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Background: The causation of Glycemic Traits and risks of Melanoma remains
unknown. We used Mendelian Randomization (MR) to assess the links between
Glycemic Traits and Melanoma.

Method: Pooled data from Genome-Wide Association Studies (GWAS) were
utilized to examine the relationships that exist between Fasting Insulin (n = 26),
2-h Glucose (n = 10), Fasting Glucose (n = 47), HbA1c (n = 68), and Type-2
Diabetes (n = 105) andMelanoma.We evaluated the correlation of these variations
with melanoma risk using Two-Samples MR.

Result: In the IVWmodel, Fasting Glucose (OR = 0.99, 95%CI = 0.993–0.998, p <
0.05, IVW), Type-2 Diabetes (OR = 0.998, 95%CI = 0.998–0.999, p < 0.01, IVW)
and HbA1c (OR = 0.19, 95%CI = 0.0415–0.8788, p < 0.05, IVW) was causally
associated with a lower risk of Melanoma. In all models analyzed, there was no
apparent causal relationship between Fasting Insulin and Melanoma risk. There
was no obvious causal difference in the IVW analysis of 2-h Glucose and
Melanoma, but its p < 0.05 in MR Egger (OR = 0.99, 95%CI = 0.9883–0.9984,
p < 0.05, MR Egger), and the direction was consistent in other MR analyses,
suggesting that there may be a causal relationship.

Conclusion: The results of this study suggest that a higher risk of Fasting Glucose,
Type-2 Diabetes, 2-h Glucose, and HbA1c may be associated with a lower risk of
Melanoma. However, no causal relationship between fasting insulin and
melanoma was found. These results suggest that pharmacological or lifestyle
interventions that regulate plasma glucose levels in the body may be beneficial in
the prevention of melanoma.
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1 Introduction

Melanoma is a malignant tumor produced by the malignant
transformation of melanocytes, which has a high probability of
local spread and metastatic spread. Studies have shown that its
incidence increases linearly in young and middle-aged people
aged 25 to 50, and is high in people aged 57 (Carr et al., 2020). It is
less common than other types of skin cancer but accounts for
73 percent of skin cancer-related deaths (Gershenwald and Guy,
2016). Studies have shown that in the next 10 years, the incidence
and mortality of melanoma will continue to rise (Whiteman et al.,
2016). The intervention effect of early surgical treatment and late
radiotherapy and chemotherapy on the prognosis of patients is
not satisfactory, and the results of several clinical trials have
shown that the objective remission rate of patient’s symptoms
after treatment is less than 1% (O’Neill et al., 2006; Atzpodien
et al., 2008; Bhatia et al., 2012). It is particularly important to look
for risk factors to prevent the occurrence of Melanoma.

Several recent studies have shown that obesity is positively
associated with the risk of melanoma (Dusingize et al., 2020;
Larsson and Burgess, 2021). Obese adults have a higher
prevalence of metabolic problems, such as insulin irregularities,
hyperglycemia, and Type-2 Diabetes. Some researches has found
that Type-2 Diabetes may be associated with an increased risk of
Melanoma (Harding et al., 2015; Yuan et al., 2020). However, other
cohort studies and case-control studies have found the opposite
results (Qi et al., 2014; Malavolti et al., 2017). Previous prospective
studies have shown that higher Fasting Glucose is closely related to
the occurrence and development of Melanoma (Stattin et al., 2007).
Recent studies have demonstrated a positive association between
Glycemic Traits and the risk of colorectal cancer (Murphy et al.,
2022a). But the MR studies of the associations between various
Glycemic Traits and melanoma have not yet been reported.

This study used MR to explore the causal relationship between
Glycemic Traits and Melanoma risk. MR is a comparable method to
randomization in randomized controlled trials. When parents with
two or more pairs of qualities cross when alleles are separated, genes
on non-homologous chromosomes operate as free combinations,
according to the law of independent assortment. Since germline
genetic variation, and the random nature of allelic segregation is
fixed at conception, MR analysis is less susceptible to traditional
confounding and reverse causation. In this study, we used GWAS
related to Fasting Glucose, Fasting Insulin, 2-h Glucose, HbA1c, and
Type-2 Diabetes, GWAS data on Melanoma from risk on
United Kingdom Biobank cohort study and FinnGen cohort
study (Mahajan et al., 2018; Chen et al., 2021). Two-sample MR
was used to explore the potential causal influence of the Glycemic
Traits on the risk of Melanoma.

2 Methods

2.1 Study design

MR investigates the link between exposure and illness by
employing genetic variation Single Nucleotide Polymorphisms
(SNPs) as Instrumental Variables IV). IV was extracted from a
disease-specific Genome-Wide Association Studies (GWAS) dataset

for this investigation. The IV in this work should fulfill three criteria:
there should be a high connection between IV and exposure, IV should
only affect the outcomes through exposure, and IV should not have
horizontal pleiotropy. Appropriate SNPs for usage as IVs must be
strongly linked to malignancy (p < 5 × 10−8). To ensure independence,
SNPs were restricted by low linkage disequilibrium (LD, r2 < 0.001,
window size = 10,000 kb) using clumping. By MR GWAS data. from
different sources were analyzed to assess the causal relationship
between glycemic signature and melanoma risk. Assess the strength
of IV using the F statistic (F = beta2/se2), where β is the effect size of the
allele and SE is the standard error (Feng et al., 2022). If F > 10, the
correlation between IV and exposure was considered strong enough to
protect the results of MR analysis from weak instrument bias.
Meanwhile, it will ensure no confounders like UV radiation, light
skin type, the presence of multiple atypical nevi, and a positive family
history using the Phenoscanner (http://www.phenoscanner.medschl.
cam.ac.uk/phenoscanner) website to have a search over each SNP
(Rastrelli et al., 2014; Ugurel and Gutzmer, 2023).

2.2 Data source

Glycemic Traits data come from the largest GWAS to date
(Glucose And Insulin-related Traits Consortium). A GWAS study
of 2 h Glucose, Fasting Glucose, and Fasting Insulin included 63,396
(SNPs= 27,330,879), 200,622 (SNPs= 31,008,728), and 151,013
(SNPs= 29,664,438) participants of European ancestry, respectively
(Chen et al., 2021). The GWAS for Type-2 Diabetes included
74,124 individuals with Type-2 Diabetes and 824,006 controls of
European ancestry (SNPs= 21,000,000) (Mahajan et al., 2018). The
HbA1c GWAS from the United Kingdom biobank (http://www.
nealelab.is/uk-biobank) included 361,194 participants of European
ancestry (SNPs= 1,048,575). The GWAS of Melanoma were obtained
from United Kingdom biobank (https://www.ukbiobank.ac.uk/) and
FinnGen (https://www.finngen.fi/en/access_results), the GWAS of
United Kingdom biobank included 3,598 patients and 459,335 for
controls (SNPs= 9,851,867) of European ancestry, the GWAS of
FinnGen included 393 patients and 180,622 controls (SNPs=
16,380,337) of European ancestry. All study participants gave
written informed consent, and the ethics committee approved all
studies. SNPs data can be found in Supplementary Table S1.

2.3 Method selection

We estimated the relationship between Glycemic Traits and
Melanoma risk using MR Egger, Inverse Variance Weighting
(IVW), weighted Median, Simple Mode, and Weighted Mode MR
methods. The IVW method assumes that all SNPs do not have
horizontal pleiotropy (The impact of genetic variation on results
is solely influenced by exposure of interest) and that all SNPs are
effective tools. The fixed-effect inverse variance weighting (IVW)
method was mainly used as the main analysis method (Kamiza
et al., 2022). The intercept of the MR-Egger test was used to
examine potential pleiotropic effects. Scatterplots are used to
display the findings of several MR procedures. Odds ratios (ORs)
and 95% confidence intervals (CIs) were used to represent the
causal effects of overall and Melanoma. We utilized scatterplots
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to show the genetic relationship between glycemic characteristics
and melanoma risk, and funnel plots to visually analyze the
consistency of MR estimations and potential related biases. R
software was used for these analyses, where the “Two-Sample
MR” and “MR-PRESSO” R packages were used.

2.4 Sensitivity analysis

Pleiotropy was investigated using the MR-Egger approach,
which was used to determine if a single locus impacts numerous
phenotypes. Second, the Leave-one-out sensitivity test was used to
gradually remove the SNPs to ensure that the results were credible.
The Cochran Q statistic was used to standardize heterogeneity
analyses. In addition, MR PRESSO was used to detect and
eliminate anomalous instrumental factors.

3 Results

3.1 MR assessment of glucose traits and
melanoma risk

After a quality control process, we obtained 10 SNPs strongly
associated with 2-h Glucose, 47 SNPs strongly associated with Fasting
Glucose, 26 SNPs associated with Fasting Insulin, and 105 strongly
associated with Type-2 Diabetes from GWAS and 68 SNPs closely
related to Fasting Glucose. The F-statistics of these SNPs were all
greater than 10, indicating that our instrumental variables were closely
related to Glucose Traits. Furthermore, our instrumental variables
were not directly associated with the risk of Melanoma (Table 1).

3.2 Mendelian randomization analysis of the
association between glycemic traits and the
risk of melanoma

IVW provides accurate estimates since the lack of heterogeneity
and directional pleiotropy between exposure and outcome variables.
Focusing primarily on the results of the IVW analysis, we assessed the
causal relationship between these SPNs and melanoma risk with the
Glycemic Traits (Table 2). The results showed that Fasting Glucose
(OR = 0.99, 95%CI = 0.993–0.998, p < 0.05, IVW), Type-2 Diabetes
(OR = 0.998, 95%CI = 0.998–0.999, p < 0.01, IVW) and HbA1c (OR=
0.19, 95%CI = 0.0415–0.8788, p < 0.05, IVW) was causally associated
with a lower risk of Melanoma. Its orientation is consistent with
several other MR analysis methods (Figures 1A–C). The 2-h Glucose
and Fasting Insulin results showed no apparent causal relationship
with Melanoma risk. Among them, no obvious causal difference was
found in the IVW analysis of 2-h Glucose, but its p < 0.05 in MR
Egger, and the direction was consistent in other MR analyses,
suggesting that there may be a causal relationship (Figure 1D).

3.3 Sensitivity analysis

In MR Egger, the p-values of MR Egger intercepts in each
instrumental variable of Glycemic Traits were greater than 0.05,TA
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suggesting that the intercept does not exist, indicating fasting
There was no horizontal pleiotropy for Fasting Glucose, 2-h
Glucose, Fasting Insulin, HbA1c, and Type-2 Diabetes
(Table 3). However, we found evidence of heterogeneity
between HbA1c and melanoma risk with a p-value of
0.03442561 for the Q statistic. As we used the random-effects
IVW as main result in MR of HbA1c, heterogeneity is acceptable
(Burgess et al., 2019). No heterogeneity was found in the other
analyses. Then we performed the Leave-one-out (Figures 2A–D)
method and MR-PRESSO (Figures 3A–D) to identify and delete

abnormal instrumental variables. The results showed that no
abnormal instrumental variables were found, and the above
results suggested that the MR analysis results were relatively
stable.

4 Discussion

Melanoma is a malignant tumor caused by melanocytes that is
also a very deadly disease due to its high metastatic potential,

TABLE 2 Associated between the Glycemic Traits and risk of Melanoma using two-sample MR.

Glycemic traits MR method OR 95%CI p-value

2-Hour Glucose

MR Egger 0.9911 0.9883–0.9984 <0.05

Weighted Median 0.9980 0.9995–1.0005 0.11

Inverse Variance Weighted 0.9989 0.9996–1.0001 0.31

Simple Mode 0.9984 0.9994–1.0002 0.47

Weighted Mode 0.9977 0.9984–1.0001 0.17

Fasting Glucose

MR Egger 0.9958 0.9901–1.0015 0.16

Weighted Median 0.9978 0.9937–1.0018 0.30

Inverse Variance Weighted 0.9968 0.9938–0.9998 <0.05

Simple Mode 0.9942 0.9860–1.0025 0.13

Weighted Mode 0.9971 0.9929–1.0012 0.16

Fasting Insulin

MR Egger 0.9917 0.9716–1.0121 0.43

Weighted Median 1.0011 0.9941–1.0082 0.76

Inverse Variance Weighted 0.9997 0.9943–1.0051 0.91

Simple Mode 1.0032 0.9906–1.0159 0.62

Weighted Mode 1.0025 0.9925–1.0127 0.67

Type-2 Diabetes

MR Egger 0.9986 0.9972–0.9999 <0.05

Weighted Median 0.9985 0.9975–0.9995 <0.01

Inverse Variance Weighted 0.9989 0.9983–0.9995 <0.01

Simple Mode 0.9978 0.9959–0.9998 <0.05

Weighted Mode 0.9984 0.9973–0.9996 <0.05

HbA1c

MR Egger 0.5199 0.029–9.3293 0.66

Weighted Median 0.4510 0.0496–4.1015 0.46

Inverse Variance Weighted 0.1910 0.0415–0.8788 <0.05

Simple Mode 0.3793 0.004–35.9837 0.65

Weighted Mode 0.8021 0.0863–7.4481 0.85
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accounting for 75% of skin cancer deaths (Davis et al., 2019). People
who have a family history of skin cancer, have a high amount of
common or underdeveloped nevi, or are excessively exposed to UV

light are at high risk for melanoma (Dummer et al., 2009; Guo et al.,
2016). It is still unknown whether endocrine factors can also affect
the occurrence of melanoma (Guo et al., 2016). This study used the

FIGURE 1
Scatter plot of genetic causality between Glycemic Traits and Melanoma using different MR methods. (A) Fasting Glucose (B) Type 2 Diabetes (C)
HbA1c (D) 2-h Glucose. The dark blue line represents MR Egger, the light green line represents simple mode, the dark green line represents Weighted
median, the light blue line represents IVW, and the red line represents Weighted mode.

TABLE 3 Estimates of Egger intercept to evaluate evidence for directional pleiotropy in MR association.

Glycemic traits Egger intercept SE of egger intercept p-value

2-h Glucose 0.00054 0.00025 0.06

Fasting Glucose 0.00003 0.00006 0.69

Fasting Insulin 0.00013 0.00017 0.43

Type 2 Diabetes 0.00002 0.00005 0.64

HbA1c −0.01877 0.02342 0.43

FIGURE 2
Forest map of Melanoma based on Glycemic Traits. (A) 2-h glucose (B) Fasting Glucose (C) Type 2 Diabetes (D) HbA1c. Black dots represent
estimates of causal effects of Glycemic Traits on Melanoma (beta coefficients). The black line represents the estimated 95% confidence interval.
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MR method for the first time to explore the causal relationship
between the characteristics of Fasting Glucose (including 2-h
Glucose, Fasting Glucose, Fasting Insulin, Type-2 Diabetes, and
HbA1c) and the risk of Melanoma from the perspective of genetics.
Overall, we found that Fasting Glucose, Type-2 Diabetes, and higher
HbA1c levels were negatively associated with the risk of Melanoma.
The results of MR Egger suggest that 2-h Glucose may be negatively
related to the risk of Melanoma. But there is no evidence that gene-
predicted Fasting Insulin levels increase the risk of Melanoma. Due
to the use of suitable genetic instrument tools (F-statistics>10 and
r2<0.001) in this study, no significant SNP was detected in the
retention method or MR-PRESSO, and the results were highly
consistent among the 5 MR algorithms. Therefore, we believe
that the results of this study are to some extent reliable. The
results of this study suggest that people with higher Glycemic
Traits levels may be at low risk for melanoma. Patients and high-
risk populations may reduce the risk of melanoma by adjusted
dietary structure regulating Glycemic Traits.

In previous studies, we have noticed that Glycemic Traits exhibit
different causal relationships among different tumors. There is a
positive correlation between plasma glucose index and disease risk
in lung cancer, but there is no significant correlation with colon
cancer (Murphy et al., 2022b; Du et al., 2022). Ameta-analysis shows
that glycemic index will increase the overall risk of cancer, increase
the risk of breast cancer (Long et al., 2022), and is positively
correlated with the risk of bladder cancer and gastric cancer
(Zhu et al., 2020; Kim et al., 2022). Relevant studies have shown
that higher HbA1c levels are associated with an increased risk of
colorectal cancer, pancreatic cancer, respiratory cancer, and female
reproductive tract cancer, and are not associated with an increased
risk of breast cancer, gastrointestinal or urinary systemmalignancies
(Hong et al., 2009; Lu et al., 2015; Hope et al., 2016; Murphy et al.,
2022b), but are linearly associated with overall cancer-related deaths
(Yoo et al., 2022). A study shows that Type-2 Diabetes will increase
the risk of colorectal cancer (Murphy et al., 2022b). The cohort study
and case-control study in Melanoma suggest that Type-2 Diabetes
may be negatively related to the risk of Melanoma (Harding et al.,
2015; Yuan et al., 2020), but the opposite results have appeared in
other studies (Qi et al., 2014; Malavolti et al., 2017). The above
studies suggest that the specific relationship between Glycemic
Traits and Melanoma is still contradictory.

The results of this study suggest that 2-h Glucose (OR = 0.99,
95% CI = 0.984–0.998, p < 0.05, MR Egger), Fasting Glucose
(OR = 0.99, 95% CI = 0.993–0.998, p < 0.05, IVW), Type-2
Diabetes (OR = 0.998, 95% CI = 0.998–0.999, p < 0.01, IVW) and
higher HbA1c level (OR = 0.19, 95% CI = 0.0415–0.8788, p <
0.05, IVW) are all possible negatively related to the risk of
Melanoma. This is different from the manifestation of
Glycemic Traits in causal relationships with other tumors.
This may be due to the reduction of melanocytes in Diabetes
patients, whose melanin content is related to plasma glucose
control in diabetes and obesity (Mackiewicz-Wysocka et al.,
2014). Research shows that people with light skin are about
30 times more likely to suffer from Melanoma than people with
dark skin (Doepner et al., 2022). This is because the
pigmentation of human skin is determined by the transfer of
mature melanin synthesized by epidermal Melanoma cells to the
surrounding keratinocytes. Human Chromatophores synthesize
two types of melanin, namely, eumelanin (EM) and
phaeomelanin (PM). The content of eumelanin is directly
related to skin pigmentation and has a photoprotective effect,
which can protect the skin from ultraviolet rays, thereby
reducing the incidence rate of Melanoma (Upadhyay et al.,
2022). Moreover, a high level of plasma glucose is often
associated with high BMI and obesity. Studies have shown
that obesity is associated with elevated circulating estradiol
levels due to the aromatase activity of adipose tissue
converting androgens into estrogen compounds (Schneider
et al., 1979). In primary Melanoma, there may be high
expression of estrogen receptors β with anti-melanoma-
proliferative, and sending non-classical estrogen signals
through G protein-coupled receptors (de Giorgi et al., 2013;
Marzagalli et al., 2015). This may explain the different causal
relationships between Glycemic Traits in Melanoma and other
tumors.

Insulin is a protein hormone secreted by cells stimulated by
endogenous or exogenous substances such as glucose, lactose, ribose,
arginine, glucagon, etc. Related research suggests that it may be
related to the development of tumors. Lilalutide, an analog of
glucagon-like peptide 1, is a molecule that regulates glucose by
increasing insulin production and inhibiting glucagon secretion. It
can significantly reduce the formation of NET in tumor mice by

FIGURE 3
Funnel plot of Melanoma based on Glycemic Traits genetic variants. (A) 2-h glucose (B) Fasting Glucose (C) Type 2 Diabetes (D) HbA1c. Overall
causal estimates (beta coefficients) of Glycemic Traits and Melanoma estimated by the IVW (light blue line) and MR-Egger (dark blue line) methods are
shown.
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improving the plasma glucose of patients, inhibiting tumor
progression, and enhancing the anti-tumor effect of PD-1
inhibitors (Chen et al., 2022). Insulin is also an important cell
growth factor that can promote cell growth, proliferation, and
migration (Leitner et al., 1997). Higher fasting insulin is
positively correlated with the risk of colorectal cancer (Murphy
et al., 2022b). Extracellular vesicles secreted by breast cancer cells
inhibit insulin secretion through miR-122, thereby damaging
systemic glucose homeostasis and promoting tumor growth (Cao
et al., 2022). However, in this study, the results suggest that there is
no correlation between insulin level and the risk ofMelanoma (OR =
0.99, 95% CI = 0.994–1.005, p = 0.91, IVW). Therefore, the causal
relationship between Insulin and the risk of Melanoma requires
more research.

There are still limitations to this study. Firstly, we restricted the
relevance of the findings to other groups by concentrating on
research subjects with European populations. Secondly, this study
did not consider the impact of gender on MR analysis and did not
conduct further subgroup analysis. Thirdly, to verify the findings,
this study does not analyze additional data sources. Finally, This
study used Mendelian Randomization analysis, which has the
potential for weak instrument bias and pleiotropy. Future
research is needed to address these limitations and to confirm
the findings of this study.

Although previous observational studies can identify the
relationship between Glucose, Type-2 Diabetes, Insulin and the
risk of Melanoma, however, because of research confounding
variables, a causal association cannot be established. In
conclusion, this study used MR technology for the first time to
analyze the causal relationship between Glycemic Traits and
Melanoma and found that there is a negative correlation, and the
underlying mechanism may provide valuable insights for
carcinogenesis.
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