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Triple-negative breast cancer (TNBC) is a clinically aggressive subtype of breast
cancer. Core transcriptional regulatory circuitry (CRC) consists of autoregulated
transcription factors (TFs) and their enhancers, which dominate gene expression
programs and control cell fate. However, there is limited knowledge of CRC in
TNBC. Herein, we systemically characterized the activated super-enhancers (SEs)
and interrogated 14 CRCs in breast cancer. We found that CRCs could be broadly
involved in DNA conformation change, metabolism process, and signaling
response affecting the gene expression reprogramming. Furthermore, these
CRC TFs are capable of coordinating with partner TFs bridging the enhancer-
promoter loops. Notably, the CRC TF and partner pairs show remarkable
specificity for molecular subtypes of breast cancer, especially in TNBC. USF1,
SOX4, and MYBL2 were identified as the TNBC-specific CRC TFs. We further
demonstrated that USF1 was a TNBC immunophenotype-related TF. Our findings
that the rewiring of enhancer-driven CRCs was related to cancer immune and
mortality, will facilitate the development of epigenetic anti-cancer treatment
strategies.
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Introduction

Triple-negative breast cancer (TNBC), an aggressive subtype of breast tumor that lacks
hormone receptor expression and HER2 gene amplification, accounts for 12%–18% of breast
neoplasms (Foulkes et al., 2010). Multiomics contributed to the development of precision
medicine by providing new insights into the biology and heterogeneity of TNBC.
Transcription factors (TFs) play a vital role as key constituents within regulatory gene
transcription networks (Lambert et al., 2018). The regulatory complexes that TFs frequently
create with proteins bind the promoters or enhancers of genes, take part in gene
transcription, and have an impact on gene expression (Feng et al., 2023). Core
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transcriptional regulatory circuitry (CRC), which consists of the core
TFs, is an interconnected autoregulatory loop in which the TFs self-
regulate by binding to their own super-enhancers (SEs) and the TFs
themselves bind to the SEs of one another (Li et al., 2021).
Understanding the regulatory mechanisms and functional
implications of SEs and CRC TFs in breast cancer subtypes is
essential for unraveling the complexity of this disease and
identifying potential therapeutic targets.

In this study, we investigated the role of SEs and CRC TFs in
breast cancer, with a specific focus on the molecular subtypes
and their associated clinical characteristics. These CRC TFs
established self-regulatory loops and collaborated with other
TFs to govern the communication between enhancers and
promoters, enabling reciprocal regulation and involvement in
the reprogramming of gene expression in cancer. TNBC
exhibited unique CRC TF profiles compared to other subtypes
and its specific CRC TFs participated in various regulation of
gene expression in different biological processes. Understanding
the molecular mechanisms underlying these regulatory networks
can contribute to the development of targeted therapies and
improved clinical management strategies for breast cancer
patients, especially those with TNBC.

Material and methods

Data acquisition and preprocessing

The Cancer Genome Atlas (TCGA) level 3 gene expression,
DNA methylation, and the copy number variation (CNV) data of
Breast invasive carcinoma (BRCA) were obtained from the UCSC

Xena browser (http://xena.ucsc.edu). The enhancer RNA (eRNA)
transcription data of the corresponding TCGA samples were
downloaded from the Cancer eRNA Atlas (TCeA) (Chen and
Liang, 2020). The ChIP-seq bigWig files of DNase
(ENCSR000EPH), EP300 (ENCSR000BTR), H3K27ac
(ENCSR752UOD), H3K4me1 (ENCSR493NBY), H3K4me2
(ENCSR875KOJ), and H3K4me3 (ENCSR985MIB) in MCF-7
cells were downloaded from ENCODE (Davis et al., 2018). For
the gene expression profiles, we required the fraction of gene
expression (FPKM > 0) over 70%.

Identification of activated super-enhancers

The human core super-enhancer (SE, n = 1,531) list was
obtained from the recent study of Chen and Liang (2020). There
were 7,379 eRNA loci were mapped in the 1,257 core SE genome
regions. The eRNAs that were not transcribed (RPKM = 0) in > 70%
samples were removed. To identify the activated SEs in cancer
samples, we tested whether the mean eRNA transcription level in
30 % of cancer samples with the lowest transcription levels (μc) was
higher than that in 30% normal samples with the lowest
transcription levels (μn) using the unpaired one-tailed Mann-
Whitney U test. We used 30 % as a cut-off, which would allow
us to immune against the effect of prevalently low transcription
levels of eRNA, while also yielding sufficient statistical power (Yao
et al., 2015). The p-values were corrected using the Benjamini and
Hochberg (BH) adjustment (Figure 1A). The eRNAs with adjusted
p-values < 0.05 were considered as the significantly up-regulated
eRNAs, and the SEs where these eRNAs are located were defined as
the activated SEs in BRCA.

FIGURE 1
The activated super-enhancer chromatin landscape in BRCA. (A). Schematic diagram for identification of activated SE in BRCA. (B). The chromatin
landscape of activated SE. Circos plot’s tracks are, from outer to inner, the average transcript levels of eRNA in normal and cancer samples, the frequency
of CNV amplification (red) and deletion (blue) in the SE region, the density plot of delta β-value for hypomethylated CpG sites, and the hypermethylated
CpG sites, respectively. (C). Distribution of activity-associated modification marks around SE regions.
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Copy number variation analysis

We first distinguished the copy number variation (CNV)
segments (amplification and deletion) based on the log2 ratio
cut-off of +/− 0.8 (Bambury et al., 2015). BEDtools was used to
assign the activated SE and random genome regions to CNVs-
associated segments (Quinlan and Hall, 2010). Furthermore, the
enrichment analysis of amplification/deletion segments between SE
and random genome regions was perform based on Fisher’s
exact test.

Differential methylation analysis

We mapped the genomic coordinates of CpG sites in the
Illumina Infinium HumanMethylation450 BeadChip (NCBI/GEO
record GPL13534; human genome release hg19/GRCh37) to the
activated SE regions. For each CpG site within the activated SE
regions, we tested whether the mean β-value in 30 % of cancer
samples with the lowest methylation levels (μ′c) was lower/higher
than that in 30 % of normal samples with the lowest methylation
levels (μ′n), respectively, based on the unpaired one-tailed Mann-
Whitney U test (Yao et al., 2015). The p-values were corrected using
the BH adjustment. The CpG sites with μ′c significantly lower than μ

′
n

(adjusted p-values < 0.05) were labeled as the differentially
hypomethylated CpG sites and conversely as differentially
hypermethylated CpG sites.

Recognition of SE-assigned genes

We first used the 3D genomic data of breast cancer cell lines
(ChIA-PET: ENCSR200VHL, ENCSR059HDE, ENCSR403ZYJ, and
ENCSR499JGQ; Hi-C: ENCSR549MGQ) to confirm the spatial
proximity between SEs and promoter regions (transcription start
site [TSS] ± 3 kb) of candidate SE-assigned genes. Next, we
calculated the mutual information (MI) between the expression
of SE component eRNAs and candidate SE-assigned genes. MI could
reflect the correlation strength, i.e.,

I SE, G( ) � ∑
i�1

∑
j�1

p sei, gj( ) p sei, gj( )
p sei( )*p gj( ), (1)

where se denotes the ith eRNA transcription in an SE, g indicates jth
candidate gene expression and p(se, g) is the joint probability
between the events. To further evaluate the significance of the
MI, we applied the random permutations and Fisher’s Z statistics
to calculate the p-value (Zhang et al., 2012). Specifically, we
randomly shuffled the vectors SE and G 1,000 times and
computed the random MI (Ir) and the observed MI value
between the observed SE and G value was transformed it into
Z-value. The p-value was calculated as follows:

P � 2*φ − Z − z′
σz

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣( ), (2)

where z′ � ln(1 + Ir) − ln(1 − Ir)/2, σz is the standard deviation of
z, φ represents the normal cumulative distribution function. The MI
analysis was performed using the “mi” function in R package

MICMIC (Zhang et al., 2012). Furthermore, we identified the
genes with significantly enhanced expression by SE assigned by
integrating an enhanced score (eS), i.e.,

eS � MI*log2 FC
φ P( )*φ q( ) , (3)

where P denotes the significance levels of MI (p < 0.0001), q
represents the p-value of the one-tailed Mann-Whitney U test
corrected for BH adjustment (q < 0.0001, H0: μc ≤ μn), φ

indicates the normal cumulative distribution function (“pnorm”

function in R software), and FC indicates the fold change of gene
expression (FC � μc/μn). We defined an eS threshold to reflect the
gene enhanced strength by SEs as mean(MI)*mean(log2 FC)

pnorm(0.0001)*pnorm(0.0001) � 0.005.
The genes with eS > 0.005 were considered as the SE-assigned genes.

Identification of core transcriptional
regulatory circuitry

We first identified the master TFs from the SE-assigned TF
genes. The list of human transcription factors (TFs) was obtained
from AnimalTFDB (Zhang et al., 2012). Then, we calculated the
expression ratio of each TF, which was defined as the fraction of
cancer samples with the TF expression level passes a TF-dependent
threshold. The threshold was determined as the larger value between
1 FPKM and μc of each TF (Mei et al., 2017). Finally, we evaluated
the master score (MS) of TF, i.e.,

MS � λ*expression ratio, (4)

where λ � μc*log2 FC. The MS score reflects whether master TF is
commonly highly expressed in cancer. The higher the expression
level, the higher the fraction of highly expressed samples, and the
more significant fold change of TF expression, the greater the MS
score. We defined the master TF as the TF with the top 15% MS
score.

We used the FIMO software (Bailey et al., 2009) with default settings
to identify the master TF binding motifs annotated by the JASPAR
(Fornes et al., 2020) and Factorbook (Wang et al., 2013) in the SE
regions. Genomic coordinates of GRCh37 were transformed to
GRCh38 using the UCSC liftOver tool (Haeussler et al., 2019). The
genome sequences of the SE regionswere extracted from theGENCODE
GRCh38 reference genome sequence using Samtools (Li et al., 2009;
Harrow et al., 2012). To reduce random background noise, we only
considered the valid motifs that occurred at least 5 times and the FIMO
outputs with p < 0.0001. Finally, we defined the core transcriptional
regulatory circuitry (CRC) as the master TFs, which are capable of
binding to SEs to co-regulate their own gene expression, thus forming an
interconnected autoregulatory loop.

Dissection of downstream genes perturbed
by CRCs

We scanned the motifs of CRC TFs in SE and promoter regions
of differentially expressed genes (q-value < 0.01, Mann-Whitney U
test) as described above to obtain the candidate downstream genes
perturbed by CRCs. Next, we calculated the MI between the
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expression levels of CRC TFs and downstream genes. The p-value
was adjusted by 1,000 random permutations. The gene with adjusted
p-value < 0.01 was considered as the downstream genes perturbed by
CRCs. Furthermore, we annotated the function classifications of
downstream genes in CR2Cancer (Ru et al., 2018) (Chromatin
Modulators), KEGG (Kanehisa et al., 2004) (Signaling pathway
and Metabolism), and AnimalTFDB (Zhang et al., 2012) (TFs
and TF cofactors).

Identification of CRC TF-partner TF pair
bridging the SE-promoter loop

We first identified the partner TFswith 14CRCTFs according to the
following conditions: (1) The partner TFs could interact with CRC TFs
by integrating the experimentally detected protein-to-protein physical
interactions (PPIs) from theHumanReference Interactome (HuRI)map
(Luck et al., 2020), the Biological General Repository for Interaction
Datasets (BioGRID) (Oughtred et al., 2019), and the APID Interactomes
(Alonso-López et al., 2019). PPIs appearing in at least two datasets were
retained. (2) The expression ratio of partner TFs should over 0.3 in
cancer samples. (3) Themotifs of partner TFs represented at least 5 times
in SE or promoter regions of SE-assigned genes using the FIMO software
(Bailey et al., 2009). (4) There were significantly expressed associations
between partner TFs and their corresponding SE-assigned genes by
calculating the MI (p < 0.01).

Subsequently, we determined the CRC TF-partner TF pairs (CTPs)
which contribute to bridging the SE-promoter loops by employing the
partial rank correlation analysis. In brief, the CRC TFs and their
interacted partner TFs could bind to the SE and its assigned genes’
promoters, respectively. The transcription levels of eRNA i located in the
SE regions and corresponding SE-assigned gene j across cancer samples
were defined as SE(i) andG(j), separately. The expression levels of CTPs
were defined as TF(n). The partial correlation coefficient (ρ(SE,G|TF))
was calculated between the transcription levels of eRNA i and
corresponding SE-assigned gene j by removing the effect of the TF
pairs n, i.e.,

ρ SE, G|TF( ) � ρ SE, G( ) − ρ SE, TF( )ρ G, TF( )





















1 − ρ2SE,TF( )( ) 1 − ρ2G,TF( )( )√ , (5)

where ρ(SE,G), ρ(SE,TF), and ρ(G,TF) represent the Spearman’s
correlation coefficient between the eRNA and SE-assigned gene, between
the eRNA and TF, and between the SE-assigned gene and TF. In
addition, we obtained the p-value for the ρ(SE,G) as Pr and
ρ(SE,G|TF) as Pp, respectively. The CTPs with Pr < 0.05 and
Pp > 0.05 were considered as the key factors of bridging SE-
promoter loops. Besides, we applied the conditional independence
test to validate the dependence relationships of SE and SE-assigned
genes on CTPs (Tsamardinos and Borboudakis, 1970).More than 67.3%
of dependence relationships could be confirmed by the conditional
independence test.

Functional enrichment analysis

The functional enrichment analysis was performed by
Metascape webserver (Zhou et al., 2019). We enriched each given

gene list to the following ontology sources: KEGG Pathway, GO
Biological Processes, Reactome Gene Sets, Canonical Pathways, and
CORUM. The accumulative hypergeometric distribution was used
to calculate the enrichment significance (p-values). Terms with
p-value < 0.01, minimum count of 3 were considered as the
significantly enriched processes.

Results

Activated super-enhancer shows
correlation with DNA hypomethylation and
copy number amplification in BRCA

We first interrogated the activated super-enhancers (SEs) in
BRCA from the 1,531 human core SEs defined by Chen and Liang
(2020) based on their eRNA transcription levels (Figure 1A, See the
“Methods” section). A total of 140 activated SEs were identified
covering 539 significantly up-regulated eRNAs. To better
understand the abnormal activation of SE, we portrayed the
activated super-enhancer chromatin state landscape from a
multi-omics perspective. We found that the overall copy number
level of SE was significantly higher than that of random genomic
regions (p < 2.2e-16, Mann-Whitney U test) (Supplementary Figure
S1A). The CNV amplification segments were more significantly
enriched to these activated SE regions (OR = 27.1, p < 2.2e-16,
Fisher’s exact test). There was also a positive correlation between the
eRNA transcription and CNV amplification (Supplementary Figure
S1B). Moreover, we investigated the DNA methylation levels in SE
regions. 322 CpG sites were mapped to our SE regions including
196 hypomethylated and 12 hypermethylated CpG sites. The
methylation level of SE was significantly lower than that of
random genomic regions (p = 0.001) (Supplementary Figure S1C,
Figure 1B). The overall methylation levels of these sites in cancer
samples were also lower than those in normal samples
(Supplementary Figure S1D). Finally, the ChIP-seq data showed
the SE regions were enriched with higher active signals (H3K4me1,
H3K4me2, H3K27ac, and EP300), transcriptional signals
(H3K4me3), along with enhanced chromatin accessibility
(DNase) compared to the random genomic region (Figure 1C).
These results suggested the activated SEs are closely associated with
the CNV amplification, DNA hypomethylation, and various active
chromatin modification signals.

Super-enhancer regulates the expression of
breast cancer-associated gene

To better understand the biological functions of SEs in cancer
development, it is essential to identify genes that are perturbed by
SEs. Based on the 3D genomic and TCGA transcriptome data, we
required the SEs should be spatially proximate to their assigned
target gene promoters, and there was a significant association
between the expression of SE component eRNA and SE-assigned
gene by calculating their mutual information (Figure 2A). A total of
2,763 SE-assigned genes were identified as aberrantly upregulated in
BRCA. Notably, these SE-assigned genes significantly enriched in
breast cancer-related cancer genes recorded in CancerMine (p =
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5.14e-10) (Lever et al., 2019) and DisGeNet (p = 1.52e-44, Fisher’s
exact test) (Pinero et al., 2020), implying the SEs play an important
role in cancer development (Figure 2B). Besides, we analyzed the
cancer hallmarks of Cancer Gene Census (Santarius et al., 2010) in
the SE-assigned genes, which mainly present in the “Genome
instability and mutations”, “Escaping programmed cell death”,
and “Invasion and metastasis” (Figure 2C). Finally, we also
further annotated the potential biological functions involved in
SEs and clustered similar terms to construct the SE-related
functional modules in BRCA, i.e., Cell Cycle, DNA repair,
Chromatin Modification, etc (Figure 2D). These results suggested
the activated SE are broadly involved in multiple cancer-related
processes, and plays a critical role in breast cancer development.

Super-enhancers drive core transcriptional
regulatory circuitry contributing to cancer
reprogramming

Among all SE-assigned genes, 208 TF genes (~8%) were
identified, which may play a critical regulator in the development
of BRCA. We, thus, systemically interrogated the master TFs by
calculating the Master score (MS) (See the ‘Methods’ section). A
total of 30 SE-assigned TF genes were considered as the master TFs,
including some core TFs have been demonstrated by previous

studies, i.e., FOXA1 (Arruabarrena-Aristorena et al., 2020), ESR1
(Robinson et al., 2013), and MYB (Cic et al., 2021), etc. (Figure 3A).
Notably, 14 master TFs could feedback bind to their corresponding
SEs, forming positive autoregulatory loops (See the ‘Methods’
section). These self-regulating master TFs were also capable of
regulating each other (Supplementary Figure S2). The
interconnected autoregulatory loop had been defined as the core
transcriptional regulatory circuitry (CRC) by previous studies
(Saint-André et al., 2016) (Figure 3B). Subsequently, we
determined the downstream genes perturbed by CRCs by
dissecting the binding motif of each CRC TF in promoter and SE
regions (See the “Methods” section). There were 3,405 downstream
genes could be perturbed by CRCs, including 2,325 bound to SEs,
947 bound to promoters, and 133 bound to both SEs and promoters
(Supplementary Figure S3A), suggesting CRC TF was more likely to
influence gene expression programs by binding to SE regions.

Besides, we annotated the biological functions of downstream
genes for each CRC TF. These downstream genes were closely
associated with DNA conformation change, metabolism
processes, and signaling response, etc. (Supplementary Figure
S3B), implying they could be mainly attributed to Chromatin
Modulators, TFs, and TF cofactors, Metabolism, and Signaling
pathway. Notably, we also observed most of them could act as
TF and TF cofactors, which further highlighted that CRC could act
as the critical driver of gene expression programs by regulating the

FIGURE 2
SE-assigned genes are associated with cancer processes. (A). The pipeline for identifying the SE-assigned genes. (B). Bubble plot showing the
enrichment results between SE-assigned genes and CancerMine/DisGeNet breast cancer-related genes. p-value is calculated by the Fisher exact test.
(C). The number of SE-assigned genes that contribute to the significantly-enriched cancer hallmarks. (D). SE-assigned gene-related functional module
networks.
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expression of other downstream regulator genes (Figure 3C).
Furthermore, there were 21 regulatory relationships among these
CRC TFs. Remarkably, CRC TF SOX4 could act as the downstream
genes of multiple CRC TFs (Supplementary Figure S3C) and it could
regulate the largest number of downstream genes compared to other
CRC TFs (Figure 3D). Previous studies have shown that SOX4 is an
essential developmental transcription factor and is frequently
overexpressed as an oncogene in more than 20 malignancies
(Moreno, 2020). These results further suggested that CRC TFs
can inter-regulate and participate in gene expression
reprogramming in cancer.

CRC TFs coordinate with partner TFs
participating in enhancer-promoter
communications

TFs are defined by their ability to bind to DNA but typically
function through interactions with other proteins (Lambert et al.,

2018). To better characterize the role of CRC TF in enhancer-
promoter communications, we systemically interrogated the partner
TFs for each CRC TF by employing the 3D genome model and
partial correlation analysis (Figure 4A) (See the “Methods” section).
A total of 52 TFs were identified as CRC TF partners. They could
interact with CRC TFs via direct protein-to-protein interactions,
forming 54 CRC TF-partner TF pairs (CTPs) involved in bridging
the enhancer-promoter loops (Figure 4B). Notably, ESR1 had the
greatest number of partners, comprising 20 CTPs, of which the
ESR1-GATA3 pair had been demonstrated that could regulate gene
expression by shaping enhancer accessibility in breast cancer
(Theodorou et al., 2013). Besides, 2,181 SE-assigned genes
(~80%) could be regulated by CTPs. Each gene was modulated
by an average of 11.9 CTPs, suggesting that there was also general
cooperation between CTPs. We further analyzed the linkages
between CTPs by considering the RNA polymerase (POLR2A)
and the Mediator complex as mediators. The Mediator complex
was extensively involved in the linkages between CRC TFs ESR1-,
RARA-, SREBF1- related CTPs, which consistent with the previous

FIGURE 3
Core transcriptional regulatory circuits could be involved in cancer reprogramming. (A). The rankedmaster TF plot by theMS score. The CRC TFs are
markedwith their gene symbol. (B). Schematic diagramof theCRC and the downstream target genes it perturbs. (C). Venn plot showing the classifications
of downstream genes perturbed by CRCs. (D). Bar plot showing the number of downstream genes targeted by each CRC TF by binding to enhancer or
promoter.
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studies (Kagey et al., 2010) (Figure 4C). Moreover, the CTP RARA-
SP1 had the largest number of downstream genes across all the CTPs
(Figure4D). The downstream genes regulated by CTPs are also
enriched in cell cycle, DNA conformation change, DNA repair,
etc. (Figure 4E). These results showed that the CRC TFs could widely
coordinate with other TFs bridging the enhancer-promoter
communications participating in multiple cancer processes.

Triple-negative breast cancer shows
distinctive CRCTFs compared to other BRCA
molecular subtypes

We next performed the consensus clustering analysis on
1,104 BRCA samples using the expression of CRC TFs and their
partner TFs (Supplementary Figures S4A–C). The analysis and two-
dimensional embedding clustering grouped samples into five robust
CRC subtypes (C1, C2, C3, C4, and C5) (Figure 5A). Notably, the

CRC subtypes had obvious overlap with the known molecular
subtypes of breast cancer defined by the expression of estrogen
receptor (ER) or progesterone receptor (PR) and human epidermal
growth factor receptor 2 (Her2) including ER/PR+, Her2+; ER/PR+,
Her2−; ER/PR−, Her2+; and ER/PR−, Her2−. The samples in C1,
C3, and C5 were closely associated with the ER/PR+, Her2− subtype;
those in C2 were related to the Her2+ subtype; and those in
C4 mainly showed the ER/PR−, Her2− subtype (triple-negative).
Besides, the CRC subtypes were significantly enriched in the
PAM50 subtypes {Luminal A [LumA], Luminal B [LumB], Her2-
enriched [Her2+], Basal-like, and Normal-like (Perou et al., 2000;
Sørlie et al., 2001)} based on the accumulative hypergeometric
distribution. We found that C1 was significantly enriched to
“LumB”; C2 was enriched to “Her2+” and “LumB”; C3 was
enriched to “LumA”; C4 was enriched to “Basal-like”, and
C5 was enriched to “Normal-like” (Figure 5B). Previous studies
have shown that 71% of triple-negative breast cancer (TNBC) were
found to be “Basal-like” while 77% of “Basal-like” cancers were

FIGURE 4
CRC TF is capable of bridging the enhancer-promoter communications. (A). The 3D genome model of the CRC TF communicating enhancer-
promoter loop. (B). Edge bundling showing the CRC TF-partner TF pairs. The node size denotes the number of CTPs constructed by the TF. (C). CRC TFs
ESR1-, RARA-, and SREBF1- related CTP could be linked by the Mediator complex. (D). Bar plot showing the number of downstream genes regulated by
CTPs. (E). The GO biological processes are enriched by downstream genes of each CTPs.
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triple-negative (Bertucci et al., 2008). And C4 is clearly distinguished
from other subtypes in two dimensions (Figure 5A). Hence, we
considered that C4 was a TNBC-enriched type. These indicate that
CRC TFs and their partners have good performance for
distinguishing the clinical subtypes of BRCA.

We subsequently recognized the subtype-specific CRC TF
modules, i.e., C1: FOXA1, SREBF1, ESR1, and MYB; C2: FOXA1,
SREBF1; C3: FOXA1, SREBF1, and ESR1; C4: SOX4, USF1, and
MYBL2; and C5: FOXA1 (Supplementary Figure S5A). Remarkably,
the C4 subtype-specific CRC TFs were obviously distinguished from
other subtypes, implying the distinct gene expression program of
TNBC (Figure 5C). We also observed the C4 subtype-specific CRC
TFs and their partner TFs were significantly dysregulated compared
to non-TNBC and normal samples, in which SOX4, USF1, and
MYBL2 were significantly upregulated in TNBC samples
(Supplementary Figure S5B). Besides, the first principal
component (PC1) based on the expression of SOX4, USF1, and
MYBL2 was a promising predictor between TNBC and non-TNBC
(AUC = 0.804) or normal samples (AUC = 0.991), respectively
(Figure 5D). Of further note, the TNBC-specific CRC TFs also
participated in the regulation of gene expression in different
biological processes (Figure 5E). For instance, they were both
able to regulate RNA splicing (GO:0000377 and GO:0008380);
MYBL2 and USF1 could participate in cell cycle regulation

(hsa04110); USF1 and SOX4 were capable of affecting the Ephrin
receptor signaling pathway (GO:0048013 and R−HSA−2682334);
USF1 also specifically impacted on the immune processes
(R−HSA−1280215) and oxidative phosphorylation (GO:0006119).

USF1 shows association with TNBC
immunophenotypes

We next explored the tumor immunological association of
USF1. We first interrogated the immunophenotypes in TNBC
samples based on the consensus clustering analysis using the
immune cell abundance estimated by xCell 38 (Supplementary
Figure S6A). A total of three immunophenotypes were identified
and their immunoactivity was characterized as “Hot”, “Medium”,
and “Cold” (Supplementary Figure S6B). We also observed the
expression of USF1 was higher in “Hot” than that in “Cold”
(Figure 6A) and exhibitied the potential for differentiating
immune “Hot” than other immunophenotypes (AUC = 0.6273)
(Figure 6B). Notably, we also found a USF1-downstream gene
PTBP1, which had been linked to the immune evasion of tumor
cell in TNBC (Aran et al., 2017; Orozco et al., 2018). ChIP-seq data
showed that USF1 could bind to PTBP1 promoter regions and
potentially involved in modulating PTBP1 expression (Figures 6C,

FIGURE 5
CRC TFs could contribute to the molecular and PAM50 subtypes of BRCA. (A). Consensus and two-dimensional embedding clustering (UMAP)
grouped BRCA samples into five robust CRC subtypes. (B). Enrichment between the CRC subtypes and PAM50 subtypes. *p < 0.05, **p < 0.001, and
***p < 0.0001, as calculated by accumulative hypergeometric distribution. (C). Heatmap showing the subtype-specific CRC TFs expression levels. The
IHC staining of each CRC TF protein in both breast cancer samples and normal tissues was shown below. For full IHC protein profiles, view the gene
at www.proteinatlas.org/pathology. (D). ROC curves for identifying the TNBC and non-TNBC samples, and TNBC and normal samples based on the
SOX4, MYBL2, USF1 expression, PC1 of SOX4, MYBL2, and USF1, PC1 of SOX4, MYBL2, USF1, and their partners, respectively. (E). Functional analysis of
downstream genes of each CRC.
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D). PTBP1 also showed a significant correlation with tumor purity of
TNBC measured by ESTIMATE (Yoshihara et al., 2013)
(Supplementary Figure S7A). Moreover, we found both
USF1 and PTBP1 expression were significantly associated with
the infiltration levels of CD4+ Th1 cells that could function in
pro-tumor immunity (Lee et al., 2022) (Figure 6E; Supplementary
Figure S7B). We subsequently also investigated the prognostic role
of downstream genes of core TNBC-TFs supported by ChIP-seq
data (ENCODE Project Consortium, 2004) and experiments (Han
et al., 2018) in TCGA and METABRIC (Curtis et al., 2012) cohorts
of TNBC patients. Several downstream genes of USF1 could act as
the prognostic markers, suggesting an overriding function of
USF1 in regulating TNBC survival (Supplementary Figure S8).
These results suggested that USF1 was an immunophenotype-
related CRC TF, and regulated patient’s prognosis in TNBC.

Discussion

Although the basic mechanisms behind gene transcription are
well established (Gifford et al., 2013; Ziller et al., 2015), most cells
lack knowledge of the regulatory patterns of the gene expression
programs that a few number of transcription factors (TFs) control.
Finding CRCs in tumors can provide information on the cellular
origin and gene regulatory factors that contribute to the oncogenic
state, which may lead to the development of new anti-cancer
treatments.

Firstly, the correlation between activated super-enhancers
(SEs) and DNA hypomethylation, as well as copy number
amplification, suggests a potential link between the abnormal
activation of SEs and the dysregulation of key genes and
pathways involved in breast cancer development. Genome-
wide hypomethylation has been suggested to be an important

phenomenon in cancer cells (Nishiyama and Nakanishi, 2021).
Notably, a recent study has also reported that enhancer
hypomethylation play a pivotal role in driving aberrant
transcriptional reprogramming in cancer (Pan et al., 2022).
This implies that the aberrant activation of SEs might play a
role in the pathogenesis of breast cancer by disrupting normal
gene regulation mechanisms. SEs have been shown to play a
crucial role in enhancing gene expression (Deng et al., 2020), and
their association with DNA hypomethylation and copy number
alterations further supports their importance in driving
oncogenic processes.

Furthermore, the identification of distinct CRC TFs
associated with different breast cancer molecular subtypes
provides valuable insights into the heterogeneity of breast
cancer. These TNBC-specific CRC TFs may contribute to the
specific gene expression programs and regulatory networks
underlying TNBC pathogenesis.

Additionally, the role of CRC TFs in immune regulation and
immunophenotypes of TNBC was explored. The analysis revealed
an association between USF1, a CRC TF, and immune activity in
TNBC. USF1 expression was higher in TNBC samples with a “Hot”
immunophenotype, characterized by higher immune cell infiltration,
compared to samples with a “Cold” immunophenotype. This suggests
that USF1 and potentially other CRC TFs may contribute to immune
modulation in TNBC, which has implications for understanding the
tumor microenvironment and potential immunotherapeutic strategies
in TNBC.

Overall, the findings of this study highlight the significance of
SEs and CRC TFs in breast cancer, particularly in TNBC. These
findings deepen our understanding of the regulatory networks and
functional implications of SEs and CRC TFs in breast cancer
pathogenesis. Targeting these regulatory elements and their
downstream targets could offer novel therapeutic avenues for

FIGURE 6
USF1 was associated with TNBC immune microenvironment. (A). Boxplot showing the USF1 expression across TNBC immunophenotypes. p-value
was calculated by Wilcoxon rank sum test. (B). ROC curves for identifying the immune “Hot” and “non-Hot” samples based on USF1 expression. (C).
Scatterplot showing the correlation between USF1 and PTBP1 expression levels. (D). USF1 could bind to PTBP1 promoter. (E). Bar plot showing the
Spearman’s correlation between USF1 expression and the infiltration levels. *p < 0.05, **p < 0.001, and ***p < 0.0001, as calculated by the
Mann–Whitney U test.

Frontiers in Genetics frontiersin.org09

Shi et al. 10.3389/fgene.2023.1258862

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1258862


personalized treatment strategies in breast cancer, especially in
TNBC. Further research is warranted to validate the clinical
relevance and therapeutic potential of these findings.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be directed
to the corresponding author.

Author contributions

WS: Conceptualization, Data curation, Formal Analysis,
Investigation, Methodology, Writing–original draft. BZ: Supervision,
Validation, Writing–review and editing. JD: Resources, Software,
Writing–review and editing. XH: Funding acquisition, Writing–review
and editing. LL: Visualization, Writing–review and editing, Supervision,
Validation.

Funding

The authors declare financial support was received for the
research, authorship, and/or publication of this article. This study

was supported by the Natural Science Foundation of Hunan
Province of China (Grant No. 21 2023JJ30883).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fgene.2023.1258862/
full#supplementary-material

References

Alonso-López, D., Campos-Laborie, F. J., Gutiérrez, M. A., Lambourne, L.,
Calderwood, M. A., Vidal, M., et al. (2019). APID database: redefining
protein–protein interaction experimental evidences and binary interactomes.
Database 2019, baz005. doi:10.1093/database/baz005

Aran, D., Hu, Z., Butte, A. J., and xCell, (2017). xCell: digitally portraying the tissue cellular
heterogeneity landscape. Genome Biol. 18 (1), 220. doi:10.1186/s13059-017-1349-1

Arruabarrena-Aristorena, A., Maag, J. L. V., Kittane, S., Cai, Y., Karthaus, W. R.,
Ladewig, E., et al. (2020). FOXA1 mutations reveal distinct chromatin profiles and
influence therapeutic response in breast cancer. Cancer Cell 38 (4), 534–550. doi:10.
1016/j.ccell.2020.08.003

Bailey, T. L., Boden, M., Buske, F. A., Frith, M., Grant, C. E., Clementi, L., et al. (2009).
MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 37,
W202–W208. doi:10.1093/nar/gkp335

Bambury, R. M., Bhatt, A. S., Riester, M., Pedamallu, C. S., Duke, F., Bellmunt, J., et al.
(2015). DNA copy number analysis of metastatic urothelial carcinoma with comparison
to primary tumors. BMC Cancer 15, 242. doi:10.1186/s12885-015-1192-2

Bertucci, F., Finetti, P., Cervera, N., Esterni, B., Hermitte, F., Viens, P., et al. (2008). How basal
are triple-negative breast cancers? Int. J. Cancer 123 (1), 236–240. doi:10.1002/ijc.23518

Chen, H., and Liang, H. (2020). A high-resolution map of human enhancer RNA loci
characterizes super-enhancer activities in cancer. Cancer Cell 38 (5), 701–715. doi:10.
1016/j.ccell.2020.08.020

Ciciro, Y., and Sala, A. (2021). MYB oncoproteins: emerging players and potential
therapeutic targets in human cancer. Oncogenesis 10 (2), 19. doi:10.1038/s41389-021-
00309-y

Curtis, C., Shah, S. P., Chin, S. F., Turashvili, G., Rueda, O. M., Dunning, M. J., et al.
(2012). The genomic and transcriptomic architecture of 2,000 breast tumours reveals
novel subgroups. Nature 486 (7403), 346–352. doi:10.1038/nature10983

Davis, C. A., Hitz, B. C., Sloan, C. A., Chan, E. T., Davidson, J. M., Gabdank, I., et al.
(2018). The Encyclopedia of DNA elements (ENCODE): data portal update. Nucleic
Acids Res. 46 (D1), D794–D801. doi:10.1093/nar/gkx1081

Deng, R., Huang, J. H., Wang, Y., Zhou, L. H., Wang, Z. F., Hu, B. X., et al. (2020).
Disruption of super-enhancer-driven tumor suppressor gene RCAN1.4 expression
promotes the malignancy of breast carcinoma. Mol. Cancer 19 (1), 122. doi:10.1186/
s12943-020-01236-z

ENCODE Project Consortium (2004). The ENCODE (ENCyclopedia of DNA
elements) Project. Proj. Sci. 306 (5696), 636–640. doi:10.1126/science.1105136

Feng, C., Song, C., Jiang, Y., Zhao, J., Zhang, J., Wang, Y., et al. (2023). Landscape and
significance of human super enhancer-driven core transcription regulatory circuitry.
Mol. Ther. Nucleic Acids 32, 385–401. doi:10.1016/j.omtn.2023.03.014

Fornes, O., Castro-Mondragon, J. A., Khan, A., van der Lee, R., Zhang, X.,
Richmond, P. A., et al. (2020). JASPAR 2020: update of the open-access database
of transcription factor binding profiles. Nucleic Acids Res. 48 (D1), D87–D92. doi:10.
1093/nar/gkz1001

Foulkes, W. D., Smith, I. E., and Reis-Filho, J. S. (2010). Triple-negative breast cancer.
N. Engl. J. Med. 363 (20), 1938–1948. doi:10.1056/NEJMra1001389

Gifford, C. A., Ziller, M. J., Gu, H., Trapnell, C., Donaghey, J., Tsankov, A., et al.
(2013). Transcriptional and epigenetic dynamics during specification of human
embryonic stem cells. Cell 153 (5), 1149–1163. doi:10.1016/j.cell.2013.04.037

Haeussler, M., Zweig, A. S., Tyner, C., Speir, M. L., Rosenbloom, K. R., Raney, B. J.,
et al. (2019). The UCSC Genome Browser database: 2019 update. Nucleic Acids Res. 47
(D1), D853–D858. doi:10.1093/nar/gky1095

Han, H., Cho, J. W., Lee, S., Yun, A., Kim, H., Bae, D., et al. (2018). TRRUST v2: an
expanded reference database of human and mouse transcriptional regulatory
interactions. Nucleic Acids Res. 46 (D1), D380–d386. doi:10.1093/nar/gkx1013

Harrow, J., Frankish, A., Gonzalez, J. M., Tapanari, E., Diekhans, M., Kokocinski, F.,
et al. (2012). GENCODE: the reference human genome annotation for the ENCODE
Project. Genome Res. 22 (9), 1760–1774. doi:10.1101/gr.135350.111

Kagey, M. H., Newman, J. J., Bilodeau, S., Zhan, Y., Orlando, D. A., van Berkum, N. L.,
et al. (2010). Mediator and cohesin connect gene expression and chromatin
architecture. Nature 467 (7314), 430–435. doi:10.1038/nature09380

Kanehisa, M., Goto, S., Kawashima, S., Okuno, Y., and Hattori, M. (2004). The KEGG
resource for deciphering the genome. Nucleic Acids Res. 32, D277–D280. doi:10.1093/
nar/gkh063

Lambert, S. A., Jolma, A., Campitelli, L. F., Das, P. K., Yin, Y., Albu, M., et al. (2018).
The human transcription factors. Cell 172 (4), 650–665. doi:10.1016/j.cell.2018.01.029

Lee, Y. H., Tsai, K. W., Lu, K. C., Shih, L. J., and Hu, W. C. (2022). Cancer as a
dysfunctional immune disorder: pro-tumor TH1-like immune response and anti-tumor
THαβ immune response based on the complete updated framework of host
immunological pathways. Biomedicines 10 (10), 2497. doi:10.3390/biomedicines10102497

Lever, J., Zhao, E. Y., Grewal, J., Jones, M. R., and Jones, S. J. M. (2019). CancerMine: a
literature-mined resource for drivers, oncogenes and tumor suppressors in cancer. Nat.
Methods 16 (6), 505–507. doi:10.1038/s41592-019-0422-y

Frontiers in Genetics frontiersin.org10

Shi et al. 10.3389/fgene.2023.1258862

https://www.frontiersin.org/articles/10.3389/fgene.2023.1258862/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2023.1258862/full#supplementary-material
https://doi.org/10.1093/database/baz005
https://doi.org/10.1186/s13059-017-1349-1
https://doi.org/10.1016/j.ccell.2020.08.003
https://doi.org/10.1016/j.ccell.2020.08.003
https://doi.org/10.1093/nar/gkp335
https://doi.org/10.1186/s12885-015-1192-2
https://doi.org/10.1002/ijc.23518
https://doi.org/10.1016/j.ccell.2020.08.020
https://doi.org/10.1016/j.ccell.2020.08.020
https://doi.org/10.1038/s41389-021-00309-y
https://doi.org/10.1038/s41389-021-00309-y
https://doi.org/10.1038/nature10983
https://doi.org/10.1093/nar/gkx1081
https://doi.org/10.1186/s12943-020-01236-z
https://doi.org/10.1186/s12943-020-01236-z
https://doi.org/10.1126/science.1105136
https://doi.org/10.1016/j.omtn.2023.03.014
https://doi.org/10.1093/nar/gkz1001
https://doi.org/10.1093/nar/gkz1001
https://doi.org/10.1056/NEJMra1001389
https://doi.org/10.1016/j.cell.2013.04.037
https://doi.org/10.1093/nar/gky1095
https://doi.org/10.1093/nar/gkx1013
https://doi.org/10.1101/gr.135350.111
https://doi.org/10.1038/nature09380
https://doi.org/10.1093/nar/gkh063
https://doi.org/10.1093/nar/gkh063
https://doi.org/10.1016/j.cell.2018.01.029
https://doi.org/10.3390/biomedicines10102497
https://doi.org/10.1038/s41592-019-0422-y
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1258862


Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., et al. (2009). The
sequence alignment/map format and SAMtools. Bioinformatics 25 (16), 2078–2079.
doi:10.1093/bioinformatics/btp352

Li, M., Huang, H., Li, L., He, C., Zhu, L., Guo, H., et al. (2021). Core transcription
regulatory circuitry orchestrates corneal epithelial homeostasis. Nat. Commun. 12 (1),
420. doi:10.1038/s41467-020-20713-z

Luck, K., Kim, D. K., Lambourne, L., Spirohn, K., Begg, B. E., Bian, W., et al. (2020). A
reference map of the human binary protein interactome. Nature 580 (7803), 402–408.
doi:10.1038/s41586-020-2188-x

Mei, S., Meyer, C. A., Zheng, R., Qin, Q., Wu, Q., Jiang, P., et al. (2017). Cistrome
cancer: a web resource for integrative gene regulation modeling in cancer. Cancer Res.
77 (21), e19–e22. doi:10.1158/0008-5472.CAN-17-0327

Moreno, C. S. (2020). SOX4: the unappreciated oncogene. Semin. Cancer Biol. 67 (1),
57–64. doi:10.1016/j.semcancer.2019.08.027

Nishiyama, A., and Nakanishi, M. (2021). Navigating the DNA methylation
landscape of cancer. Trends Genet. 37 (11), 1012–1027. doi:10.1016/j.tig.2021.05.002

Orozco, J. I., Manughian-Peter, A. O., Salomon, M. P., O’Day, S., Hoon, D. S. B., and
Marzese, D. M. (2018). Mechanisms of immune evasion in triple-negative breast cancer
patients. J. Clin. Oncol. 36 (15), 1096. doi:10.1200/jco.2018.36.15_suppl.1096

Oughtred, R., Stark, C., Breitkreutz, B. J., Rust, J., Boucher, L., Chang, C., et al. (2019).
The BioGRID interaction database: 2019 update. Nucleic Acids Res. 47 (D1),
D529–D541. doi:10.1093/nar/gky1079

Pan, X., Li, X., Sun, J., Xiong, Z., Hu, H., Ning, S., et al. (2022). Enhancer methylation
dynamics drive core transcriptional regulatory circuitry in pan-cancer. Oncogene 41
(26), 3474–3484. doi:10.1038/s41388-022-02359-x

Perou, C. M., Sørlie, T., Eisen, M. B., van de Rijn, M., Jeffrey, S. S., Rees, C. A., et al.
(2000). Molecular portraits of human breast tumours. Nature 406 (6797), 747–752.
doi:10.1038/35021093

Pinero, J., Ramírez-Anguita, J. M., Saüch-Pitarch, J., Ronzano, F., Centeno, E., Sanz,
F., et al. (2020). The DisGeNET knowledge platform for disease genomics: 2019 update.
Nucleic Acids Res. 48 (D1), D845–D855. doi:10.1093/nar/gkz1021

Quinlan, A. R., and Hall, I. M. (2010). BEDTools: a flexible suite of utilities for comparing
genomic features. Bioinformatics 26 (6), 841–842. doi:10.1093/bioinformatics/btq033

Robinson, D. R., Wu, Y. M., Vats, P., Su, F., Lonigro, R. J., Cao, X., et al. (2013).
Activating ESR1 mutations in hormone-resistant metastatic breast cancer. Nat. Genet.
45 (12), 1446–1451. doi:10.1038/ng.2823

Ru, B., Sun, J., Tong, Y., Wong, C. N., Chandra, A., Tang, A. T. S., et al. (2018).
CR2Cancer: a database for chromatin regulators in human cancer. Nucleic Acids Res. 46
(D1), D918–D924. doi:10.1093/nar/gkx877

Saint-André, V., Federation, A. J., Lin, C. Y., Abraham, B. J., Reddy, J., Lee, T. I., et al.
(2016). Models of human core transcriptional regulatory circuitries. Genome Res. 26 (3),
385–396. doi:10.1101/gr.197590.115

Santarius, T., Shipley, J., Brewer, D., Stratton, M. R., and Cooper, C. S. (2010). A
census of amplified and overexpressed human cancer genes. Nat. Rev. Cancer 10 (1),
59–64. doi:10.1038/nrc2771

Sørlie, T., Perou, C. M., Tibshirani, R., Aas, T., Geisler, S., Johnsen, H., et al. (2001).
Gene expression patterns of breast carcinomas distinguish tumor subclasses with
clinical implications. Proc. Natl. Acad. Sci. 98 (19), 10869–10874. doi:10.1073/pnas.
191367098

Theodorou, V., Stark, R., Menon, S., and Carroll, J. S. (2013). GATA3 acts upstream of
FOXA1 in mediating ESR1 binding by shaping enhancer accessibility. Genome Res. 23
(1), 12–22. doi:10.1101/gr.139469.112

Tsamardinos, I., and Borboudakis, G. (1970). Permutation testing improves bayesian
network learning.Mach. Learn. Knowl. Discov. Databases, 322–337. doi:10.1007/978-3-
642-15939-8_21

Wang, J., Zhuang, J., Iyer, S., Lin, X. Y., Greven, M. C., Kim, B. H., et al. (2013).
Factorbook.org: a Wiki-based database for transcription factor-binding data generated
by the ENCODE consortium. Nucleic Acids Res. 41, D171–D176. doi:10.1093/nar/
gks1221

Yao, L., Shen, H., Laird, P. W., Farnham, P. J., and Berman, B. P. (2015). Inferring
regulatory element landscapes and transcription factor networks from cancer
methylomes. Genome Biol. 16, 105. doi:10.1186/s13059-015-0668-3

Yoshihara, K., Shahmoradgoli, M., Martínez, E., Vegesna, R., Kim, H., Torres-Garcia,
W., et al. (2013). Inferring tumour purity and stromal and immune cell admixture from
expression data. Nat. Commun. 4 (1), 2612. doi:10.1038/ncomms3612

Zhang, H. M., Chen, H., Liu, W., Liu, H., Gong, J., Wang, H., et al. (2012b).
AnimalTFDB: a comprehensive animal transcription factor database. Nucleic Acids
Res. 40, D144–D149. doi:10.1093/nar/gkr965

Zhang, X., Zhao, X. M., He, K., Lu, L., Cao, Y., Liu, J., et al. (2012a). Inferring gene
regulatory networks from gene expression data by path consistency algorithm based on
conditional mutual information. Bioinformatics 28 (1), 98–104. doi:10.1093/
bioinformatics/btr626

Zhou, Y., Zhou, B., Pache, L., Chang, M., Khodabakhshi, A. H., Tanaseichuk, O.,
et al. (2019). Metascape provides a biologist-oriented resource for the analysis of
systems-level datasets. Nat. Commun. 10 (1), 1523. doi:10.1038/s41467-019-
09234-6

Ziller, M. J., Edri, R., Yaffe, Y., Donaghey, J., Pop, R., Mallard, W., et al. (2015).
Dissecting neural differentiation regulatory networks through epigenetic footprinting.
Nature 518 (7539), 355–359. doi:10.1038/nature13990

Frontiers in Genetics frontiersin.org11

Shi et al. 10.3389/fgene.2023.1258862

https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.1038/s41467-020-20713-z
https://doi.org/10.1038/s41586-020-2188-x
https://doi.org/10.1158/0008-5472.CAN-17-0327
https://doi.org/10.1016/j.semcancer.2019.08.027
https://doi.org/10.1016/j.tig.2021.05.002
https://doi.org/10.1200/jco.2018.36.15_suppl.1096
https://doi.org/10.1093/nar/gky1079
https://doi.org/10.1038/s41388-022-02359-x
https://doi.org/10.1038/35021093
https://doi.org/10.1093/nar/gkz1021
https://doi.org/10.1093/bioinformatics/btq033
https://doi.org/10.1038/ng.2823
https://doi.org/10.1093/nar/gkx877
https://doi.org/10.1101/gr.197590.115
https://doi.org/10.1038/nrc2771
https://doi.org/10.1073/pnas.191367098
https://doi.org/10.1073/pnas.191367098
https://doi.org/10.1101/gr.139469.112
https://doi.org/10.1007/978-3-642-15939-8_21
https://doi.org/10.1007/978-3-642-15939-8_21
https://doi.org/10.1093/nar/gks1221
https://doi.org/10.1093/nar/gks1221
https://doi.org/10.1186/s13059-015-0668-3
https://doi.org/10.1038/ncomms3612
https://doi.org/10.1093/nar/gkr965
https://doi.org/10.1093/bioinformatics/btr626
https://doi.org/10.1093/bioinformatics/btr626
https://doi.org/10.1038/s41467-019-09234-6
https://doi.org/10.1038/s41467-019-09234-6
https://doi.org/10.1038/nature13990
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1258862

	Super enhancer-driven core transcriptional regulatory circuitry crosstalk with cancer plasticity and patient mortality in t ...
	Introduction
	Material and methods
	Data acquisition and preprocessing
	Identification of activated super-enhancers
	Copy number variation analysis
	Differential methylation analysis
	Recognition of SE-assigned genes
	Identification of core transcriptional regulatory circuitry
	Dissection of downstream genes perturbed by CRCs
	Identification of CRC TF-partner TF pair bridging the SE-promoter loop
	Functional enrichment analysis

	Results
	Activated super-enhancer shows correlation with DNA hypomethylation and copy number amplification in BRCA
	Super-enhancer regulates the expression of breast cancer-associated gene
	Super-enhancers drive core transcriptional regulatory circuitry contributing to cancer reprogramming
	CRC TFs coordinate with partner TFs participating in enhancer-promoter communications
	Triple-negative breast cancer shows distinctive CRC TFs compared to other BRCA molecular subtypes
	USF1 shows association with TNBC immunophenotypes

	Discussion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


