption, SPRING took
approximately 2.37 times longer than repaq in handling Illumina
data. Repaq did not have an advantage in terms of compression time
when dealing with long-read sequencing data, but the compression
rate is better or extremely close to SPRING.

It is worth mentioning that the non-LZMA repaq, which is ultra-
fast due to no LZMA encoding applied, achieved higher compression
ratio than Gzip and Bzip2. And for paired-end mode, it also
outperformed DSRC2. Therefore, for the applications that compress
and decompress time are critical, non-LZMA repaq can be an excellent
alter-native to Gzip, Bzip2 and DSRC2, etc.

It is worth noting that Gzip/LZ77 compression is much
ineffective for the stream of packaged record chunks, while
LZMA can effectively further compress it. This reveals the potent
combination of byte repacking and LZMA compression, offering an
effective strategy to tackle compression issues for various data types.
Our analysis underscores the importance of byte alignment, which
requires each element to be repacked to either a section of a single
byte or multiple complete bytes, for optimal LZMA compression.
Within the process, quality score repacking and sequence repacking
play a significant role in enhancing the compression rate, whereas
LZMA compression chiefly affects time consumption.

TABLE 1 Compression ratio for different platform datasets.

Sample Platform File size (Gb) SPRING Repaq

Sample4 Illumina 100 + 100 21.28 21.43

SRR12048570 PacBio SMRT 155 2.67 2.83

SRR12300962_1 Oxford
Nanopore

56 2.24 2.22

FIGURE 5
Performance comparison of FPGA-based repaq and CPU-based repaq. Ten samples were tested, with compressed file size and time to compress
recorded (A) Shows the comparison of compressed file size in Gigabytes, while (B) shows the comparison of time to compress in minutes.

Frontiers in Genetics frontiersin.org07

Chen et al. 10.3389/fgene.2023.1260531

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1260531


Performance of FPGA-based repaq

To evaluate the performance of FPGA-based repaq
implementation, we tested a total of 10 files on a system with
Intel Xeon E5-2699 V4 CPU (55M Cache, 2.20 GHz) and a
Xilinx U200 FPGA device. The result is shown in Figure 5.

From Figure 5A, we can learn that FPGA-based repaq generated
slightly bigger compressed files for 7 of 10 samples, but generaetd
much smaller compressed files for the other 3 samples (S2, S3 and
S4). From Figure 5B, we can find the FPGA-based repaq is much
faster than CPU-based repaq. Even with 5 threads, the CPU-based
repaq takes much more time than FPGA-based repaq. Specifically,
the FPGA-based repaq achieved about 105 MB/s compression
throughput for original FASTQ data. This makes realtime
compression of FASTQ data possible, which can be much useful
for building modern FASTQ storage engines.

Conclusion and future work

In this paper, we introduced a two-step framework for compressing
sequencing data, and demonstrated a novel FASTQ compressor repaq.
The performance evaluation result showed that repaq has a compression
rate far superior to other tools, while it takes comparable time to compress
and decompress. We also introduced the FPGA-based acceleration of
repaq, and demonstrated that the FPGA-based version is much faster
than CPU-based, while the compression ratio remains comparable with
CPU-based version. It is worth mentioning tha, our FPGA-based
acceleration algorithm can be used for accelerating any general
LZMA-based compression algorithm.

Repaq is an open-sourced and industry-oriented FASTQ
compression tool. It can be deployed on a local cluster or in the
cloud. Repaq has already adopted by some institutions that produce
and process large amount of FASTQ data. In the author’s institution,
repaq compresses tens of terabytes of data every day. Repaq demonstrates
clear advantages in both compression ratio and compression time when
handling short-read data with high sequencing depth. However, its
performance may slightly diminish when dealing with long-read or
low-depth sequencing data.

Although repaq has evolved to be a FASTQ compressor with
industry strength, we still think that there is still a lot of work to
be done in the future. Our primary plan is to reduce the
compression time in long-read sequencing data. We also plan
to implement a compressor for long-read sequencing data, such
like data generated by PacBio Sequel and Oxford Nanopore
platforms. For instance, the data generated by PacBio
sequencers are usually stored in HDF5 format (Mason et al.,
2010; Folk et al., 2011), which is usually highly redundant.
Although there exist some tools can compress general
HDF5 format files or convert them to BAM format files (Yu
et al., 2017), it is preferred to develop a specific compression tool
for compressing HDF5-formated long read sequencing data. In
addition, currently the LZMA mode repaq is not memory
efficient since the backend LZMA compressor consumes too
much memory. Reducing memory consumption will be one of
the future optimization directions of the algorithm.

In summary, as the sequencing data becomes larger and larger,
efficient data compression will become increasingly important. The

repaq tool can greatly compress FASTQ files, and has great value in
applications such as archiving data or transferring data to cloud. The
FPGA-based LZMA acceleration can used to accelerate repaq and
other LZMA-based compression algorithms. Furthermore, the two-
step compression framework proposed in this paper can help
developing new sequencing data compression algorithms.

Data availability statement

The data analyzed in this study is subject to the following
licenses/restrictions: Due to local restrictions on the sharing of
biological data, the data generated/analyzed from this study is
available via corresponding authors upon request. Requests to
access these datasets should be directed to chen@haplox.com.

Author contributions

SC: Writing–original draft, Writing–review and editing. YC:
Writing–original draft, Writing–review and editing. ZW:
Writing–review and editing. WQ: Writing–original draft,
Writing–review and editing. JZ: Writing–review and editing. HN:
Writing–review and editing. JZ: Writing–review and editing. JL:
Writing–review and editing. XZ: Writing–review and editing. XL:
Writing–review and editing. MX: Writing–original draft,
Writing–review and editing.

Funding

The author(s) declare financial support was received for the research,
authorship, and/or publication of this article. This work was partially
supported by Shenzhen Science and Technology Innovation Committee
Technical Research Project (Grant No. JSGG20201103153801005 and
No. CJGJZD20200617102403009) and Development of real-time
monitoring molecular diagnostic products for tumor based on liquid
biopsy (Grant No. 2023B1111040002).

Conflict of interest

Authors HN, JhZ, and XL were employed by Xilinx Inc. Authors
SC, YC, ZW, JZ, JL, XZ, and MX were employed by HaploX
Biotechnology.

The remaining author declares that the research was conducted
in the absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Frontiers in Genetics frontiersin.org08

Chen et al. 10.3389/fgene.2023.1260531

http://chen@haplox.com
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1260531


References

Al Yami, S., and Huang, C. H. (2019). LFastqC: A lossless non-reference-based
FASTQ compressor. PLoS One 14 (11), e0224806. doi:10.1371/journal.pone.0224806

Bing, L., Lin, Z., and Yong, L. (2015). FPGA hardware implementation of the LZMA
compres-sion algorithm. J. Beijing Univ. Aeronautics Astronautics 41, 375–382. doi:10.
13700/j.bh.1001-5965.2014.0169

Bonfield, J. K., and Mahoney, M. V. (2013). Compression of FASTQ and SAM format
sequencing data. PloS one 8, e59190. doi:10.1371/journal.pone.0059190

Campbell, P. J., Stephens, P. J., Pleasance, E. D., O’Meara, S., Li, H., Santarius, T., et al.
(2008). Identification of somatically acquired rearrangements in cancer using genome-
wide massively parallel paired-end sequencing. Nat. Genet. 40, 722–729. doi:10.1038/
ng.128

Canovas, R., Moffat, A., and Turpin, A. (2016). CSAM: compressed SAM format.
Bioinfor-matics 32, 3709–3716. doi:10.1093/bioinformatics/btw543

Cánovas, R., Moffat, A., and Turpin, A. (2014). Lossy compression of quality scores in
genomic data. Bioinformatics 30, 2130–2136. doi:10.1093/bioinformatics/btu183

Chandak, S., Tatwawadi, K., Ochoa, I., Hernaez, M., and Weissman, T. (2019).
SPRING: a next-generation compressor for FASTQ data. Bioinformatics 35 (15),
2674–2676. doi:10.1093/bioinformatics/bty1015

Chandak, S., Tatwawadi, K., and Weissman, T. (2018). Compression of genomic
sequencing reads via hash-based reordering: algorithm and analysis. Bioinformatics 34,
558–567. doi:10.1093/bioinformatics/btx639

Chen, S., Huang, T., Zhou, Y., Han, Y., Xu, M., and Gu, J. (2017). AfterQC: automatic
filtering, trimming, error removing and quality control for fastq data. BMC Bioinforma.
18 (3), 80–100. doi:10.1186/s12859-017-1469-3

Deorowicz, S., and Grabowski, S. (2011). Compression of DNA sequence reads in
FASTQ format. Bioinformatics 27, 860–862. doi:10.1093/bioinformatics/btr014

Dutta, A., Haque, M. M., Bose, T., Reddy, C. V. S. K., and Mande, S. S. (2015). FQC: A
novel ap-proach for efficient compression, archival, and dissemination of fastq datasets.
J. Bioinforma. Comput. Biol. 13, 1541003. doi:10.1142/S0219720015410036

Folk, M., Heber, G., Koziol, Q., Pourmal, E., and Robinson, D. (2011). “An overview of
the HDF5 technology suite and its applications,” in EDBT/ICDT 2011 Workshop on
Array Databases, Uppsala, Sweden, March 25, 2011. doi:10.1145/1966895.1966900

Fu, J., and Dong, S. (2017). “All-CQS: adaptive locality-based lossy compression of
quality scores,” in 2017 IEEE International Conference on Bioinformatics and
Biomedicine (BIBM), Kansas City, MO, USA, 13-16 November 2017, 353–359.
doi:10.1109/BIBM.2017.8217675

Greenfield, D. L., Stegle, O., and Rrustemi, A. (2016). GeneCodeq: quality score
compression and improved genotyping using a bayesian framework. Bioinformatics 32,
3124–3132. doi:10.1093/bioinformatics/btw385

Howison, M. (2013). High-throughput compression of FASTQ data with SeqDB.
IEEE/ACM Trans. Comput. Biol. Bioinforma. 10, 213–218. doi:10.1109/TCBB.2012.160

Hsi-Yang, F.M., Leinonen, R., Cochrane, G., and Birney, E. (2011). Efficient storage of
high throughput DNA sequencing data using reference-based compression. Genome
Res. 21, 734–740. doi:10.1101/gr.114819.110

Knuth, D. E. (1985). Dynamic huffman coding. J. algorithms 6, 163–180. doi:10.1016/
0196-6774(85)90036-7

Li, B., Zhang, L., Shang, Z., and Dong, Q. (2014). Implementation of LZMA compression
algo-rithm on FPGA. Electron. Lett. 50 (21), 1522–1524. doi:10.1049/el.2014.1734

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., et al. (2009). The
sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079. doi:10.
1093/bioinformatics/btp352

Liu, S., Huang, S., Chen, F., Zhao, L., Yuan, Y., Francis, S. S., et al. (2018). Genomic
anal-yses from non-invasive prenatal testing reveal genetic associations, patterns of viral
infections, and Chinese population history. Cell 175, 347–359. doi:10.1016/j.cell.2018.
08.016

Malysa, G., Hernaez, M., Ochoa, I., Rao, M., Ganesan, K., and Weissman, T. (2015).
QVZ: lossy compression of quality values. Bioinformatics 31, 3122–3129. doi:10.1093/
bioinformatics/btv330

Manzini, G. (2001). An analysis of the Burrows—wheeler transform. J. ACM (JACM)
48, 407–430. doi:10.1145/382780.382782

Mason, C. E., Zumbo, P., Sanders, S., Folk, M., Robinson, D., Aydt, R., et al. (2010).
Standardizing the next generation of bioinformatics software development with Bio-
HDF (HDF5). Adv. Exp. Med. Biol. 680, 693–700. doi:10.1007/978-1-4419-5913-3_77

Nicolae, M., Pathak, S., and Rajasekaran, S. (2015). LFQC: a lossless compression
algorithm for FASTQ files. Bioinformatics 31, 3276–3281. doi:10.1093/bioinformatics/
btv384

Ochoa, I., Hernaez, M., Goldfeder, R., Weissman, T., and Ashley, E. (2016). Effect of
lossy compression of quality scores on variant calling. Briefings Bioinforma. 18,
183–194. doi:10.1093/bib/bbw011

Priestley, P., Baber, J., Lolkema, M. P., Steeghs, N., de Bruijn, E., Shale, C., et al. (2019).
Pan-cancer whole-genome analyses of metastatic solid tumours. Nature 575, 210–216.
doi:10.1038/s41586-019-1689-y

Roguski, Ł., and Deorowicz, S. (2014). DSRC 2—industry-oriented compression of
FASTQ files. Bioinformatics 30, 2213–2215. doi:10.1093/bioinformatics/btu208

Rozov, R., Shamir, R., and Halperin, E. (2014). Fast lossless compression via cascading
Bloom filters. BMC Bioinforma. 15, S7. doi:10.1186/1471-2105-15-S9-S7

Suaste, M. V., and Houghten, S. (2021). Lossy compression of quality values in
sequencing data. IEEE/ACM Trans. Comput. Biol. Bioinform. 18 (5), 1958–1969. doi:10.
1109/TCBB.2019.2959273

Wan, R., Anh, V. N., and Asai, K. (2012). Transformations for the compression of
FASTQ quality scores of next-generation sequencing data. Bioinformatics 28, 628–635.
doi:10.1093/bioinformatics/btr689

Yu, C., Wu, W., Wang, J., Lin, Y., Yang, Y., Chen, J., et al. (2017). NGS-FC: A next-
generation sequencing data format converter. IEEE/ACM Trans. com-putational Biol.
Bioinforma. 15, 1–1691. doi:10.1109/TCBB.2017.2722442

Zhang, Y., Li, L., Xiao, J., Yang, Y., and Zhu, Z. (2015a). “FQZip: lossless reference-
based compression of next generation sequencing data in FASTQ format,” in
Proceedings of the 18th asia pacific symposium on intelligent and evolutionary
systems. Editors H. Handa, H. Ishibuchi, Y. S. Ong, and K. C. Tan (Cham:
Springer), 127–135. doi:10.1007/978-3-319-13356-0_11

Zhang, Y., Li, L., Yang, Y., Yang, X., He, S., and Zhu, Z. (2015b). Light-weight
reference-based compression of FASTQ data. BMC Bioinforma. 16, 188. doi:10.1186/
s12859-015-0628-7

Zhao, X., and Li, B. (2017). “Implementation of the LZMA compression algorithm on
FPGA,” in 2017 International Conference on Electron Devices and Solid-State Circuits
(EDSSC), Hsinchu, Taiwan, 18-20 October 2017, 1–2. doi:10.1109/EDSSC.2017.
8126506

Frontiers in Genetics frontiersin.org09

Chen et al. 10.3389/fgene.2023.1260531

https://doi.org/10.1371/journal.pone.0224806
https://doi.org/10.13700/j.bh.1001-5965.2014.0169
https://doi.org/10.13700/j.bh.1001-5965.2014.0169
https://doi.org/10.1371/journal.pone.0059190
https://doi.org/10.1038/ng.128
https://doi.org/10.1038/ng.128
https://doi.org/10.1093/bioinformatics/btw543
https://doi.org/10.1093/bioinformatics/btu183
https://doi.org/10.1093/bioinformatics/bty1015
https://doi.org/10.1093/bioinformatics/btx639
https://doi.org/10.1186/s12859-017-1469-3
https://doi.org/10.1093/bioinformatics/btr014
https://doi.org/10.1142/S0219720015410036
https://doi.org/10.1145/1966895.1966900
https://doi.org/10.1109/BIBM.2017.8217675
https://doi.org/10.1093/bioinformatics/btw385
https://doi.org/10.1109/TCBB.2012.160
https://doi.org/10.1101/gr.114819.110
https://doi.org/10.1016/0196-6774(85)90036-7
https://doi.org/10.1016/0196-6774(85)90036-7
https://doi.org/10.1049/el.2014.1734
https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.1016/j.cell.2018.08.016
https://doi.org/10.1016/j.cell.2018.08.016
https://doi.org/10.1093/bioinformatics/btv330
https://doi.org/10.1093/bioinformatics/btv330
https://doi.org/10.1145/382780.382782
https://doi.org/10.1007/978-1-4419-5913-3_77
https://doi.org/10.1093/bioinformatics/btv384
https://doi.org/10.1093/bioinformatics/btv384
https://doi.org/10.1093/bib/bbw011
https://doi.org/10.1038/s41586-019-1689-y
https://doi.org/10.1093/bioinformatics/btu208
https://doi.org/10.1186/1471-2105-15-S9-S7
https://doi.org/10.1109/TCBB.2019.2959273
https://doi.org/10.1109/TCBB.2019.2959273
https://doi.org/10.1093/bioinformatics/btr689
https://doi.org/10.1109/TCBB.2017.2722442
https://doi.org/10.1007/978-3-319-13356-0_11
https://doi.org/10.1186/s12859-015-0628-7
https://doi.org/10.1186/s12859-015-0628-7
https://doi.org/10.1109/EDSSC.2017.8126506
https://doi.org/10.1109/EDSSC.2017.8126506
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1260531

	Efficient sequencing data compression and FPGA acceleration based on a two-step framework
	Introduction
	Materials and methods
	Two-step framework for sequencing data compression
	Repaq: a lossless FASTQ compressor with ultra-high compression ratio
	Header generation
	Meta info repacking
	Sequence repacking
	Quality score repacking
	LZMA compression
	FPGA implementation of LZMA

	Results
	Performance of FPGA-based repaq

	Conclusion and future work
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


