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Acanthopanax senticosus (Rupr. et Maxim.) Harms is a perennial shrub of the
Acanthopanax genus in the Araliaceae family and has a high medicinal value. The
application of zinc fertilizer can improve the yield and quality of medicinal materials.
However, there are limited reports on approaches to increase the content of
medicinal components in A. senticosus, hindering the improvement of its
medicinal quality. In this study, A. senticosus was treated with 0.1% (LZn) and 0.4%
(HZn) zinc sprayed on the leaf surface. The effects of zinc treatment on themedicinal
components in the roots of A. senticosus were analyzed by comprehensive
metabolomics and transcriptomics analyses. A total of 316 metabolites were
detected, with a prevailing occurrence of terpenoids and phenylpropanoids. We
identified metabolites related to the medicinal components that were upregulated
after Zn treatment, including 43 terpenoids, 19 phenylpropanoids, eight phenols, and
three flavonoids. Combining differential gene expression and K-means analysis, we
found 95, 65, and 25 upregulated genes related to phenylpropanoid biosynthesis,
terpenoid biosynthesis, and flavonoid biosynthesis, respectively. Under different
concentrations of Zn treatment, the upregulated metabolite biosynthesis-related
genes and differentially expressed transcription factors varied. Pearson correlation
network analysis revealed significant correlations among terpenoids,
phenylpropanoids, flavonoids biosynthetic genes, and several transcription factors
(ERFs, WRKYs, bHLHs, NACs, and MYBs). This study lays the foundation for
understanding the metabolic processes in response to varying levels of zinc foliar
spray and provides a theoretical basis for enhancing the efficiency of zinc fertilizer
utilization in A. senticosus.
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1 Introduction

Acanthopanax senticosus, a perennial shrub of the
Acanthopanax genus in the Araliaceae family, is renowned for
its high medicinal value (Sithisarn and Jarikasem, 2009; Huang
et al., 2011). Its chemical constituents primarily include
phenylpropanoids, flavonoids, terpenoids, lignans, sterols,
caffeoylquinic acid derivatives, and fatty acids (Shi et al., 2019;
Li et al., 2021). A. senticosus has demonstrated various
pharmacological effects such as cardioprotection, hypoglycemic
activity, hepatoprotection, immunomodulation, neuroprotection,
anti-fatigue activity, anti-cancer activity, anti-inflammatory
activity, and antioxidant activity (Liang et al., 2010; Bai et al.,
2011; Huang et al., 2011; Jiang and Wang, 2015; Kim et al., 2015;
Zhang et al., 2015; Zhang et al., 2021).

Zinc (Zn) is a vital trace element for plant growth and
development, and it is essential for high yield and quality
(Bukhari et al., 2021; Semida et al., 2021). Zn deficiency
results in stunted growth as the main symptom in plants
(Mattiello et al., 2015). Foliar Zn application can significantly
enhance crop quality and yield (Joy et al., 2015; Ahmed et al.,
2021). In most studies of medicinal plant fertilization,
appropriate fertilization can increase both the yield and
quality of medicinal materials and enhance secondary
metabolite content. Conversely, inappropriate fertilization can
create a stressful environment that negatively impacts medicinal
plant growth and quality (Ma et al., 2018; Sun et al., 2021). Foliar
fertilization, a widely used agricultural cultivation measure,
involves the active absorption of nutrients into leaf interiors
(Haslett, 2001). This method is more environmentally friendly
than soil application of trace elements, which may produce
toxicity (Fernandez and Brown, 2013). Foliar fertilization
advantages include low dosage, rapid absorption, minimal
pollution, and evident effects (Razzaq et al., 2013; Davarpanah
et al., 2016). Zn also maintains the structure of certain protein
types, such as transcription factors (TFs) (Xie et al., 2020).
Additionally, Zn plays an important role in various
physiological functions in plants, such as hormone regulation
and signal transduction through mitogen-activated protein
kinases (Bhantana et al., 2021; Kaur and Garg, 2021; Ahmad
et al., 2022).

Foliar nutrient sprays may vary in their effectiveness
depending on their translocation to other plant organs. After
foliar application, Zn is taken up by the leaf epidermis,
remobilized, and transported to other organs via the phloem
(Fernandez and Eichert, 2009; White and Broadley, 2011).
However, the remobilization of foliar Zn, from either soil or
foliar sources, is influenced by factors such as plant species and
genotypes, phenological stage, application method, and
environmental conditions (Kutman et al., 2010; Impa et al.,
2013). Zn is classified as intermediate or conditionally mobile,
but it can still translocate to other organs in many plants
following foliar fertilization. This translocation depends on
factors such as plant nutritional status, species and variety, or
plant phenological state (Wu et al., 2010; Erenoglu et al., 2011;
Hegelund et al., 2012).

Currently, transcriptomic and metabolomic analyses have been
jointly applied to various medicinal plants, including Bletilla striata

(Zou et al., 2021), Dendrobium officinale (Zhang et al., 2021), and
Ganoderma lucidum (Meng et al., 2022). Huang et al. (2022)
employed a combined transcriptomic and metabolomic analysis
to examine changes in flavonoid content and the expression of
related biosynthetic pathway genes in Fagopyrum cymosum
rhizomes. They uncovered a catechin-related network involving
interactions among four metabolites and 14 genes. Liu et al.
(2022) discovered that Astragalus membranaceus adapted to
saline–alkali stress by upregulating flavonoid biosynthesis
through a combined transcriptomic and metabolomic analysis,
thereby enhancing its medicinal value. However, insufficient
reports exist on the metabolome and transcriptome analyses of
A. senticosus.

In this study, we integrated metabolomic and transcriptomic
analyses to investigate changes in medicinal component content
and differentially expressed genes (DEGs) in A. senticosus roots
following foliar application of Zn fertilizer at varying
concentrations. By conducting correlation analysis to identify
relationships among major differential metabolites, biosynthesis-
related genes, and TFs, we provide a reference for enhancing A.
senticosus’ medicinal quality through Zn fertilization.

2 Materials and methods

2.1 Plant materials

The test material consisted of 2-year-old A. senticosus plants
grown at a cultivation base in Hulan District, Harbin City,
Heilongjiang Province, China (N45°52′, E126°36′). The field
experiment included a control group with no fertilization and
only water spray (CK), a second group with foliar application of
a low concentration of 0.1% ZnSO4·7H2O (LZn), and a third group
sprayed with a high concentration of 0.4% ZnSO4·7H2O (HZn).
Fertilization was applied on June 7th, June 19th, and July 1st
between 4 p.m. and 5 p.m. Each seedling received approximately
25 mL of fertilizer spray, covering both leaf surfaces. On October
25th, roots from plants in different treatments were collected and
rinsed with clean water followed by distilled water before being
frozen in liquid nitrogen and stored at −80°C for future use. For the
metabolome analysis, six biological replicates were performed for
each treatment, while the transcriptome analysis had three biological
replicates.

2.2 Metabolite extraction

The freeze–dried samples were crushed using a mixer mill for
30 s at a frequency of 60 Hz. Then, 100 mg of the sample was
added to a solution containing extracted material dissolved in 80%
methanol and contained an internal standard of 10 μg/mL. After
vortexing for 30 s, the samples were homogenized at a frequency
of 45 Hz for 4 minutes and sonicated for 1 hour in an ice-water
bath. After being placed in −40°C for 1 hour, the samples were
centrifuged at a speed of 12,000 rpm (RCF = 13,800 (×g), R =
8.6 cm) for 15 minutes at 4°C. The supernatant was carefully
filtered through a microporous membrane with a pore size of
0.22 μm, and then, 10 μL was taken from each sample and pooled
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as quality control samples. The samples were stored at −80°C until
ultra-high-performance liquid chromatography–mass spectrometry
(UHPLC–MS) analysis.

2.3 Liquid chromatography–tandem mass
spectrometry conditions

An ultra-high-performance liquid chromatography system
(Vanquish, Thermo Fisher Scientific) equipped with a Waters
UPLC BEH C18 column (1.7 μm 2.1*100 mm) was used for
liquid chromatography–tandem mass spectrometry (LC–MS/MS)
analysis. The sample injection volume was 5 μL, and the flow rate
was 0.5 mL/min. The mobile phase consisted of 0.1% formic acid in
water (A) and 0.1% formic acid in acetonitrile (B). The multistep
linear elution gradient program was as follows: 85% A for 0–11 min,
25% A for 11–12 min, 2% A for 12–14 min, 2% A for 14–14.1 min,
85% A for 14.1–15 min, and 85% A for 15–16 min.

LC–MS/MS data acquisition was based on the information-
dependent acquisition (IDA) mode, and Xcalibur software coupled
with a Q Exactive Focus mass spectrometer was used. During each
acquisition cycle, the mass range was from 100 to 1,500, and the top
three of every cycle were screened, and the corresponding MS/MS
data were further acquired. The sheath gas flow rate was set at
45 Arb, the auxiliary gas flow rate was set at 15 Arb, and the capillary
temperature was adjusted at 400°C. The full MS resolution was set at
70,000, and theMS/MS resolution was set at 17,500. Collision energy
was set at 15/30/45 in the normalized collision energy (NCE) mode,
and spray voltage was attuned at +4.0 kV (positive) or −4.0 kV
(negative).

2.4 Identification and exploration of
differentially accumulated metabolites

The raw mass spectrometry data were imported using XCMS
software and underwent retention time correction, peak
identification, extraction, integration, and alignment. The peaks
containing MS/MS data were identified using a secondary mass
spectrometry database built by Shanghai Baiqu Biomedical
Technology Co., Ltd., along with corresponding fragmentation
matching methods. Variable importance in projection (VIP)
values were extracted from the orthogonal partial least squares
discriminant analysis (OPLS-DA) results to determine the
differentially accumulated metabolites (DAMs) between groups
with VIP ≥1 and absolute p-value ≤0.05.

2.5 RNA-seq

The TRIzol reagent (Invitrogen) was used to extract total RNA
from tissue samples, and DNase I (TaKara) was used to remove
genomic DNA. To monitor RNA degradation and contamination,
1% agarose gels were run. RNA purity was checked using a
NanoPhotometer® spectrophotometer (IMPLEN, CA, United States),
and RNA concentration wasmeasured with a Qubit® RNAAssay Kit in
a Qubit®2.0 Flurometer (Life Technologies, CA, United States).
RNA integrity was assessed with an RNA Nano 6000 Assay

Kit of the Bioanalyzer 2100 system (Agilent Technologies,
CA, United States).

RNA sample preparation was performed using 1 µg RNA per
sample. The NEBNext® UltraTM RNA Library Prep Kit for
Illumina® (NEB, United States) was used to generate
sequencing libraries according to the manufacturer’s
recommendations. Index codes were added to allocate
sequences to each sample. Poly-T oligo-attached magnetic
beads were used to purify mRNA from total RNA.
Fragmentation was performed using divalent cations under
elevated temperature in NEBNext First Strand Synthesis
Reaction Buffer (5X). First strand cDNA was synthesized
using a random hexamer primer and M-MuLV Reverse
Transcriptase (RNase H-). Second strand cDNA synthesis was
performed using DNA Polymerase I and RNase H. Remaining
overhangs were converted into blunt ends using exonuclease/
polymerase activities. After adenylation of 3′ ends of DNA
fragments, NEBNext Adaptor with a hairpin loop structure
was ligated to prepare for hybridization. The library fragments
were purified with the AMPure XP system (Beckman Coulter,
Beverly, United States) to select cDNA fragments of 250–300 bp
in length. Size-selected, adaptor-ligated cDNA was treated with
3 µL USER Enzyme (NEB, United States) at 37°C for 15 min
followed by 5 min at 95°C before PCR. Finally, PCR products
were purified (AMPure XP system), and library quality was
assessed on the Agilent Bioanalyzer 2100 system.

The original data were filtered using fastp, mainly to
eliminate reads containing adapters. Paired reads were
removed if the N content in any sequencing read exceeded
10% of the base number of the reads. Paired reads were also
removed if the number of low-quality (Q < = 20) bases contained
in any sequencing read exceeded 50% of the bases of the read. All
subsequent analyses were based on clean reads. Trinity was used
to perform transcriptome assembly. Relevant transcripts were
regrouped into gene clusters using Corset (https://github.com/
trinityrnaseq/trinityrnaseq). TransDecoder (https://github.com/
TransDecoder/TransDecoder/wiki) was used to identify
candidate coding regions within transcript sequences
generated by de novo RNA-Seq transcript assembly using
Trinity. Gene function was annotated based on the following
databases using diamond or HMMER: Nr, Swiss-Prot, Trembl,
KEGG, GO, KOG/COG, and Pfam. Gene expression levels were
estimated by RSEM, and FPKM of each gene was calculated
based on the gene length.

2.6 Differential expression, gene mining, and
enrichment analysis

DESeq2 was used to analyze differential expression between the
two groups. A p-value less than 0.05 and |log2foldchange|≥1 were
used as the threshold for significant differential expression. We used
Goatools (https://github.com/tanghaibao/Goatools) and KOBAS
(http://kobas.cbi.pku.edu.cn/home.do) to perform GO functional
enrichment and KEGG pathway analysis for the DEGs to
understand their functions. GO terms and metabolic pathways
with a Bonferroni-corrected p-value less than 0.05 were
considered as significantly enriched by DEGs.
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2.7 Correlation network analysis

Principal component analysis (PCA) and Pearson correlation
analysis were performed using R’s built-in functions. Subsequently,
significant correlation networks (p < 0.05) between biosynthesis
genes and metabolites and between biosynthesis genes and TFs were
visualized using Cytoscape 3.9 (Cline et al., 2007).

3 Results

3.1 Metabolomic analysis

A total of 316 metabolites were identified in the samples; among
them, terpenoids were the most abundant, accounting for 21.8% of
the total, followed by phenylpropanoids at 14.6% (Supplementary
Table S1). Phenols, alkaloids, flavonoids, amino acid derivatives,
fatty acyls, aromatic compounds, organic acids and their derivatives,
fatty acids, and other compounds accounted for 6.0%, 5.4%, 4.7%,
2.8%, 1.9%, 1.9%, 1.6%, 1.6%, and 37.7%, respectively (Figure 1A).
To compare the metabolic differences among HZn, LZn, and CK,
PCA was performed on the metabolomics dataset. In the PCA score
plot, the contribution rates of PC1 and PC2 were 39.71% and
28.01%, respectively. Each sample group was clustered together,

indicating good repeatability of the samples. The samples between
different groups were clearly alienated, indicating significant
differences between the metabolomes (Figure 1B). Hierarchical
clustering heatmap analysis showed that the replicates of the
samples were assembled together, further indicating good data
repeatability. In addition, the color differences of the
316 metabolites between different samples were obvious,
demonstrating significant differences in metabolites between
different samples (Figure 1C).

DAMs were screened using the criteria of VIP >1 and
p-value <0.05. A total of 191 DAMs were identified in LZn vs.
CK, including 88 upregulated metabolites and 103 downregulated
metabolites (Figure 2, Supplementary Table S2). These mainly
comprised 53 terpenoids, 25 phenylpropanoids, 12 alkaloids,
10 phenols, seven flavonoids, and 84 other metabolites.
Compared with CK, these upregulated compounds in LZn
treatment increased by at least 5.86%. Among them, the highest
fold changes were observed for isoimperatorin
(phenylpropanoid), fraxetin (phenylpropanoid), and flavanone
base + 3O, 1Prenyl (flavonoid), which increased by more than
29.98 times compared with CK. In HZn vs. CK, a total of
197 DAMs were identified, including 47 terpenoids,
25 phenylpropanoids, 13 alkaloids, nine phenols, six flavonoids,
and 89 other compounds. These upregulated compounds in HZn

FIGURE 1
Metabolomics analysis based on LC–MS/MS measurement. (A) Types and quantities of metabolites, (B) PCA score plot, and (C) hierarchical
clustering heatmap of 316 metabolites in three sample groups.
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treatment increased by at least 11.71% compared with CK. The
highest fold changes were observed for flavanone base + 3O,
1Prenyl (flavonoid), fraxetin (phenylpropanoid), and
cortodoxone (terpenoid), which increased by more than
24.47 times compared with CK. Venn diagram analysis showed
that among the upregulated metabolites, HZn vs. CK and LZn vs.
CK had 59 and 31 upregulated metabolites, respectively, with a
total of 57 shared between them. Among the downregulated
metabolites, HZn vs. CK and LZn vs. CK had 28 and
50 downregulated metabolites, respectively, with a total of
53 shared between them. KEGG enrichment analysis revealed
that the DAMs of LZn vs. CK were mainly significantly enriched in
metabolic pathways such as biosynthesis of secondary metabolites,
biosynthesis of cofactors, phenylalanine, tyrosine, and tryptophan

biosynthesis, phenylalanine metabolism, and biosynthesis of
amino acids. On the contrary, the focal differential metabolites
of HZn vs. CK were considerably enriched in metabolic pathways
such as biosynthesis of secondary metabolites, biosynthesis of
cofactors, and phenylalanine metabolism.

K-means clustering analysis proposed that 228 differential
metabolites could be divided into nine classes (Figure 3),
numbered as 1–9, and comprised 21, 22, 29, 46, 17, 35, 41, 13,
and 24 metabolites, respectively (Supplementary Table S2). Notably,
the metabolite content was increased in classes 2, 3, 5, 7, 8, and
9 after Zn treatment. Of these, classes 2 and 5 had a significant
metabolite increment in both LZn and HZn treatment groups. Based
on the differential metabolite analysis and K-means analysis, we
identified medicinally related components of A. senticosus that

FIGURE 2
Identification and enrichment analysis of DAMs. Identification of DAMs in LZn vs. CK (A) and HZn vs. CK (B) comparisons. Venn diagram of the
upregulated (C) and downregulated (D) DAMs between LZn vs. CK and HZn vs. CK. KEGG enrichment analysis in LZn vs. CK (E) and HZn vs. CK (F)
comparisons.
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amplified after Zn treatment, including 43 terpenoids,
19 phenylpropanoids, eight phenols, and three flavonoids
(Figure 4). The analysis of the 43 terpenoid compounds revealed
that eight compounds belong to class 2, eight to class 3, five to class 5,
13 to class 7, three to class 8, and the remaining six to class 9.
Similarly, among the 19 phenylpropanoids studied, class
distribution was as follows: three in class 3, two in class 2, six in
class 7, two in class 8, and the remaining six in class 9. In the case of
the eight phenols analyzed, two were found to belong to class 2, one
to class 5, one to class 7, and the remaining four to class 9. Last, of the
three flavonoids examined, two were classified into class 5 and one
into class 7.

3.2 Transcriptome analysis

RNA-seq sequencing yielded 53.95 GB of raw data
(Supplementary Table S3). After quality control filtering,
49.62 GB of valid data were obtained (Supplementary Table
S4). In the valid data, the Q20 value exceeded 97%, and the
Q30 value exceeded 92% (Supplementary Table S4). The GC
content ranged from 43.27% to 49.11% (Supplementary Table
S4). Gene annotation results showed that a total of 110,322 genes
were successfully annotated (Supplementary Table S5). Of these,
54,526; 37,961; 45,013; 45,947; 59,707; and 56,103 genes were
annotated in the GO, KEGG, Pfam, Swiss-Prot, and NR
databases (Supplementary Table S6). As shown in the volcano
plot in Figure 5, red color represents significantly upregulated

genes, blue represents significantly downregulated genes, and
gray represents genes with no significant difference. In LZn vs.
CK, a total of 6,696 differentially expressed genes were obtained,
including 3,958 upregulated and 2738 downregulated
(Figure 5A). In HZn vs. CK, a total of 6,172 differentially
expressed genes were obtained, including 3,440 upregulated
and 2,732 downregulated (Figure 5B). Venn diagram analysis
showed that among the upregulated differentially expressed
genes, HZn vs. CK and LZn vs. CK had 1831 and 2,349 genes,
respectively, with a total of 1,609 upregulated genes shared
between them (Figure 5C). Among the downregulated
differentially expressed genes, HZn vs. CK and LZn vs. CK
had 2,707 and 3,933 genes, respectively, with a total of
25 downregulated genes shared between them (Figure 5D).

GO functional enrichment analysis was performed on the
differentially expressed genes. Figure 6 shows that in LZn vs. CK,
the top five significantly enriched pathways for differentially
expressed genes were chloroplast stroma, thylakoid, chloroplast
thylakoid membrane, response to cold, and chloroplast
(Figure 6A). In HZn vs. CK, the top five significantly enriched
pathways for differentially expressed genes were plasmodesma,
extracellular region, apoplast, peroxidase activity, and cell wall.
According to the KEGG pathway enrichment analysis, the top
20 most significantly enriched metabolic pathways indicating that
genes related to the metabolic pathways of medicinal components
changed significantly after Zn treatment (Figure 6B). In LZn vs. CK,
the significantly enriched pathways related to medicinal metabolites
were phenylpropanoid biosynthesis and flavonoid biosynthesis

FIGURE 3
K-means clustering analysis of 228 DAMs.
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FIGURE 4
Terpenoids, phenylpropanoids, phennols, and flavonoids with upregulated content in the A. senticosus root after foliar application of Zn fertilizer.
The classes are derived from the results of the K-means analysis.

FIGURE 5
Identification of DEGs. (A) DEGs between LZn and CK. (B) DEGs between HZn and CK. Venn diagram of the upregulated (C) and downregulated (D)
DEGs between LZn vs. CK and HZn vs. CK.
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(Figure 6C). In case of HZn vs. CK, phenylpropanoid biosynthesis,
flavonoid biosynthesis, and sesquiterpenoid and triterpenoid
biosynthesis were spotted as the substantial enriched pathways
related to medicinal metabolites (Figure 6D). We also identified
differentially expressed TFs. In LZn vs. CK, a total of
192 differentially expressed TFs were identified, including
110 upregulated and 82 downregulated (Supplementary Figure
S1, Supplementary Table S7). In HZn vs. CK, a total of
164 differentially expressed TFs were recognized, including
97 upregulated and 67 downregulated (Supplementary Figure S2,
Supplementary Table S7). Furthermore, a distinct pattern was
observed in the upregulation of genes under different zinc
treatments. Specifically, in the DEGs of LZn vs. CK comparison,
but not in the DEGs of HZn vs. CK comparison, four flavonoid
biosynthesis-related genes, five phenylpropanoid biosynthesis-
related genes, and 10 terpenoid biosynthesis-related genes were
upregulated. Conversely, in the DEGs of HZn vs. CK
comparison, but not in the DEGs of LZn vs. CK, two flavonoid
biosynthesis-related genes, 22 phenylpropanoid biosynthesis-related
genes, and 12 terpenoid biosynthesis-related genes were
upregulated. These findings suggest that varying concentrations
of zinc treatment can differentially influence the expression of
biosynthetic genes.

The results of the k-means fuzzy clustering analysis suggested
that all differentially expressed genes can be categorized into four
classes (Supplementary Figure S3). Class 1 contains 6,102 genes,
which exhibited low expression in both CK and LZn and high
expression in HZn. Class 2 contains 9,387 genes, whose
expression levels decreased after LZn and HZn treatment.
Class 3 contains 2596 genes, whose expression levels increased
after LZn and HZn treatment. Class 4 contains 9,913 genes,
which showed high expression in both CK and HZn treatment
but feeble expression after LZn treatment. To reveal the reasons
for the upregulation of phenylpropanoid, terpenoid, and
flavonoid compounds by zinc treatment, we identified 95, 65,
and 25 differentially expressed genes related to phenylpropanoid
biosynthesis, terpenoid biosynthesis, and flavonoid biosynthesis
in classes 1 and 3, respectively (Figure 7, Supplementary Table
S8). Consistent with existing reports, multiple transcription
factor families such as ERF, bHLH, MYB, NAC, WRKY, and
bZIP have transcriptional regulatory effects on these metabolites.
In classes 1 and 3, there are a total of 12 bHLHs, 16 bZIPs,
34 ERFs, 13 MYBs, 14 MYB_related, 13 NACs, and 25 WRKY
genes, suggesting that they have potential transcriptional
regulatory effects on the biosynthesis of related metabolites
(Supplementary Table S9).

FIGURE 6
GOand KEGG enrichment analysis of differentially expressed genes. GO enrichment analysis in LZn vs. CK (A) andHZn vs. CK (B) comparisons. KEGG
enrichment analysis in LZn vs. CK (C) and HZn vs. CK (D) comparisons.
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3.3 Integrated analysis of metabolomics and
transcriptomics

To better understand the metabolic regulatory network of A.
senticosus after treatment with different concentrations of zinc, we
performed a Pearson correlation analysis on the differentially
expressed genes related to metabolite biosynthesis and TFs
(Figure 8). A significant correlation was established between TFs
and structural genes when the p-value was less than 0.05 and the
correlation coefficient |r| exceeded 0.9.

In the upregulated metabolite biosynthesis genes between
LZn and CK, but not between HZn and CK, 44 transcription
factors were identified to have a significant correlation with eight
terpenoid biosynthesis-related genes (Figure 8A, Supplementary
Table S10). These transcription factors included 10 ERFs, five
NACs, five HD-ZIPs, four bHLHs, three WRKYs, three MYB_
related, two CO-like, two RAVs, and 10 other types of
transcription factors. Among them, 30 transcription factors
showed a significant positive correlation with eight terpenoid
biosynthesis-related genes, while 14 transcription factors had a
significant negative correlation with two terpenoid biosynthesis-
related genes. Thirteen transcription factors exhibited a
significant positive correlation with three phenylpropanoid
biosynthesis-related genes, including six ERFs, one EIL, one
RAV, one NAC, one MYB, two LBDs, and one HD-ZIP
(Figure 8B). Additionally, 32 transcription factors were
significantly correlated with four flavonoid biosynthesis-related
genes (Figure 8C). These comprised six ERFs, two CO-like, four

bHLHs, two ARFs, three WRKYs, two NACs, three MYB-related,
two MYBs, two HD-ZIPs, and six other types of transcription
factors.

In the upregulated metabolite biosynthesis genes between
HZn and CK, but not between LZn and CK, significant
correlations were observed between the expression of
metabolite biosynthesis-related genes and various transcription
factors (Supplementary Table S11). Specifically, 58 transcription
factors were significantly correlated with 12 terpenoid
biosynthesis-related genes (Figure 8D). These included
11 ERFs, 11 WRKYs, three C2H2s, two bZIPs, two HD-ZIPs,
two RAVs, five LBDs, five MYBs, two MYB_relateds, two G2-
likes, two NACs, and 11 other types of transcription factors.
Among these transcription factors, only one showed a
significant negative correlation with a structural gene, while
the rest showed a significant positive correlation. A total of
63 transcription factors were significantly correlated with
12 phenylpropanoid biosynthesis-related genes (Figure 8E).
These comprised 12 ERFs, nine WRKYs, four G2-likes, three
trihelixes, two C2H2s, two NF-YAs, two bHLHs, two bZIPs, two
NACs, four MYBs, four MYB_relateds, five LBDs, and 12 other
types of transcription factors. Among these transcription
factors, only three showed a significant negative correlation
with three structural genes. Nine transcription factors
demonstrated a significant positive correlation with two
flavonoid biosynthesis-related genes (Figure 8F). These
included three LBDs, two ERFs, one G2-like, one WRKY, one
AP2, and one Dof.

FIGURE 7
Upregulated genes related to the biosynthesis of important medicinal components in A. senticosus after foliar application of Zn fertilizer.
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4 Discussion

In this study, we investigated the effect of foliar application of
different Zn concentrations on the roots of A. senticosus. Our results
revealed that foliar application of a certain Zn concentration can
significantly increase the content of medicinal components in the
roots of A. senticosus. Compared with the control, foliar application
of different Zn levels markedly enhanced the content of many
medicinal metabolites in the roots of A. senticosus, including
43 terpenoids, 19 phenylpropanoids, eight phenols, and three
flavonoids. In our study, DEG analysis and K-means clustering
identified 95 upregulated phenylpropanoid biosynthesis-related
genes, 65 terpenoid biosynthesis-related genes, and 25 flavonoid
biosynthesis-related genes after Zn treatment. We also observed
significant correlations between the expression of metabolite
biosynthesis-related genes and various transcription factors in the
upregulated metabolite biosynthesis genes between LZn and CK, but
not between HZn and CK, or between HZn and CK, but not between
LZn and CK. These findings suggest that in A. senticosus, foliar
application of Zn fertilizer may regulate the expression of various
medicinal compound biosynthesis genes by affecting the expression
of related transcription factors, thereby increasing the content of
medicinal components in the roots.

Our results are consistent with many previous studies. First,
foliar application of zinc fertilizer can increase the content of

medicinal components in various plants. For example, in Stevia
rebaudiana, foliar application of zinc sulfate significantly increased
its stevioside content (Singh and Dwivedi, 2019). In Mentha
pulegium, zinc treatment significantly increased the composition
of pulegone, cis-isopulegone, a-pinene, sabinene, 1,8-cineole, and
borneol in mint essential oil (Lajayer et al., 2016). In Lavandula
stoechas, foliar application of zinc fertilizer had a substantial effect
on its flavonoid and volatile oil contents (Vojodi Mehrabani et al.,
2017). Furthermore, in Melissa officinalis, foliar application of zinc
fertilizer significantly increased the plant contents of flavonoids and
phenolic compounds (Yadegari, 2017). In Panax ginseng, foliar
application of zinc fertilizer considerably improved the root yield
and increased its contents of ginsenoside monomer along with other
nine saponins (Zhang et al., 2013). Furthermore, trigonelline
content was augmented in fenugreek (Trigonella foenum-graecum
L.) when zinc fertilizer was applied (Tariverdizadeh et al., 2021).
These studies all indicate that foliar application of Zn fertilizer can
indeed enhance the quality of medicinal plants. Therefore, foliar
application of Zn fertilizer can be widely used as a fertilization
technique to improve the quality of medicinal components in A.
senticosus roots.

Additionally, preliminary studies indicated that Zn fertilizer
treatments could alter the expression of genes encoding enzymes
involved in metabolite synthesis, thereby affecting changes in
metabolite content. For example, under zinc stress, the activities

FIGURE 8
Significant correlation network between key metabolite biosynthesis genes and TFs in A. senticosus after foliar application of Zn fertilizer. In the
upregulated metabolite biosynthesis, genes between LZn and CK, but not between HZn and CK, correlation networks between terpenoids (A),
phenylpropanoids (B), and flavonoids (C) biosynthesis key genes and TFs. In the upregulatedmetabolite biosynthesis, genes betweenHZn andCK, but not
between LZn and CK, correlation networks between terpenoids (D), phenylpropanoids (E), and flavonoids (F) biosynthesis key genes and TFs.
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and gene expression levels of ascorbate peroxidase, catalase,
superoxide dismutase, and peroxidase were upregulated in tea
plants (Mukhopadhyay et al., 2013). Furthermore, Zn fertilizer
treatment considerably increased the antioxidant potentials
(ascorbic acid, reduced glutathione, total phenols, and total
flavonoids) in wheat flag leaves and enhanced the expression of
two antioxidant enzyme genes, four ascorbate-glutathione
cycle genes, and two flavonoid biosynthesis-related genes
(Sun et al., 2020). Dong et al. (2021) also found that Zn
fertilizer treatment could affect the expression of stress-
related resistance genes in different barley cultivars. In our
study, DEG analysis and K-means clustering emphasized
95 upregulated phenylpropanoid biosynthesis-related genes,
65 terpenoid biosynthesis-related genes, and 25 flavonoid
biosynthesis-related genes after Zn treatment. However, the
molecular mechanisms underlying the effects of foliar Zn
application on the expression of these medicinal metabolite
synthesis enzyme genes are still not very clear. Some studies
have shown that plant responses to Zn deficiency are regulated
by multiple levels, including transcriptional regulation
mediated by F-group bZIP proteins, epigenetic regulation at
the level of chromatin, and post-transcriptional regulation
mediated by small RNAs and alternative splicing (Zeng
et al., 2021). These need to be gradually clarified in future
studies.

TFs regulate gene expression, allowing plants to respond to
stress and modulate developmental processes (Mitsuda and
Ohme-Takagi, 2009). Plants have approximately 58 TF
families, and six major TF families (AP2/ERF, bHLH, MYB,
NAC, WRKY, and bZIP) are involved in biotic and abiotic stress
responses (Ng et al., 2018). The MYB family is the largest TF
family in plants, and its members play crucial roles in plant
development, stress responses, and secondary metabolite
biosynthesis (Wang et al., 2021). Members of the ERF (Huang
et al., 2021), NAC (Nuruzzaman et al., 2013; Borchers and Pieler,
2022), WRKY (Chi et al., 2013), bZIP (Zhao et al., 2021), and
bHLH (Mao et al., 2017) gene families also contribute essentially
in plant stress responses and metabolite biosynthesis. In this
study, we identified 34 ERFs, 12 bHLHs, 13 NACs, 14 MYB_
relateds, 13 MYBs, 16 bZIPs, and 25 WRKY genes with
significantly altered expression levels after Zn treatment
(Supplementary Table S9). These genes were also significantly
correlated with multiple medicinal metabolite biosynthesis-
related genes. Proposing that, these TFs may respond to Zn
treatment stimuli and regulate the expression of multiple
metabolite biosynthesis genes, thereby participating in the
production of related metabolites. Additionally, different Zn
concentrations resulted in different upregulated terpenoid,
phenylpropanoid, and flavonoid biosynthesis genes and
differentially expressed transcription factors, indicating that
different Zn concentrations could regulate the biosynthesis of
metabolites by affecting specific transcription factors that
control the expression of metabolite biosynthesis-related
genes. Further research on the transcriptional regulatory
mechanisms of these TFs would lay the foundation for
elucidating the molecular mechanisms underlying the
enhancement of medicinal component accumulation in A.
senticosus roots by Zn treatment.

5 Conclusion

Our research used metabolomics and transcriptomics to examine
change patterns in metabolites and genes in A. senticosus roots
following foliar application of varying levels of zinc. A total of
316 metabolites were detected, including 69 terpenoids,
46 phenylpropanoids, 19 phenols, 17 alkaloids, 15 flavonoids, nine
amino acid derivatives, six aliphatic acyls, six aromatics, five organic
acids and derivatives, five fatty acids, and 119 other compounds.
Differential metabolite analysis and K-means clustering identified
metabolites related to the medicinal components of A. senticosus
that were upregulated after Zn treatment, including 43 terpenoids,
19 phenylpropanoids, eight phenols, and threeflavonoids. Transcriptome
analysis showed significant changes in the phenylpropanoid and
flavonoid biosynthesis pathways after Zn treatment. Differential gene
expression analysis and K-means clustering marked a total of
95 phenylpropanoid biosynthesis-related genes, 65 terpenoid
biosynthesis-related genes, and 25 flavonoid biosynthesis-related
genes. Correlation network analysis revealed significant and positive
parallels between three flavonoids and 16 flavonoid biosynthesis genes,
19 phenylpropanoids and 95 phenylpropanoid biosynthesis-related
genes, and 43 terpenoids and 66 terpenoid biosynthesis-related genes.
Additionally, significant correlations were observed between multiple
medicinal component biosynthesis-related genes and some key TFs
(ERFs, WRKYs, bHLHs, NACs, and MYBs). This study provides a
valuable reference for increasing themedicinal components content inA.
senticosus roots through Zn fertilizer application.
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