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Single cell computational analysis has emerged as a powerful tool in the field of
oncology, enabling researchers to decipher the complex cellular heterogeneity
that characterizes cancer. By leveraging computational algorithms and
bioinformatics approaches, this methodology provides insights into the
underlying genetic, epigenetic and transcriptomic variations among individual
cancer cells. In this paper, we present a comprehensive overview of single cell
computational analysis in oncology, discussing the key computational techniques
employed for data processing, analysis, and interpretation. We explore the
challenges associated with single cell data, including data quality control,
normalization, dimensionality reduction, clustering, and trajectory inference.
Furthermore, we highlight the applications of single cell computational
analysis, including the identification of novel cell states, the characterization of
tumor subtypes, the discovery of biomarkers, and the prediction of therapy
response. Finally, we address the future directions and potential advancements
in the field, including the development of machine learning and deep learning
approaches for single cell analysis. Overall, this paper aims to provide a roadmap
for researchers interested in leveraging computational methods to unlock the full
potential of single cell analysis in understanding cancer biology with the goal of
advancing precision oncology. For this purpose, we also include a notebook that
instructs on how to apply the recommended tools in the Preprocessing and
Quality Control section.
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1 Introduction

Cancer, as a complex andmultifaceted disease, continues to pose significant challenges to
medical professionals and researchers worldwide. Traditionally, cancer has been studied at
the tissue (also known as bulk) level, providing valuable insights into the overall behavior of
tumors. However, this approach fails to capture the intrinsic heterogeneity that exists within
tumors, leading to an incomplete understanding of the disease and hindering the
development of targeted therapies.

In recent years, the advent of single cell analysis has revolutionized the field of oncology
by enabling the characterization of individual cells within a tumor. This powerful technique
allows researchers to dissect the tumor heterogeneity by unraveling cellular diversity, aiming
to decipher the dynamic processes that underlie tumor progression, metastasis, and therapy
resistance.
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Single cell analysis involves the isolation, profiling, and
sequencing of individual cells, providing researchers with high-
resolution data on the genetic, epigenetic, transcriptomic,
proteomic, and metabolic features of each cell. By unveiling the
molecular landscape of tumors at the single cell level, this approach
offers unprecedented insights into tumor evolution, clonal
dynamics, and the cellular interactions that drive cancer
development and response to therapy.

Through an in-depth examination of recent studies and cutting-
edge advancements, we will highlight the immense potential of
single cell analysis in driving personalized medicine and
improving clinical outcomes in oncology. Moreover, we will
explore the challenges and limitations of this technology, in
particular those related to data analysis and interpretation, taking
into account the technological biases, and the need for scalable and
cost-effective methodologies.

Ultimately, the integration of single cell analysis into oncology
research has the potential to revolutionize our understanding of
cancer biology, foster the development of more precise
diagnostics and therapies, and pave the way for personalized
approaches that consider the unique cellular landscape of each
patient’s tumor.

1.1 Cellular heterogeneity in cancer

Hanahan and Weinberg (Hanahan, 2022) have outlined major
hallmarks of cancer function, yet there is no single molecular
pathway to attain these functions and there may be other
mechanisms to be found. Among the many fragments of cancer’s
mechanistic puzzle, one important component of cancer complexity
lies in the complex cellular environment within tumor tissues. In this
regard, single cell experimental technologies, such as single cell RNA
sequencing (scRNA-seq), may provide relevant clues to better
understanding the molecular basis of the characteristic functional
features of the tumor multicellular environment. Single cell analysis
allow to study processes in the intersection between cell states and
convergence to biological function. scRNA-seq, in particular, allows
for the simultaneous profiling of genome expression for most cells in
a tissue sample. The single cell transcriptome represents a middle
ground to characterize biological pathways, shifting to molecular
focus to chart the variability among individual molecular programs
in order to infer possible functional phenotypes, even among rare
cell types. As we grasp this focus, there is a continuous enhancement
of computational algorithms and approaches. New features are
added to the methods used in standardized single cell analysis.
This is why an overview of the recent advances and how they can be
applied to advance the understanding and treatment of cancer is of
importance.

Two main aspects of cancer have been apparent since its first
observation. Its nature as a malignant tumor and its almost
unbending resilience. Nevertheless, only in the 1800’s, with the
advent of the microscope and Virchow’s proposal for cancer as a
disease of the cell, did we begin to understand the alterations in and
around the cell that contribute to tumor proliferation and
adaptability (Lonardo et al., 2015). These characteristics and
focus have made us understand that malignant cells vary their
state and function in various modalities: across the course of the

disease, in their location on the tissue and in response to external
insults, most importantly therapy.

Initially, the focus in cancer research was on karyotypic and
mutational alterations, underscoring the evolutionary adaptiveness
of cancer (Burrell et al., 2013). Today, we understand that
heterogeneity can be observed in various molecular pathways of
cells which can contribute to the proliferative and adaptive
capabilities of the tumour. These include active metabolic
programs (Kim and DeBerardinis, 2019), epigenetic
configurations (Bell et al., 2019), transcriptional profiles (Kinker
et al., 2019), exosomal disposition (Lee et al., 2022) and microbial
interactions (Niño et al., 2022). Even more, cells surrounding the
malignant tissue in solid cancers can be recruited by the tumor, can
try to fight it and even influence the state and functions of malignant
cells. Behaviors often observed in tumor infiltrating lymphocites
(TILs), tumor associated macrophages (TAMs), cancer associated
fibroblasts (CAFs) among others. Together with the tumor, these
cells comprise the tumor micro-environment (TME) and its
characterization and dynamics have been a subject of numerous
studies, particularly since the advent of transcriptome sequencing
technologies (Nam et al., 2021).

In this review we present a summary of the theoretical principles
and the latest technologies of this framework and convey a landscape
of the state of the art in applications for cancer. The search was
further systematized by automated and prioritized bibliographic
search.

2 The need for proper experimental
designs for single cell analysis in
oncology

Analyzing tumor samples at the single-cell level presents several
experimental design challenges (Kolodziejczyk et al., 2015; Dal
Molin and Di Camillo, 2019), each of which can significantly
impact the quality and interpretability of the data. Some of the
key challenges and considerations are as follows:

A first challenge in the design of single cell RNASeq experiments
lies in representing the full complexity of the tissues/phenotypes in
an unbiased way. Obtaining an adequate number of high-quality
single cells from tumor tissues can be challenging (Birnbaum, 2018).
Tumors often consist of a mixture of cancer cells, stromal cells, and
immune cells (Guillaumet-Adkins et al., 2017; Miller et al., 2017).
The sample size required depends on the research question, but it is
crucial to ensure that the sample size is statistically meaningful
(Davis et al., 2019; Su et al., 2020). One must also consider rare cell
types: Some cancer subpopulations or rare cell types within tumors
may be of particular interest, but these can be challenging to capture
in sufficient numbers (Jiang et al., 2016; Xie et al., 2020).
Furthermore, to ensure the reproducibility of findings, it is
essential to collect and analyze multiple samples or replicate
experiments (Skinnider et al., 2019; Zimmerman et al., 2021).

Another key issue is the identification of the best possible (or
available) source of tissues. Fresh tissues are ideal for single-cell
analysis as they preserve cellular viability and gene expression
profiles. However, obtaining fresh samples can be logistically
challenging, especially for certain cancer types or when dealing
with clinical specimens. The alternatives here are the use of frozen or
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fixed tissues. Frozen tissues are a valuable alternative when fresh
samples are unavailable. They can preserve RNA and protein, but
the freezing process can introduce artifacts and affect the quality of
single-cell data (Slyper et al., 2020; Jiang et al., 2023). Fixed tissues
are also useful but with relevant limitations: these can provide spatial
information and allow the analysis of archival samples (Gerdes et al.,
2013; Phan et al., 2021; Tian L. et al., 2023). However, fixation can
alter cellular morphology and gene expression, making it less
suitable for certain single-cell assays.

A third aspect to evaluate is how to balance Intra vs. Inter-
Patient or Tumor Heterogeneity. Intra-tumor heterogeneity must be
considered, tumors are often composed of subclones with distinct
genetic and phenotypic characteristics. To capture intra-tumor
heterogeneity, researchers need to profile multiple single cells
from different regions within a tumor (Martelotto et al., 2014;
Dong et al., 2021; Lo et al., 2023). On the other hand, different
individuals are also quite heterogeneous even in analogous regions/
organs/tissues, designs must deal with inter-patient heterogeneity
because comparing single cells from different patients adds another
layer of heterogeneity. It is essential to consider patient-to-patient
variability when drawing conclusions about cancer biology
(Yancovitz et al., 2012; Wang T. et al., 2022).

Aside from the purely biological/clinical issues of the
experimental designs one need also consider technical decisions.
For instance, many research questions in cancer biology require the
integration of different data types, such as genomics,
transcriptomics, proteomics, and epigenomics (Peng et al., 2020;
Nam et al., 2021; Ma et al., 2022). Designing experiments that allow
for the simultaneous profiling of multiple omics layers in the same
single cells is technically challenging and researchers need to
adequately ponder when doing so will add enough depth to their
study to justify the additional costs and logistic complexities (Li
et al., 2021; Dimitriu et al., 2022). Furthermore, analyzing multi-
omic data from single cells often requires the development or
application of specialized computational tools for data integration
and interpretation (Hu et al., 2018; Rautenstrauch et al., 2022).

Hence, if we want to exploit single-cell analysis of cancers as a
powerful approach to provide insights into tumor heterogeneity,
clonal evolution, and therapy response, we need to carefully consider
sample acquisition, preservation methods, and experimental design
to address the unique challenges posed by single-cell studies (Baran-
Gale et al., 2018; Lafzi et al., 2018; Nguyen et al., 2018). Collaboration
between experimentalists and computational biologists is crucial to
maximize the quality and utility of single-cell cancer data (Bacher
and Kendziorski, 2016). Additionally, ongoing advancements in
single-cell technologies and analytical methods are continually
improving our ability to overcome these challenges and gain
deeper insights into cancer biology. So one needs to be aware of
ongoing developments in the field.

3 A primer on scRNA-seq analysis

The primary objective in transcriptome sequencing is to
measure the number of RNA transcripts in the cytosol and
nucleus of cells in a sample. There are various protocols that
have been developed to achieve single-cell sequencing. They can
differ in various steps of the process, and each of these steps can

contribute to the customization of a specific experiment. In the
following, we outline the general steps (See Figure 1), how they work
and how each variation can help tackle different settings. References
for the articles presenting these methods can be found in Table 1, so
that they are not repeated in the text.

We start by explaining and exposing the main technologies for
the experimental steps required for scRNA-seq. Naturally, to
sequence RNA from individual cells after extracting the tissue of
interest, one must physically isolate the cells. We will hence start
with this necessary step.

3.1 Cell separation

Prior to isolating any cells, if they come from solid tissue, the
cells must be dissociated. This is normally done with typsin,
collagenase or and/or papain, although there are in situ methods
available for spatial transcriptomics (Shah et al., 2017). Careful
handling and special consideration for fragile cells must be taken
into account during dissociation because the stress response can
alter the transcriptional program (Lee et al., 2021).

Initially, cells were manually pipetted, which was time-consuming
and defeated the purpose of obtaining an overview of all cells in a
sample. In most methods, cells are isolated via fluorescence-activated
cell-sorting (FACS), diffused into picowells, and piped away through
microfluidics or reverse-emulsified with nano-droplets.

FACS-sorting can be used without a biomarker to randomly
select cells from a solution but it is time consuming and it does not
allow for very high throughput, as is the case with Smart-Seq and
FLASH-seq protocols. It is to be noted that FACS is often used
before in many workflows to select a population of interest or to
exclude dead cells.

With the use of beads that bind to random cells and a picowell
plate into which only a bead with a cell can fit, many cells can be
isolated and enclosed to react, separated by a semipermeable
membrane. This method achieves the highest throughput, like in
the case of the Seq-Well platform, where around 88k cells can be
captured in one run. Nevertheless it is prone to noise because of the
high quantity of wells. To avoid this, micro-wells that are filled via
microfluidics can be used. The Fluidigm C1 platform takes this
approach but sacrifices a lot of throughput, filling only plates of
96 wells from each drop of solution.

The most popular method (Chromium 10x) uses oil or hydrogel
droplets to encapsulate cells through reverse emulsion. A bead with
many oligos that reacts with a lysed cell is also inside the droplet.
Although this method offers high throughput and does not require a
plate, there is a small possibility of duplicates in the droplets, which
increases exponentially with the number of cells captured.

3.2 Library generation and sequencing

In the last year, there has been a lot of progress in the
parallelization and efficacy of reverse transcription of RNA
molecules, which are converted into cDNA that is able to be
sequenced in NGS (next-generation sequencers).

The Chromium 10x v2 platform only transcribes from the 3’
end, using an oligo dT for priming, and it skips the template
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switching step due to the difficulties of performing this step inside a
droplet. Template switching works by providing an alternate
sequence for the reverse transcriptase (e.g., Superscript III) to
switch to, in case it encounters a stopping sequence, then it
latches back on to the transcript. This mechanism, and another
priming oligo at the end of the transcript, guarantee a full read.
Nowadays, due to molecular advances, full length transcripts can
also be sequenced in high throughput platforms. A feature that
facilitates the detection of SNPs, isoforms and allelic variants in the
analysis.

The reactions involved in reverse transcription are designed to
deliver a cDNAmolecule that can be easily sequenced and amplified
through PCR. One such reaction that is becoming more widespread
is the ‘Unique Molecular Identifier’ (UMI) barcoding. By attaching
an average of a random sequence of 10 bases to the primer, it is
almost guaranteed that every transcript has a unique barcode. This
information can later be extracted to remove the amplification bias
that occurs when cDNA is amplified via PCR. Barcoding was first
used by the platforms that used droplet separation, because the
amplification happened with all the transcripts from all the cells
mixed up, but it is implemented in most newer platforms. Plate well
technologies amplify within the well, so the amplification bias is
almost linear. Nevertheless, UMIs are a molecular memory that does
not rely on modelling and have been shown to correlate better to the
actual genes in the library (Kivioja et al., 2012).

The library is then sequenced using a next-generation
sequencing (NGS) platform, such as Illumina’s NextSeq 500 or
ThermoFisher’s IonTorrent. Sequencing is performed in batch
and the result is the first piece of digital information to be
handled in the pipeline: A multiplexed FASTQ file.

3.3 Preprocessing and quality control

Starting from here, the workflow is entirely digital and can be
run on a computer (See Figure 2). To illustrate the recommended
methods in this review and to help with the setting up of an
environment for running these advanced frameworks we provide
a github repository with a notebook and a container in https://
github.com/epaaso/comp-oncology.

To begin to analyze the batch FASTQ file, it need to be
demultiplexed, that is the cell barcodes and UMI labels are

extracted and the remaining sequence is annotated. That is the
sequences are aligned andmapped to known genes, exons, introns or
sequences of interest. This is achieved with the assistance of
algorithms such as BLAST, RefSeq, or GenCode. Software like
CellRanger which is designed to work with sequences generated
by the 10x Chromium platform or STARSolo that is more general.
Care must be taken in this step, because a faulty annotation would
bias all the following analysis. When in doubt, these tools also come
with possible quality control measures. There are two main
annotations used for sequences, the Ensembl ID, whose main
feature is that it is unique and the gene symbol, which is more
closely related to its discovery or function. When employing
different tools, the conversion from Ensembl ID to gene symbol
or vice versa is often required, and this largely depends on the
reference database used. Almost all reference datasets come from the
Ensembl website, but older platforms use the legacy hg19 reference.
Additionally, the database can consider not only genes but miRNAs,
non-coding transcripts and others.

This annotation results in a quality control filtered BAM or SAM
file, from which the repeated appearances of annotated sequences can
be counted, to end up with a count matrix that has rows as cells and
genes as columns or vice versa. Thismatrix can be used for downstream
analysis to ask questions about the biological phenomenon, but usually
some further quality control needs to be done.

In the following section, we present the most relevant data
manipulation procedures that aim to provide us with the most
biologically relevant yet computationally efficient dataset. This
methods do not a priori look for a trend or ask a question of the
experiment. However they can change or be coupled to the
downstream analyses that can follow.

3.3.1 Filters and feature selection
Biologically, cells that have a high amount of mitochondrial

genes in the substrate (around 5%–10%) are considered to be dead
cells or cells that underwent too much stress. These cells are
normally removed. Additionally, cells that are outliers with either
too few or too many measured genes may be either dead cells or
doublets/multiplets. There is a plethora of algorithms to account for
various biological effects, the most accepted of which is the cell cycle
correction (Barron and Li, 2016). Nevertheless, many corrections are
controversial and applying one correction can hide the presence of
another. Another important effect is the contamination of the

TABLE 1 Avaried sample of popular scRNA-seq platforms.

Protocol Cell isolation Time (h) # of cells Cost Trans. Reference

Chromium10x v2 Droplet 9 10k $$$$ 3’ Zheng et al. (2017)

Chromium10x v3 Droplet 9 10k $$$$ Full Simone et al. (2019)

InDrop Droplet 24 >10k $$$ 3’ Zilionis (2017)

Smart-Seq2 FACS 25 384 $ Full Picelli et al. (2013)

Smart-Seq3 FACS 10 384 $$ Full Hagemann-Jensen et al. (2020)

FLASH-seq FACS 4.5 384 $$ Full Hahaut et al. (2022)

Fluidigm C1 Microfluidics 5 96 $$ Full DeLaughter (2018)

Seq-Well Picowell 10 88k $$ Full Aicher et al. (2019)
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transcripts by ambient RNA, CellBender (Fleming et al., 2022) uses
Bayesian modelling and neural networks to extract the signal from
ambient RNA.

Even though the filtering steps reduce the dimension of the
features by a certain amount, feature selection is done to account
for these next issues: Due to the curse of dimensionality, where
data gets sparser the more dimensions there are, the sampling
capacity required to arrive to a statistically relevant result raises
exponentially. Too many genes are redundant and considering all
can lead to overfitting. For addressing these problems the most
popular pipelines, like Seurat, search for highly variable genes
(HVG), with the aid of generalized linear models. This is an
example of an unsupervised approach, and there are more
sophisticated ones available. A popular tool, SCMarker (Wang
et al., 2019), creates gene expression modalities and filters out the
genes in the sparse modalities. M3Drop (Andrews and Hemberg,
2018) takes into account the dropout distribution and filters the
ones that go out from the distribution.

However, the selection process can have various effects on
downstream analysis. That’s why many algorithms developed
nowadays are supervised based on the analysis to be performed. For
example, Triku (Ascensión et al., 2022) uses a k-nearest-neighbour
clustering approach to create an expression profile of a certain cluster of
genes, and then selects for the genes that are most informative within
each cluster. Since the induced analysis needs to be run to optimize
selection, some greedy algorithms are used to speed up the process. For
example, in genetic algorithms a certain set of features are selected and
rated based on their suitability for downstream analysis. The
generations that have the highest score continue to have features
added to them. This approach is similar to decision trees.

In summary, the variety of feature selection algorithms address
various concerns like efficiency, sparsity and dropouts. Being
attached to the downstream analyses also contributes to their
diversity. To choose the optimal method, care must be taken to
examine the underlying hypotheses of the integrated methods in a
downstream analysis. These methods also need to be prioritized
based on the context of the data and the experiment.

While feature selection diminishes the amount of information to
remove stochastic or design artifacts, imputation aims to do this by
adding more information.

3.3.2 Imputation
A very debated topic is the occurrence of dropouts, which can

occur due to various factors like incomplete reads, amplification
errors or even transcriptional bursts (Dar et al., 2012). Through
modeling and zero inflation, dropouts can be imputed or artifacts
removed. Some authors suggest that most dropouts are not
significant and attribute them to intrinsic stochasticity by
adjusting for a negative binomial distribution (Silverman et al.,
2020). Another important factor is that sparse matrices with
large blocks of zeros, pose challenges when doing the calculations
that many of the downstream analyses require. Accordingly, there
are a lot of methods that take this into consideration. This can be
done during the preprocessing phase or implemented in
downstream analysis. There is an ongoing discussion on whether
correction through imputation, smoothing, or no correction is the
optimal solution (Hou et al., 2020) and the actual answer varies from
case to case.

3.3.3 Normalization
Adjusting to a distribution is also useful for normalization, a

practice of basic importance to correct technical variations that may
be present in different reads. In the previous paragraph, we discussed
cell counts. However, to account for differences in gene expression
between cells or within a cell, the expression counts must be scaled
so that high counts do not overshadow other expressions. Basic
strategies like CPM (Counts Per Million), RPKM (Reads Per
Kilobase Million), TPM (Transcripts Per Million), and FPKM
(Fragments Per Kilobase Million) adjust based on all the read
counts, using a global scale factor that can sometimes overcorrect
and impair downstream analysis.

Another important factor addressed in normalization is the
stability of variance, where the expression values are transformed
by a function, such as log. This prevents high values from
dominating the variation when comparing normalized counts.
However, this approach also has drawbacks, like masking counts
of rare cell populations. That’s why more sophisticated methods
scale with respect to subsets inferred from different concepts, like the
cell or proximity clusters based on gene expression (Lun et al., 2016),
or scale with respect to Pearson coefficients adjusted to a probability
distribution, like the popular ‘scTransform’ (Ke et al., 2022) used in
the Seurat pipeline. This method adjusts to a negative binomial
distribution, as it can model the stochastic counting of events by that
distribution. There are, however, many other proposals to obtain the
correct distribution. Borella and collaborators, in PsiNorm (Borella
et al., 2021), propose using the Pareto distribution due to the scale-
free nature of many complex systems. Finally, a costly yet efficient
alternative is spiking the cells with a small fraction of constantly
expressed genes called spike-ins. ISnorm (Lin et al., 2020) suggests
such a method.

Normalization, unlike feature selection, is not generally coupled
to the downstream method, so the array of options is not as varied.
Additionally, from the aspects that can be mitigated with
normalization, sequencing depth and stability of variance
considerations are essential. Hence, the list of features a
technique considers is less varied than with feature selection.
Nevertheless, the more sophisticated algorithms intersect in the
variations they consider with another preprocessing step that is
essential when comparing different samples: batch effects.

3.3.4 Batch effects and data integration
While normalization corrects for technical effects in a run of the

sequencing pipeline, ‘batch effects’ account for variations that occur
between different runs of each sample, donor, protocol, or
sequencing platform. The main idea is to form a batch of cells
that could have a common source of variation, referred to as a batch
correlate. There is no agreed-upon method to integrate different
datasets, and often steps taken during the normalization phase,
mainly data transformation, can inadvertently mask biological
effects when removing batch effects. That’s why it is crucial to
tailor the approach according to the specific experiments and the
batch correlates one wishes to filter out. For example, when building
the Human Lung Cell Atlas (Sikkema et al., 2022), it was essential
not to use inter-individual variability as a batch correlate because
capturing the diversity of cells under varying conditions was
important. They employed the scANVI tool to integrate various
samples.
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Preliminarily, an ideal strategy to account for sample
preparation errors would be to mix differently prepared samples
in a sequencing run. However, this is expensive and not always
possible when dealing with data banks. In this regard, the proposed
algorithms help integrate different instrument runs and data from
various sources. This integration provides a more complete picture
of the cell profiles in a specific tissue or type of cancer.

The different correction techniques correlate errors with
different scopes, such as systemic batch effects, clusters of similar
cells, single cells, and even gene expression profiles. Nevertheless,
zero inflation and gene expression distribution are variations also
taken into account when normalizing, and the intersection of these
factors must be considered when applying both. A good strategy is to
apply normalization first because its effects are systematic.
Additionally, you can define two different batches and correct
them sequentially, being cautious not to overcorrect. A helpful
heuristic to consider when determining the order is to correct for
the source of variation with the highest impact first so that others are
not hidden.

There is no consensus for a broad categorization of available
methods, but Ryu et al. (2023) proposes one based on the underlying
mathematical approach:

• Linear decomposition based models
• Similarity based methods in reduced dimension space
• Generative models using variational autoencoders

The first approach has been widely used in batch RNA-seq, like
in the well-known ‘removeBatchEffect’ function in limma (Ritchie
et al., 2015). In general, one decomposes the expression matrix X
into a sum of the corrected expression matrix GC (or a factor matrix
times their loadings RF × DF) and a design matrix that defines, for
instance, the batch groups, DB times its loadings RB (X = GC + DB ×
RB). One of the best performing and most used methods (it is the
standard match correction method in the scanpy pipeline) in this
category is ComBat (Johnson et al., 2007), which uses general lineal
models, since optimization is done via the empirical Bayes
approximation. Recently, the main author of ComBat developed
an improved version named ComBat-seq (Zhang et al., 2020) which
considers zero inflation and uses a negative binomial distribution
that outputs transcript counts instead of a continuous variable.

The second category is better at considering cell variations that
are not homogeneous for all cells in a batch and considers the single
cell nature of the experiment in a more natural way. To be able to
compare similarity it results very handy to have a lower dimensional
representation of the expression profile of a cell. This can be
achieved via dimensionality reduction methods (see next
subsection). Many of the methods in this category do some sort
of dimensionality reduction before starting to look for similarities
and some even do the correction in the embedded dimension [like
scANVI (Xu et al., 2021)], which can be a problem when wanting to
perform other downstream analysis. A very handy guideline sheet
for comparing the latest techniques and their features can be found
in the supplementary material for (Ryu et al., 2023).

Mutually Nearest Neighbours [MNN, used in Seurat Haghverdi
et al. (2018)] does not perform dimensionality reduction; instead
looks for similarities in the cells of different batches directly with the
use of the kNN algorithm. This ends up being computationally

expensive, however there have been improvements to the method,
such as fastMNN that does dimensionality reduction via PCA, but it
still does not perform very good in benchmarks. An underlying
assumption that is not considered in MNN is that the variations are
at the cluster level. Methods like Harmony (Korsunsky et al., 2019),
LIGER (Welch et al., 2019) or ScMerge (Lin et al., 2019) use
clustering of cells and optimize for metrics related to these
groups, like maximum diversity clustering (used in Harmony).
Harmony has been tested in various benchmarks and even
though it is not as sophisticated as the other similarity methods,
it is comparable, however, and has good speed and cell type recovery.

The third approach makes use of the latest developments in
neural networks to consider the possible non-linear nature of the
batch effects. Variational autoencoders are used hence for this kind
of data because they model a probability distribution with the help of
neural networks. Broadly, one–encoder–network models a latent
space probability distribution and a second–decoder–network
outputs a generative model that tries to reconstruct the
expression counts. In this way, a batch coefficient can be
separated as a parameter of the distribution. scVI (Lopez et al.,
2018), scANVI (Xu et al., 2021), DESC (Li et al., 2020) and scGEN
(Lotfollahi et al., 2019) all use this methodology. scANVI is an
improvement of scVI that uses cell type information and performs
much better than scVI. The latent space representation saves
computational power and the consideration of non-linearity
allows the correction of a broader range of batch effects. This is
why these methods are almost as fast as the linear decomposition
ones and as effective as the similarity ones.

Data integration often uses dimensionality reduction as a first
step, to represent the main features of a transcriptome efficiently and
cancelling out the noise. This procedure when projected onto 2 or
3 dimensions also helps to visualize the cells, but there are various
caveats to be considered in the next section.

3.3.5 Dimensionality reduction
In the life sciences, dimensionality reduction has almost always

been done via principal component analysis (PCA). PCA has the
advantage of scoring how much each feature contributes to every
reduced component, but in high dimensions the difference in
distances tends no to vary very much, and as it preserves raw
euclidean distance it misses a lot of local structure. Nevertheless,
because it focuses on maximizing variance, it is good in preserving
global structure. That is why, PCA is still used prior to consider other
dimensionality reduction methods that are computationally
expensive. On the other hand, to recover local structure, used even
in bulk sequencing analysis, t-distributed stochastic neighborhood
embedding (t-SNE) orders data points by sampling from a
distribution and attracting or repelling them if they are in the high
dimensional neighborhood of other points. The clusters thus obtained
have often (though not always!) been shown to coincide with actual
cell types. Nevertheless, due to focus on locality, the global structure,
that is to say, the position of a cluster with respect to another, is not
conserved. Many variations of this underlying approach have been
proposed. Uniform Manifold Approximation and Projection (UMAP)
is one of them, it aims tomaintain global structure by fitting the points
to a high dimensional uniform manifold.

Nevertheless, it has been shown that its preservation of global
structure is even less than the theoretical limit allowed for
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embeddings of 2-3 dimensions. Which grows with a complexity of
O( �

n
√ ) (Chari and Pachter, 2022). The search to maintain local and

global structure and recent advances in big data have birthed many
methods that outperform UMAP in its preservation of global
structure. Algorithms like triMAP (Amid and Warmuth, 2019),
PaCMAP (Huang H. et al., 2022), art-SNE (Kobak and Berens, 2019)
perform fairly well to this end.

Essentially they are all variations of weighing a low-dimensional
graph by some nearness metric in the high dimensional space. art-
SNE, for instance, runs the t-SNE algorithm with a low and high
perplexity and takes a mean of the two runs (Perplexity is a measure
of howmany neighbours to consider as being near a certain point). It
manages to preserve more global structure this way but is
computationally expensive. tri-MAP was the first of many
attempts to achieve recovering actual cell types, using triplets of
points that have neighbouring points and randomly sampled far
points in the triplet and connecting them to one another. It is fast but
has been criticized by the community because its effectiveness
depends mainly on pre-processing steps (Huang H. et al., 2022).
The authors of PaCMAP, did a very thorough job of laying out the
underlying mathematical approach in these nearness graph
embeddings (Huang H. et al., 2022). They present a visualization
to identify the algorithms that do this approach incorrectly called
rainbow plot. Having this in mind they propose PacMAP, an
algorithm that considers a nearness metric and medium near
metric. Their method is fast and auto-adjusts its parameters, a
choice that is not systematized in t-SNE and UMAP. Another
graph embedding that performs very good by their measures is
ForceAtlas2 but is not very time efficient and does not use neural
networks. Fortunately, Both et al. (2023) have recently proposed a
method that leverages neural networks and the information of the
edges in the graph to speed up ForceAtlas2 significantly, especially in
cases where there is a lot of distinguishable communities.

The power of deep neural networks is also being leveraged to do
this embedding. They are suited because of their ability to handle
large-scale high-dimensional data and to incorporate different
factors, like batch correction in the same run. In benchmarks
(Xiang et al., 2021) they are comparable or even better in speed
and accuracy to the best non-linear methods. But there are not many
other benchmarks that compare these approaches with the standard
ones and the theory of why deep neural networks have managed to
classify more accurately in, for example, images, than any of the
linear decomposition or graph embedding methods is not standard.

A good way to benchmark the conservation of global structure is
by building hierarchical clusters in a high dimensional dataset and
checking if the visualization separates this clusters. This feature is the
focus of downstream analysis that want to infer trajectories of
differentiation in cells, an analysis that we will address later.
While methods like PacMAP and art-SNE do conserve this
structure sometimes, there is a mathematical argument for using
a hyperbolic space as the embedding space. Hyperbolic geometry
enables the embedding of complex hierarchical data in only two
dimensions while preserving the pairwise distances between points
in the hierarchy. PoincareMap (Klimovskaia et al., 2020) is a
pioneering paper in this regard, that has been optimized for
high-throughput and dropouts by Tian T. et al. (2023). Although
they are not featured in global benchmarks they do their own with
respect to the ones mentioned here and outperform all of them.

3.4 Downstream analyses using scRNA-seq

After applying these corrections and controls, comparability is
often assured, and the richness of the data can be leveraged to find
structure. Subsequently, this structure can be used to generate and
explore hypotheses through analysis. However, it is good practice to
check if the conclusions significantly change when excluding or altering
the parameters of a quality control method. In the following section, we
provide a guide to the most popular and latest downstream analyses
used. An overview of thesemethods can be seen in Figure 3. The central
concept in these downstream analyses is the idea of clusters, as they can
be correlated with a cell type. This forms the basis for describing the
heterogeneity of a tissue, comparing expression between different types,
or inferring trajectories.

3.4.1 Clustering
To label every cell as pertaining to a phenotype or cell type, the

visualization conferred by dimensionality reduction methods results
insufficient, though it is often used as an intermediate step. The basic
idea in clustering is to group together the cells that have similar gene
expression profiles, frequently via an unsupervised approach. The
main strategies that are used for this endeavor are:

• Clustering algorithms by distance
• Community detection
• Hierarchical analysis

However, embedding or dimensionality reduction is commonly
used as an early step to then cluster in the reduced space, which can
be 2D, 3D or even hyperbolic, and the approach can vary greatly as
can be seen in the previous section. Additionally, when the
embedding is done with neural networks one can embed into
any space and include other factors like batch correction in the
same process. Such is the case of scPhere (Ding and Regev, 2021),
where they perform an embedding to hyperbolic 2D or 3D space and
claim to solve cell crowding and better capture temporal trajectories.

In clustering algorithms the distance between the points is used to
minimize inter-cluster distance or to find densely packed regions. The
simplest approach for this is k-means clustering, however often it does
not recover the actual cell types when there are several of them. There
are also algorithms that search separate the points according to the
differences in density like GiniClust (Jiang et al., 2016), which is an
optimized version of the popular VDBSCAN (Ester et al., 1996).

Community detection methods often work with a KNN graph
from processed data and infer communities via graph algorithms for
finding modules (Alcalá-Corona et al., 2021). This approaches have
been the most used because of their reduced complexity and because
they only need to use neighbouring nodes for the computation. The
scanpy and SEURAT3 pipelines used the Louvain algorithm
(Blondel et al., 2008) for a while, but have defected to the Leiden
algorithm because it is more efficient and overcomes a flaw of the
Louvain algorithm wherein communities could be built that have
disconnected components (Anuar et al., 2021). Another way of
detecting communities is via spectral decomposition of the
adjacency matrix. Continuous Non-negative Matrix Factorization
by Puram et al. (2017) does this. A recent, very fast algorithm that
uses simplified graphs for community detection via spectral
decomposition is Secuer (Wei et al., 2022) it enjoys reduced
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runtime andmemory usage over one order of magnitude for datasets
with more than 1 million cells.

There are also ensemble methods like single-cell aggregated
(From Ensemble) clustering (SAFE) (Yang et al., 2018), Single-cell
Aggregated Clustering via Mixture Model Ensemble (SAME) (Huh
et al., 2019), single-cell graph partitioning ensemble (Sc-GPE) (Zhu
et al., 2020) which use various methods and take a mean of all of
them. These have however the problem of extended run time, and an
accumulation of the different errors of the methods.

The latest clustering procedures mix the best parts of this
algorithms in one process. Like scCAN that uses deep neural
networks to perform dimensionality reduction, batch correction
and community detection in the reduced space (Tran et al., 2022).
scPhere (Ding and Regev, 2021) also does this, while focusing on the
hierarchical aspect. As the methods using deep neural network are
only just beginning to be used, there are not many benchmarks to
really argue for their advantage. Nevertheless, Naitzat et al. (2020)
gives a compelling argument, arguing that high dimensional data
can be seen as topological manifolds that are transformed in each
layer to separate the different categories into simpler lower-
dimensional embeddings. The piece-wise linear activation

function that these networks use, does a non-continuous
transformation that manages to separate the structures better
because it can break interconnected structures.

3.4.2 Cluster annotation
A precise definition of cell type from single cell analyses remains

elusive to date, however the clusters obtained by the methods just
mentioned can be assigned to a certain cell identity, e.g., a group of
cells that may share various common features. Due to the gigantic
variation between experiments, the recommended approach is to try
to annotate the clusters automatically, then manually and lastly do a
revision by experts.

To annotate the discrete clusters manually, pipelines like Seurat
and scanpy resort to a basic differential expression measure, which
uses a t-test o a Wilcoxon rank sum (non-parametric) to compare
the expression of a gene (or gene set) among all clusters. This
delivers the so called marker genes for each cluster which are then
compared to known gene expression signatures for a specific cell
type. Nevertheless, this approach can be flawed as, for example,
surface protein expression does not directly imply that they are
present in the surface, nor do they uniquely identify a cell type. That

FIGURE 1
Variations on the technical steps for scRNA-seq 1 & 2 Tissue is dissected from the sample of interest and disaggregated. 3. There are variousmethods
to separate the cells, it is to be noted that FACS is often used before in many workflows to select a population of interest or to exclude dead cells. 4. The
library generation is done with reverse transcriptases of which there are various kinds but the main difference lies in whether they just transcribe in one
direction or both. 5. The NGS platforms to actually sequence and convert to digital data are varied and there always new platforms being developed.
6. All the various technologies lead to a single cell expression profile that has broadly the form in the figure. Created with BioRender.com.
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is why latent embeddings of all the genes expressed are often used to
automatically classify cells into annotated clusters.

The automated approach can be done with classifiers or by using
reference datasets. Examples of classifiers that are trained on
previously annotated data sets or atlases and that consider a large
set of genes are CellTypist (Xu et al., 2023) and Clustifyr (Fu et al.,
2020). References can be either individual samples of the data set or,
ideally, well-curated existing atlases. Query-to-reference mapping
can then be performed with methods such as scArches (Lotfollahi
et al., 2022), Symphony (Kang et al., 2021) or Azimuth (Hao et al.,
2021). Table 2 enlists some of their characteristics.

It is evident that a good annotation depends on the quality of the
reference data. That is why endeavors such as the Human Cell Atlas
https://www.humancellatlas.org/ are paramount to have the most
biologically relevant annotations. Similarly, various tools are being
developed to upload batch invariant data to this atlas such as
Symphony and scPhere (Ding and Regev, 2021).

3.4.3 Tumor cell classification
As can be seen from above, the best way to annotate cells from a

tissue is to use a reference atlas. This is nevertheless a problem for
neoplastic cells, for they have chromosomal and genetic aberrations

and also an altered transcriptomic fingerprint. Additionally, cells in
the tumor microenvironment have an altered phenotype, even
though they are not neoplastic. To detect neoplastic cells there
are many approaches that leverage the underlying molecular
aberrations such as: transcript fusions, mutations, virus insertion,
copy number aberrations and transcript splicing aberrations.
Although there are different techniques (e.g., genome sequencing,
CITE-seq, FISH) that are ideal to detect each one of these, efforts
have been mode to infer these aberrations from transcriptome
sequencing exclusively.

A widely used tool to infer copy number aberrations from
scRNA-seq is inferCNV, which looks for large clusters of
differential expression located in near chromosomal regions
compared against a normal dataset. There is not a single
publication that was dedicated to this tool, but various articles by
the same group that used this method (e.g., Puram et al., 2017). It is
part of a greater endeavour to understand cancer cells from
transcriptomic data called trinityCTAT. The majority of the
methods in this framework are however designed for bulk RNA-
seq. An alternative that uses Bayesian modelling to also infer copy
number aberrations is copyKAT (Gao et al., 2021) and it is not
limited to large regions.

FIGURE 2
Workflow steps for going from raw sequencing files to batch invariant countmatrices. Initial Data Processing: In this phase the FASTQ files are aligned to
obtain a Sequence AlignmentMap (SAM) or Binary AlignmentMap (BAM). Afterwards, the aligned files are aggregated into the transcripts and cells to obtain a
countmatrix. The filtering steps follow, where cell outliers are identified, by, i.e., percentage ofmitochondrial genes, and removed. Filtering steps: Passing to
the gene scale, and minding the high sparsity and dimension of the data, the selection of features is very important and various considerations and
variations can be considered. In particular, using a supervised approach takesmore time but can be tailored to the analysis and ismore specific than using an
unsupervised approach. The dropouts are also considered in various feature selection algorithms. Another approach to consider dropouts is by imputation,
but its usefulness is debated. Comparability: To remove the effects that happen due to technical noise and batch preparation, normalization and batch
correction are very important. Most researched is the batch correction where several approaches can be taken. Created with BioRender.com.
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Transcript fusion is trickier to detect, because the aberrations are
not as big. However unique split-mapped reads and discordant read
pairs can be drawn upon in the annotating step when having full-
length transcripts. scFusion (Jin et al., 2022) uses this but also applies
a deep-learning model and a statistical model to filter out the
abundant chimeras that arise from selecting the reads pointed
out above. Thus achieving a very low rate of false positives, as
they demonstrate with the help of T-cell sequencing that can only
have fusions in the V(D)J-region of its TCR domain and also with
spike-ins. Mutation and virus insertion detection are not very
developed in scRNA-seq data.

Aside from the focus on these molecular aberrations, the
reference approach of the previous section can also be leveraged
to use reference datasets that have previously marked neoplastic
cells. This is the way in which the developers (Dohmen et al., 2022)
of ikarus define a gene signature based on reference data. After
defining a gene signature from ranked gene sets differences, they

train a logistic regression model to classify cells as being normal or
tumor-like. There is also a movement to identify alterations of
diseased tissue, that leverages the annotations that are produced the
aforementioned scArches. The article by Dann et al. (2023) shows a
possible framework to do this, but applied to COVID-19 data.

3.4.4 Trajectory inference
Trajectory Inference (TI), alternatively referred to as pseudo-

temporal ordering, describes one common approach to identify the
underlying dynamic cellular processes. While clustering effectively
forms distinct groups of cell types and subtypes, it does not consider
the variability arising from dynamic cellular processes such as
transient cell states in cell differentiation, cell cycles, or
environmental influences. TI addresses this limitation by
arranging cells along a continuous path that minimizes
transcriptional alterations between consecutive cell pairs. This
arrangement, known as pseudotime (a one-dimensional

FIGURE 3
The main strategies used to analyze scRNA-seq count matrices. Clustering: By grouping cells based on their genetic expression cell types can be
guessed or functional phenotypes can be grouped together. There is a plethora of methods to do this, but themain ones can be grouped by algorithms that
consider the distances between the points in the feature space; community detection algorithms that leverage an inferred network from the distances of the
points; hierarchical configurations in the consideration of the building of a cluster. Trajectory inference: Single cell data is static, but due to the
abundance of cells in various states a trajectory of differentiation can be inferred. These trajectories can be very different depending on the experiment and
there are various tools that consider the different cases. DE and Enrichment: Differential expression is done in single-cell over aggregates of cells. There
methods to compare pairwise or over multiple clusters. With the differentially expressed genes, an enrichment can be run to look for enriched functional
pathways. Networks: The use of networks can encompass various types of interactions between cells and genes. There are variousmethodologies to infer the
networks, the most common one for interaction between cells is the expression or presence (via CITE-seq) of receptors in 1 cell and ligands in the other. A
more general way to look at interactions can be through coabundance,which does not exclude exosomeor other factors.On the gene level, gene regulatory
networks (GRN’s) are broadly used to model the effect of transcription factors and to look for hubs. Created with BioRender.com.
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manifold), signifies the progression of a cell through its dynamic
processes, as measured by the transcriptional changes that occur
during a biological process.

When considering which approach to use, an important factor is
the expected trajectory of cell differentiation. One type of cell can
differentiate into multiple types of cells (multi-branching) or just
two (bifurcation). There can also be a dedifferentiation process
(cycles), and a group of cells might not have a common progeny with

another group of cells (disconnected). This is referred to as the
topology of the trajectory (represented by a graph), and there are
algorithms that can try to deduce it, or you can specify the topology.
Another biological consideration is the specification of a starting cell
and/or end cell. When the expected topology is unknown,
trajectories and downstream hypotheses should be confirmed by
multiple trajectory inference methods using different underlying
assumptions. A thorough and updated resource, {dynverse} http://

TABLE 2 Overview of cell cluster annotation methods and their characteristics.

Method Category Description Pros Cons

CellTypist Classifier-
based

A pre-trained classifier that uses machine learning
algorithms for cell-type annotation, based on a reference
atlas of known cell types; considers a large set of genes

Efficient, automatic annotation,
generalizable

Affected by classifier type and training data
quality; difficult to assess, may require
manual verification

Clustifyr Classifier-
based

A pre-trained classifier that uses nearest centroid
classification; it is trained on previously annotated
datasets or atlases and considers a large set of genes

Efficient, automatic annotation,
generalizable

Affected by classifier type and training data
quality; difficult to assess, may require
manual verification

scArches Reference
mapping

A method that leverages autoencoders for integrating
and mapping query datasets to existing annotated
single-cell references, allowing for label transfer on the
resulting joint embedding

Automatic annotation, integrates
heterogeneous datasets

Affected by reference data quality, model,
and dataset suitability, may require manual
verification

Symphony Reference
mapping

A method that uses mutual nearest neighbors and
graph-based signal propagation for mapping to existing
annotated single-cell references, enabling label transfer
on the resulting joint embedding

Automatic annotation, scalable,
robust to batch effects

Affected by reference data quality, model,
and dataset suitability, may require manual
verification

Azimuth Reference
mapping

A web-based tool that uses Seurat v4 for reference-based
mapping and label transfer; performs label transfer on
the resulting joint embedding by finding nearest
neighbors in the reference data

Automatic annotation, user-
friendly interface, handles diverse
datasets

Affected by reference data quality, model,
and dataset suitability, may require manual
verification

TABLE 3 Overview of applications of scRNAseq for cancer research.

Technology Experiment References

Annotating Identification of cell identities in various tissues, examining the heterogeneity of the TME and its effects on the course of the
disease

Tirosh et al. (2016)

Annotating Showed how the activation of hallmarks can be achieved in many ways Kinker et al. (2019)

Annotating Proposed an algorithm to predict the complexity of the development of a neoplasm Woo et al. (2019)

Trajectory Inference Detailed transitions happening in the TME from ulcerative colitis to UC-associated colon cancer Wang et al. (2021)

Trajectory Inference Localized two distinct transcriptional trajectories in Willms cancer Young et al. (2018)

Trajectory Inference Conducted trajectory inference analyses on infiltrating T cells in cases of liver cancer Zhang et al. (2019)

Trajectory Inference Detected transitions between cellular states in small-cell lung cancer Guo et al. (2018)

Differential Expression Developed an algorithm (HEART) to detect differentially expressed genes in cancer Yuan et al. (2022)

Differential Expression Analysed the deregulation of angiogenesis in two types of bone cancer Feleke et al. (2022)

Gene Regulatory Networks Described a complex handling of EMT by a network of transcription factors Nam et al. (2021)

Gene Regulatory Networks Showed advantage of single-cell over bulk transcriptomics in identifying a population of cells in melanoma Wouters et al. (2020)

Gene Regulatory Networks Found stemness related populations in hepatocellular carcinoma Ho et al. (2019)

Cellular Interactions Attempted to find pan-cancer interactions; found that a subset of tumor-associated macrophages may regulate the
abundance of dysfunctional T cells through cytokine/chemokine signaling

Hong et al. (2021)

Cellular Interactions Probed the TME surrounding co-opted vessels in lung cancer metastasis; inferred interactions through the expression of
receptors and ligands, suggesting a putative involvement of macrophage subtypes in tumor-vessel cooption

Teuwen et al. (2021)

Cellular Interactions Found that tumor-associated macrophages suppress tumor T cell infiltration and TIGIT-NECTIN2 interaction regulates
the immunosuppressive environment

Ho et al. (2021)
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guidelines.dynverse.org/, even has a decision tree to help decide
what analysis to use. Outstanding mentions include PAGA (Wolf
et al., 2019) for free trajectories, PAGA Tree (op. cit) and Slingshot
(Street et al., 2018) for tree like trajectories.

The inferred trajectories may, however, not coincide with actual
biologic entities. That is why pseudotime measures that take
advantage of the biological information available mey help in
adhering to the biology. RNA-velocity (Manno et al., 2018) relies
on the presence of spliced vs. unspliced RNA and places a cell later
or sooner in time according to where in the spectrum with respect to
other cells it lies on. It is however limited to data that has been fully
sequenced and assumes constant splicing rates, which can be verified
by how the splicing rates are distributed. The most accepted tool for
this inference is CellRank (Lange et al., 2022) with the use of the
scVelo algorithm (Bergen et al., 2020). Other biological factors can
be incorporated via lineage tracing, wherein various factors like
naturally occurring genetic mutations, Cas9 perturbation data
among other things are used. Tools that implement this are
Cassiopea (Jones et al., 2020) and LineageOT (Forrow and
Schiebinger, 2021).

3.4.5 Differential expression and gene set
enrichment

With the annotation of clusters, there is already rich information
about the heterogeneity of the sample, but the depth of the data can
be further explored to look for variations at the gene level.
Differential gene expression can be used to propose biological
targets, check for differences in treatment, and support further
downstream analysis. Additionally, a more accurate list of marker
genes for cluster annotation could be obtained from more
sophisticated methods. The expression of a gene can be plotted
as a gradient to see how it changes along the population, but
quantification needs to account for the various effects of cell
variance, sample variance, and methodological variance when
comparing genes. There are two broad approaches to consider
these variations: the pseudo-bulk and the individual cell approach.
Pseudo-bulks aggregate the gene expressions of all cells in labels
(clusters) and compare expressions of genes across labels by taking
advantage of methods already used in bulk RNA-seq. The best
ranking and most widely used (Heumos et al., 2023) are DeSeq2
(Love et al., 2014), limma (Ritchie et al., 2015) and edgeR (Robinson
et al., 2010). They can also be weighted by ZINB-Wave (Risso et al.,
2018) to consider non biological zeroes and the stochasticity of
the data.

The variation across cells has been modelled with various
distributions including GLM, GAM and Hurdle models, as well
as non parametric models. There exist methods that perform
comparisons against many labels at once but they are very costly
in computational resources and do not perform much better, so we
will stick to the bimodal models. The most popular and successful
one is MAST (Finak et al., 2015). It uses generalized linear hurdle
models that consider the zero counts. It is less time consuming than
pseudo-bulk methods with weights. Sadly it has been demonstrated
to underestimate the variability of gene expression and have a
tendency to misclassify highly expressed genes as exhibiting
differential expression (Squair et al., 2021), when compared to
the pseudo-bulk methods. A good candidate that considers the
cell-level, does not misclassify highly expressed genes and is

much faster than some similar methods is NEBULA (He et al.,
2021). It has also been benchmarked against MAST and other
popular methods and has resulted the best overall in several metrics.

Building on top of differential expression, to be able to hint at
more functional aspects of the tissue, the enrichment of a set of genes
or gene profiles can be searched for in an enrichment cluster. To this
end, enrichment frameworks such as decoupleR (i Mompel et al.,
2022) provide access to different databases and methods in a single
tool. Another proponent that works well with the scanpy framework
is GSEApy (Fang et al., 2022) which leverages the GO database.
Enrichment methods developed for bulk transcriptomics can be
applied to scRNA-seq, but some single-cell-based methods, such as
Pagoda (Fan et al., 2016), might outperform them. Although cluster
analysis falls short in revealing the continuous range of states and the
gene expression programs (GEPs) that are shared across various cell
types, scAAnet, an autoencoder for single-cell non-linear archetypal
analysis, has the ability to detect GEPs and deduce the proportional
activity of each GEP among different cells (Wang and Zhao, 2022).

3.4.6 Networks
As has been shown in the previous sections, the use of

methodologies that use graphs as mathematical objects is
extensive. There are, however, ways to use networks in single-cell
analysis that leverage many of their properties, such as their
mesoscopic quantities and the ability to model dynamic processes
with their help. Chief among these are the inference of cell-cell
communication and gene regulatory networks (GRN’s).

Inference of cell-cell communication is mainly done by
differential expression of ligands and receptors in clusters.
However, the extracellular matrix, transporters, physical
interactions, and secreted vesicles can also be taken into account
(Türei et al., 2021). A recent review (Dimitrov et al., 2022) considers
the methods that just use ligand-receptor interaction and finds that
the libraries they use do not have much overlap. These tools use
varied basic statistical inferences, and cross-talk weighs the scores
with the probability of autocrine signaling. The authors recommend
using their tool LIANA, which provides an overall ranking for
several combinations of methods. Additionally, there are
frameworks that go on to infer inter-cellular signalling and
functions from the receptor-ligand interactions like NicheNet
(Browaeys et al., 2020). The performance of this tools depends
on the tissue, and their approach seems to favor co-localized
interactions. It is recommended to support this inferences with
spatial transcriptomics. The networks obtained thusly can then be
analyzed for connectivity, hubs and dynamic changes.

Gene regulatory networks draw inspiration from intracellular
regulations such as transcription factors, second messengers,
enhancers, and promoters. They use measures of co-expression,
either in a snapshot or over time, to infer a connection between two
genes and ultimately construct a network. The literature contains
various measures of co-expression, although it is accepted that linear
correlations cannot capture the complexity of the regulations
occurring within cells. Two leading candidates are Mutual
Information and Spearman correlation. Mutual information
requires many samples to reconstruct the probability distribution
functions but is the measure that can generally capture these
regulations more comprehensively because a low score in mutual
information indicates statistical independence between genes, which
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cannot be ascertained with other measures. The actual biological
information is very complex to decipher, as the presence of co-
expression does not necessarily mean a direct regulation from one
gene to another. The pioneering work by Margolin et al. (Margolin
et al., 2006) that proposed mutual information as a viable candidate
for modelling gene expression continues to be applied in various
algorithms. One that is very scalable is ARACNEap (Lachmann
et al., 2016), which uses and adjustable discretization of the gene
expression values to reduce computation time. Care has to be taken
when implementing this algorithms to single-cell data because of the
sparsity. Nevertheless, a correlation has often been observed
between sets of interconnected genes and a physiological
function. Frameworks like Epoch (Su et al., 2022) or CellOracle
(Kamimoto et al., 2023), take advantage of this fact to propose
alterations in the expression of hubs of communities that can direct
differentiation to another cell type.

Some other projects that are widely used are SCODE
(Matsumoto et al., 2017), PIDC (Chan et al., 2017), SCENIC
(Aibar et al., 2017), though they have been shown to perform
poorly (Chen and Mar 2018). There have also been attempts to
leverage neural networks to infer GRN’s like with ScGRNs (Turki
and Taguchi, 2020). To assess the performance of this emergent
algorithms, BEELINE (Pratapa et al., 2020) proposes a framework to
evaluate them, with the help of literature curated Boolean networks,
predictable trajectories and other means.

4 Selected applications in cancer

The elucidating analyses that can be applied with single-cell
transcriptomics have been used in all kinds of experiments to
explore the intricacies of cancer. We have outlined important
papers for every topic in Table 3. First, just by annotating the
cell identities in various tissues, the heterogeneity of the TME and its
effects on the course of the disease has grown. For example, while
bulk sequencing classifies melanoma as MITF-high or AXL-high, at
the single-cell level, every tumor contains malignant cells
corresponding to both states (Tirosh et al., 2016). Also, in a
study by Kinker et al. (Kinker et al., 2019), it is shown how the
activation of hallmarks can be achieved in various ways. Researchers
have observed that both EMT and senescence are associated with
precise phenotypes and well-defined regulators during development
and wound healing. However, in the context of tumors and cancer
cell lines, these researchers have observed only partial phenotypes
and limited dependence on these regulators. Kinker et al. (2019), on
the other hand, puts a limit on the expression diversity observed in
patient samples. In contrast, Woo and others (Woo et al., 2019)
proposed an algorithm for predicting the complexity of neoplasm
development as a prognostic marker based on the composition of
the TME.

A malignant tumour can have multiple differentiation and
dedifferentiation processes happening in its cells as well as in its
surroundings. That is why trajectory inference has been used to detail
the kind of transitions that happen in the TME. In a study by (Wang
et al., 2021) the precise cellular composition and developmental
trajectory from ulcerative colitis (UC) to UC-associated colon
cancer was analyzed, and it was predicted that CD74, CLCA1,
and DPEP1 played a potential role in disease progression.

(Young et al., 2018). localized two distinct transcriptional
trajectories in Wilms cancer. These trajectories correspond to the
development of nephrogenic rest cells and Wilms cancer cells,
respectively, and provide support for the hypothesis that Wilms
tumor cells arise due to anomalies in fetal nephrogenesis originating
from cells of the urethric bud. Similarly, trajectory inference analyses
conducted on infiltrating T cells in cases of liver cancer (Zhang et al.,
2019) and small-cell lung cancer, like from (Guo et al., 2018) have
detected transitions between cellular states, specifically between the
proliferating/activated state and the exhausted state.

The cellular heterogeneity in cancer poses a challenge to
differential expression analysis. That is why (Yuan et al., 2022)
developed an algorithm to detect differentially expressed genes in
cancer called HEART.With this tool they identified several potential
blood based biomarkers associated with colorectal cancer metastasis.
Another study by (Feleke et al., 2022) analysed the deregulation of
angiogenesis in two types of bone cancer; giant cell tumor bone
andosteosarcoma. It found that the deregulation of the different
VEGF factors is tissue specific and can be used as target treatment.

Gene regulatory networks can provide another way of identifying
the functionality of the cells in cancer and their possible evolution.
(Nam et al., 2021). describes a complex handling of EMT by a
network of transcription factors such as SNAI1, SNAI2, ZEB1,
TWIST1 and other regulators. (Wouters et al., 2020) in turn,
show how single-cell has an advantage over bulk transcriptomics,
by identifying a population of cells in melanoma that had been
thought of as 2 cell types, melanocyte and mesenchymal, was
confirmed as just one intermediate state with both expression
programs. (Ho et al., 2019) found stemness related populations
in hepatocellular carcinoma.

Cellular interactions are extremely important especially because
the tumor has the ability to shape its TME. (Hong et al., 2021) tried
to find pan-cancer interactions and found that a subset of tumor-
associated macrophages (TAM), PLTP + C1QC + TAMs, may
regulate the abundance of dysfunctional T cells through cytokine/
chemokine signaling. More specifically (Teuwen et al., 2021) probed
the TME surrounding co-opted vessels in lung cancer metastasis.
Transcriptomic results, with the inference of interactions through
the expression of receptors and ligands, may suggest a putative
involvement of macrophage subtypes in tumor-vessel cooption. Also
there are various advancements understanding immunoedition. (Ho
et al., 2021) found that tumor-associated macrophages suppress
tumor T cell infiltration and TIGIT-NECTIN2 interaction regulates
the immunosuppressive environment.

Taken together all these applications are part of a new approach
to cancer where the heterogeneity in the TME is paramount. Be it by
finding rare cell types, considering various interactions or describing
new differentiation pathways. One could think this applications help
mostly for precision medicine, but the understanding of the
physiology has also advanced because of this technology.

4.1 Single cell approaches are marking a
difference in oncology studies

Single-cell technologies have had a transformative impact on
cancer research by enabling researchers to delve into the
heterogeneity of tumors at an unprecedented level of detail
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(Ortega et al., 2017; Fan et al., 2018; Levitin et al., 2018; Ding et al.,
2020; Wu F. et al., 2021). Some critical applications of single-cell
technologies in cancer research and how their continued use is
expected to further transform the field are shown below:

Single-cell RNA sequencing (scRNA-seq) has revealed the
immense heterogeneity within tumors, identifying various cell
types and transcriptional states (Nieto et al., 2021; Blise et al.,
2022; Li C. et al., 2023). Researchers have used this technology to
dissect clonal evolution (Losic et al., 2020; Miles et al., 2020; Morita
et al., 2020; Nam et al., 2021), identifying driver mutations (Li et al.,
2012; Roerink et al., 2018; Huang Z. et al., 2022), and tracking the
emergence of drug-resistant subclones (Prieto-Vila et al., 2019; Liu
L. et al., 2023; Li X. et al., 2023). Continued use of single-cell
technologies will provide deeper insights into the evolution of
tumors over time. This understanding is crucial for developing
personalized treatment strategies and targeting therapy-resistant
cell populations (Ding et al., 2020; Wang X. et al., 2022).

Single-cell approaches have been also instrumental in
characterizing the tumor microenvironment, identifying different
immune cell populations, and deciphering their functional states
(Guo et al., 2018; Yuan et al., 2019; Van der Leun et al., 2020; Ren
et al., 2021). This has led to discoveries related to immune evasion
mechanisms in cancer (Sun et al., 2021; LiuW. et al., 2023). Ongoing
use of single-cell technologies will contribute to the development of
more effective immunotherapies (Gohil et al., 2021; Heinrich et al.,
2021). Researchers will be able to design therapies that target specific
immune cell subsets or reverse immunosuppressive signals within
the tumor microenvironment (Davis-Marcisak et al., 2021).

Single-cell techniques have as well enabled the identification of
rare and previously overlooked cell types within tumors, such as
cancer stem cells or metastasis-initiating cells (Lawson et al., 2015;
Kester and Van Oudenaarden, 2018; Orrapin et al., 2023). These
discoveries have profound implications for understanding tumor
initiation and progression. Continued use will likely uncover even
rarer cell types and their roles in cancer. Targeting these cell
populations could lead to novel therapeutic strategies.

Single-cell genomics has provided insights into the molecular
mechanisms underlying drug resistance (Eyler et al., 2020). By
profiling single cells, researchers have identified subpopulations with
distinct resistance mechanisms (Tirier et al., 2021). The ongoing
application of single-cell technologies will facilitate the development
of more effective targeted therapies and strategies to overcome drug
resistance. Precision medicine will become increasingly tailored to
individual patients based on their tumor’s unique molecular profile.

ScRNASeq analysis of circulating tumor cells (CTCs) and cell-
free DNA (cfDNA) has enabled early cancer detection and
monitoring (Eyler et al., 2020). This has implications for cancer
screening and tracking treatment responses. As single-cell
technologies continue to improve, the sensitivity and specificity
of liquid biopsies will increase (Li et al., 2019; Lim et al., 2019; Pei
et al., 2020). This non-invasive approach may become a routine part
of cancer diagnosis and treatment monitoring (Li et al., 2022; Zhou
et al., 2022).

One must also consider how related approaches such as single-
cell epigenomic profiling have revealed epigenetic alterations in
cancer cells that drive gene expression changes (Pierce et al.,
2021; Casado-Pelaez et al., 2022). Spatial profiling techniques
provide insights into the spatial organization of cells within

tumors (Wu S. Z. et al., 2021). Combining single-cell
transcriptomics with epigenomics and spatial data will offer a
holistic view of the tumor (Ogbeide et al., 2022; Preissl et al.,
2023). This integrated approach will elucidate the regulatory
networks that govern cancer cell behavior and potentially identify
new therapeutic targets.

Hence, single-cell technologies have already revolutionized cancer
research by providing a deeper understanding of tumor heterogeneity,
immune responses, and drug resistance mechanisms. Their continued
use is expected to drive further discoveries, leading to more precise
diagnostics, targeted therapies, and personalized treatment approaches.
As these technologies become more accessible and sophisticated, they
hold the potential to transform cancer research and patient care in the
years to come (Suvà and Tirosh, 2019; Janiszewska et al., 2020; Wu F.
et al., 2021).

5 Conclusion

We have presented here the state of the art in approaching the
study of cancer through the means of single cell transcriptome
sequencing. A summary of the latest methods and technologies to
carry out this experiments and some interesting applications.
Though there is a lack of golden standards to use, there is a lot
of ingenuity in the new methods being developed and there is a
constant effort to benchmark them independently.

The applications that continue to arise thanks to this technology
go from building an atlas of the possible expression profiles in all
types of cancers, through proposal of prognostic markers,
elucidation of therapy resistance, explanation of alternative
cancer hallmarks mechanisms, verification of cell lines and
organoid simulations, inference of mechanisms of immune
edition to proposal of targeted therapeutic agents.

scRNA-seq lies at the middle of all the possible molecular
pathways that can be sequenced and can be greatly enhanced by
aggregating it with spatial information and the other omics.

Author contributions

EP-O: Conceptualization, Investigation, Writing–original draft.
EH-L: Conceptualization, Investigation, Writing–review and editing.
GA-J: Conceptualization, Investigation, Writing–review and editing.

Funding

The author(s) declare financial support was received for the
research, authorship, and/or publication of this article. This work
has been supported by Intramural Funds from the National Institute
of Genomic Medicine, Project 494-2022.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Frontiers in Genetics frontiersin.org14

Paas-Oliveros et al. 10.3389/fgene.2023.1256991

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1256991


Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Aibar, S., González-Blas, C. B., Moerman, T., Huynh-Thu, V. A., Imrichova, H.,
Hulselmans, G., et al. (2017). Scenic: single-cell regulatory network inference and
clustering. Nat. Methods 14, 1083–1086. doi:10.1038/nmeth.4463

Aicher, T. P., et al. (2019). Single cell methods, sequencing and proteomics. Nat.
Methods 1979, 111–132.

Alcalá-Corona, S. A., Sandoval-Motta, S., Espinal-Enriquez, J., and Hernandez-
Lemus, E. (2021). Modularity in biological networks. Front. Genet. 12, 701331.
doi:10.3389/fgene.2021.701331

Amid, E., and Warmuth, M. K. (2019). Trimap: large-scale dimensionality reduction
using triplets. arXiv preprint arXiv:1910.00204.

Andrews, T. S., andHemberg, M. (2018). M3drop: dropout-based feature selection for
scrnaseq. Bioinformatics 35, 2865–2867. doi:10.1093/bioinformatics/bty1044

Anuar, S. H. H., Abas, Z. A., Yunos, N. M., Zaki, N. H. M., Hashim, N. A., Mokhtar,
M. F., et al. (2021). Comparison between louvain and leiden algorithm for network
structure: a review. J. Phys. Conf. Ser. 2129, 012028. doi:10.1088/1742-6596/2129/1/
012028

Ascensión, A., Ibáñez-Solé, O., Inza, I., Izeta, A., and Araúzo-Bravo, M. J. (2022).
Triku: a feature selection method based on nearest neighbors for single-cell data.
GigaScience 11, giac017. doi:10.1093/gigascience/giac017

Bacher, R., and Kendziorski, C. (2016). Design and computational analysis of single-
cell rna-sequencing experiments. Genome Biol. 17, 63–14. doi:10.1186/s13059-016-
0927-y

Baran-Gale, J., Chandra, T., and Kirschner, K. (2018). Experimental design for single-
cell rna sequencing. Briefings Funct. genomics 17, 233–239. doi:10.1093/bfgp/elx035

Barron, M., and Li, J. (2016). Identifying and removing the cell-cycle effect from
single-cell rna-sequencing data. Sci. Rep. 6, 33892. doi:10.1038/srep33892

Bell, C. C., Fennell, K. A., Chan, Y.-C., Rambow, F., Yeung, M.M., Vassiliadis, D., et al.
(2019). Targeting enhancer switching overcomes non-genetic drug resistance in acute
myeloid leukaemia. Nat. Commun. 10, 2723. doi:10.1038/s41467-019-10652-9

Bergen, V., Lange, M., Peidli, S., Wolf, F. A., and Theis, F. J. (2020). Generalizing rna
velocity to transient cell states through dynamical modeling. Nat. Biotechnol. 38,
1408–1414. doi:10.1038/s41587-020-0591-3

Birnbaum,K.D. (2018). Power in numbers: single-cell rna-seq strategies to dissect complex
tissues. Annu. Rev. Genet. 52, 203–221. doi:10.1146/annurev-genet-120417-031247

Blise, K. E., Sivagnanam, S., Banik, G. L., Coussens, L. M., and Goecks, J. (2022).
Single-cell spatial architectures associated with clinical outcome in head and neck
squamous cell carcinoma. NPJ Precis. Oncol. 6, 10. doi:10.1038/s41698-022-00253-z

Blondel, V. D., Guillaume, J.-L., Lambiotte, R., and Lefebvre, E. (2008). Fast unfolding
of communities in large networks. J. Stat. Mech. theory Exp. 2008, P10008. doi:10.1088/
1742-5468/2008/10/p10008

Borella, M., Martello, G., Risso, D., and Romualdi, C. (2021). Psinorm: a scalable
normalization for single-cell rna-seq data. Bioinformatics 38, 164–172. doi:10.1093/
bioinformatics/btab641

Both, C., Dehmamy, N., Yu, R., and Barabási, A.-L. (2023). Accelerating network
layouts using graph neural networks. Nat. Commun. 14, 1560. doi:10.1038/s41467-023-
37189-2

Browaeys, R., Saelens, W., and Saeys, Y. (2020). Nichenet: modeling intercellular
communication by linking ligands to target genes. Nat. Methods 17, 159–162. doi:10.
1038/s41592-019-0667-5

Burrell, R. A., McGranahan, N., Bartek, J., and Swanton, C. (2013). The causes and
consequences of genetic heterogeneity in cancer evolution. Nature 501, 338–345. doi:10.
1038/nature12625

Casado-Pelaez, M., Bueno-Costa, A., and Esteller, M. (2022). Single cell cancer
epigenetics. Trends Cancer 8, 820–838. doi:10.1016/j.trecan.2022.06.005

Chan, T. E., Stumpf, M. P., and Babtie, A. C. (2017). Gene regulatory network
inference from single-cell data using multivariate information measures. Cell Syst. 5,
251–267. doi:10.1016/j.cels.2017.08.014

Chari, T., and Pachter, L. (2022). The specious art of single-cell genomics. bioRxiv.
doi:10.1101/2021.08.25.457696

Chen, S., and Mar, J. C. (2018). Evaluating methods of inferring gene regulatory
networks highlights their lack of performance for single cell gene expression data. BMC
Bioinforma. 19, 232. doi:10.1186/s12859-018-2217-z

Dal Molin, A., and Di Camillo, B. (2019). How to design a single-cell rna-sequencing
experiment: pitfalls, challenges and perspectives. Briefings Bioinforma. 20, 1384–1394.
doi:10.1093/bib/bby007

Dann, E., Cujba, A.-M., Oliver, A. J., Meyer, K. B., Teichmann, S. A., andMarioni, J. C.
(2023). Precise identification of cell states altered in disease using healthy single-cell
references. Nat. Genet. 1. doi:10.1038/s41588-023-01523-7

Dar, R. D., Razooky, B. S., Singh, A., Trimeloni, T. V., McCollum, J. M., Cox, C. D.,
et al. (2012). Transcriptional burst frequency and burst size are equally modulated
across the human genome. Proc. Natl. Acad. Sci. 109, 17454–17459. doi:10.1073/pnas.
1213530109

Davis, A., Gao, R., and Navin, N. E. (2019). Scopit: sample size calculations for single-cell
sequencing experiments. BMC Bioinforma. 20, 566–6. doi:10.1186/s12859-019-3167-9

Davis-Marcisak, E. F., Deshpande, A., Stein-O’Brien, G. L., Ho, W. J., Laheru, D.,
Jaffee, E. M., et al. (2021). From bench to bedside: single-cell analysis for cancer
immunotherapy. Cancer Cell 39, 1062–1080. doi:10.1016/j.ccell.2021.07.004

DeLaughter, D. M. (2018). The Use of the fluidigm C1 for RNA expression analyses of
aingle cells. Curr. Protoc. Mol. Biology 122, e55.

Dimitriu, M. A., Lazar-Contes, I., Roszkowski, M., and Mansuy, I. M. (2022). Single-
cell multiomics techniques: from conception to applications. Front. Cell Dev. Biol. 10,
854317. doi:10.3389/fcell.2022.854317

Dimitrov, D., Türei, D., Garrido-Rodriguez, M., Burmedi, P. L., Nagai, J. S., Boys, C.,
et al. (2022). Comparison of methods and resources for cell-cell communication
inference from single-cell rna-seq data. Nat. Commun. 13, 3224. doi:10.1038/
s41467-022-30755-0

Ding, J., and Regev, A. (2021). Deep generative model embedding of single-cell rna-
seq profiles on hyperspheres and hyperbolic spaces. Nat. Commun. 12, 2554. doi:10.
1038/s41467-021-22851-4

Ding, S., Chen, X., and Shen, K. (2020). Single-cell rna sequencing in breast cancer:
understanding tumor heterogeneity and paving roads to individualized therapy. Cancer
Commun. 40, 329–344. doi:10.1002/cac2.12078

Dohmen, J., Baranovskii, A., Ronen, J., Uyar, B., Franke, V., and Akalin, A. (2022).
Identifying tumor cells at the single-cell level using machine learning. Genome Biol. 23,
123. doi:10.1186/s13059-022-02683-1

Dong, X., Wang, F., Liu, C., Ling, J., Jia, X., Shen, F., et al. (2021). Single-cell analysis
reveals the intra-tumor heterogeneity and identifies mlxipl as a biomarker in the cellular
trajectory of hepatocellular carcinoma. Cell death Discov. 7, 14. doi:10.1038/s41420-021-
00403-5

Ester, M., Kriegel, H.-P., Sander, J., and Xu, X. (1996). A density-based algorithm for
discovering clusters in large spatial databases with noise. KDD’96 1996, 226–231.

Eyler, C. E., Matsunaga, H., Hovestadt, V., Vantine, S. J., van Galen, P., and Bernstein,
B. E. (2020). Single-cell lineage analysis reveals genetic and epigenetic interplay in
glioblastoma drug resistance. Genome Biol. 21, 174–221. doi:10.1186/s13059-020-
02085-1

Fan, J., Lee, H.-O., Lee, S., Ryu, D.-e., Lee, S., Xue, C., et al. (2018). Linking
transcriptional and genetic tumor heterogeneity through allele analysis of single-cell
rna-seq data. Genome Res. 28, 1217–1227. doi:10.1101/gr.228080.117

Fan, J., Salathia, N., Liu, R., Kaeser, G. E., Yung, Y. C., Herman, J. L., et al. (2016).
Characterizing transcriptional heterogeneity through pathway and gene set
overdispersion analysis. Nat. Methods 13, 241–244. doi:10.1038/nmeth.3734

Fang, Z., Liu, X., and Peltz, G. (2022). GSEApy: a comprehensive package for
performing gene set enrichment analysis in Python. Bioinformatics 39, btac757.
doi:10.1093/bioinformatics/btac757

Feleke, M., Feng, W., Song, D., Li, H., Rothzerg, E., Wei, Q., et al. (2022). Single-cell
rna sequencing reveals differential expression of egfl7 and vegf in giant-cell tumor of
bone and osteosarcoma. Exp. Biol. Med. 247, 1214–1227. doi:10.1177/
15353702221088238

Finak, G., McDavid, A., Yajima, M., Deng, J., Gersuk, V., Shalek, A. K., et al. (2015).
Mast: a flexible statistical framework for assessing transcriptional changes and
characterizing heterogeneity in single-cell rna sequencing data. Genome Biol. 16,
278. doi:10.1186/s13059-015-0844-5

Fleming, S. J., Chaffin, M. D., Arduini, A., Akkad, A.-D., Banks, E., Marioni, J. C., et al.
(2022). Unsupervised removal of systematic background noise from droplet-based
single-cell experiments using cellbender. bioRxiv. doi:10.1101/791699

Frontiers in Genetics frontiersin.org15

Paas-Oliveros et al. 10.3389/fgene.2023.1256991

https://doi.org/10.1038/nmeth.4463
https://doi.org/10.3389/fgene.2021.701331
https://doi.org/10.1093/bioinformatics/bty1044
https://doi.org/10.1088/1742-6596/2129/1/012028
https://doi.org/10.1088/1742-6596/2129/1/012028
https://doi.org/10.1093/gigascience/giac017
https://doi.org/10.1186/s13059-016-0927-y
https://doi.org/10.1186/s13059-016-0927-y
https://doi.org/10.1093/bfgp/elx035
https://doi.org/10.1038/srep33892
https://doi.org/10.1038/s41467-019-10652-9
https://doi.org/10.1038/s41587-020-0591-3
https://doi.org/10.1146/annurev-genet-120417-031247
https://doi.org/10.1038/s41698-022-00253-z
https://doi.org/10.1088/1742-5468/2008/10/p10008
https://doi.org/10.1088/1742-5468/2008/10/p10008
https://doi.org/10.1093/bioinformatics/btab641
https://doi.org/10.1093/bioinformatics/btab641
https://doi.org/10.1038/s41467-023-37189-2
https://doi.org/10.1038/s41467-023-37189-2
https://doi.org/10.1038/s41592-019-0667-5
https://doi.org/10.1038/s41592-019-0667-5
https://doi.org/10.1038/nature12625
https://doi.org/10.1038/nature12625
https://doi.org/10.1016/j.trecan.2022.06.005
https://doi.org/10.1016/j.cels.2017.08.014
https://doi.org/10.1101/2021.08.25.457696
https://doi.org/10.1186/s12859-018-2217-z
https://doi.org/10.1093/bib/bby007
https://doi.org/10.1038/s41588-023-01523-7
https://doi.org/10.1073/pnas.1213530109
https://doi.org/10.1073/pnas.1213530109
https://doi.org/10.1186/s12859-019-3167-9
https://doi.org/10.1016/j.ccell.2021.07.004
https://doi.org/10.3389/fcell.2022.854317
https://doi.org/10.1038/s41467-022-30755-0
https://doi.org/10.1038/s41467-022-30755-0
https://doi.org/10.1038/s41467-021-22851-4
https://doi.org/10.1038/s41467-021-22851-4
https://doi.org/10.1002/cac2.12078
https://doi.org/10.1186/s13059-022-02683-1
https://doi.org/10.1038/s41420-021-00403-5
https://doi.org/10.1038/s41420-021-00403-5
https://doi.org/10.1186/s13059-020-02085-1
https://doi.org/10.1186/s13059-020-02085-1
https://doi.org/10.1101/gr.228080.117
https://doi.org/10.1038/nmeth.3734
https://doi.org/10.1093/bioinformatics/btac757
https://doi.org/10.1177/15353702221088238
https://doi.org/10.1177/15353702221088238
https://doi.org/10.1186/s13059-015-0844-5
https://doi.org/10.1101/791699
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1256991


Forrow, A., and Schiebinger, G. (2021). Lineageot is a unified framework for lineage
tracing and trajectory inference. Nat. Commun. 12, 4940. doi:10.1038/s41467-021-
25133-1

Fu, R., Gillen, A. E., Sheridan, R. M., Tian, C., Daya, M., Hao, Y., et al. (2020). clustifyr:
an r package for automated single-cell rna sequencing cluster classification.
F1000Research 9, 223. doi:10.12688/f1000research.22969.2

Gao, R., Bai, S., Henderson, Y. C., Lin, Y., Schalck, A., Yan, Y., et al. (2021).
Delineating copy number and clonal substructure in human tumors from single-cell
transcriptomes. Nat. Biotechnol. 39, 599–608. doi:10.1038/s41587-020-00795-2

Gerdes, M. J., Sevinsky, C. J., Sood, A., Adak, S., Bello, M. O., Bordwell, A., et al.
(2013). Highly multiplexed single-cell analysis of formalin-fixed, paraffin-embedded
cancer tissue. Proc. Natl. Acad. Sci. 110, 11982–11987. doi:10.1073/pnas.1300136110

Gohil, S. H., Iorgulescu, J. B., Braun, D. A., Keskin, D. B., and Livak, K. J. (2021).
Applying high-dimensional single-cell technologies to the analysis of cancer
immunotherapy. Nat. Rev. Clin. Oncol. 18, 244–256. doi:10.1038/s41571-020-00449-x

Guillaumet-Adkins, A., Rodríguez-Esteban, G., Mereu, E., Mendez-Lago, M., Jaitin,
D. A., Villanueva, A., et al. (2017). Single-cell transcriptome conservation in
cryopreserved cells and tissues. Genome Biol. 18, 45–15. doi:10.1186/s13059-017-
1171-9

Guo, X., Zhang, Y., Zheng, L., Zheng, C., Song, J., Zhang, Q., et al. (2018). Global
characterization of t cells in non-small-cell lung cancer by single-cell sequencing. Nat.
Med. 24, 978–985. doi:10.1038/s41591-018-0045-3

Hagemann-Jensen, M., Ziegenhain, C., Chen, P., Ramsköld, D., Hendriks, G-J.,
Larsson, A. J. M., et al. (2020). Single-cell RNA counting at allele and isoform
resolution using Smart-seq3. Nat. Biotechnol. 38, 708–714.

Haghverdi, L., Lun, A. T. L., Morgan, M. D., and Marioni, J. C. (2018). Batch effects in
single-cell rna-sequencing data are corrected by matching mutual nearest neighbors.
Nat. Biotechnol. 36, 421–427. doi:10.1038/nbt.4091

Hahaut, V., Pavlinic, D., Carbone, W., Schuierer, S., Balmer, P., Quinodoz, M., et al.
(2022). Fast and highly sensitive full-length single-cell RNA sequencing using FLASH-
seq. Nat. Biotechnol. 40, 1447–1451.

Hanahan, D. (2022). Hallmarks of cancer: new dimensions. Cancer Discov. 12, 31–46.
doi:10.1158/2159-8290.cd-21-1059

Hao, Y., Hao, S., Andersen-Nissen, E., Mauck, W. M., Zheng, S., Butler, A., et al.
(2021). Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587.e29.
doi:10.1016/j.cell.2021.04.048

He, L., Davila-Velderrain, J., Sumida, T. S., Hafler, D. A., Kellis, M., and Kulminski, A.
M. (2021). Nebula is a fast negative binomial mixed model for differential or co-
expression analysis of large-scale multi-subject single-cell data. Commun. Biol. 4, 629.
doi:10.1038/s42003-021-02146-6

Heinrich, S., Craig, A. J., Ma, L., Heinrich, B., Greten, T. F., and Wang, X. W. (2021).
Understanding tumour cell heterogeneity and its implication for immunotherapy in
liver cancer using single-cell analysis. J. Hepatology 74, 700–715. doi:10.1016/j.jhep.
2020.11.036

Heumos, L., Schaar, A. C., Lance, C., Litinetskaya, A., Drost, F., Zappia, L., et al.
(2023). Best practices for single-cell analysis across modalities. Nat. Rev. Genet. 1,
550–572. doi:10.1038/s41576-023-00586-w

Ho, D. W.-H., Tsui, Y.-M., Chan, L.-K., Sze, K. M.-F., Zhang, X., Cheu, J. W.-S., et al.
(2021). Single-cell rna sequencing shows the immunosuppressive landscape and tumor
heterogeneity of hbv-associated hepatocellular carcinoma. Nat. Commun. 12, 3684.
doi:10.1038/s41467-021-24010-1

Ho, D. W.-H., Tsui, Y.-M., Sze, K. M.-F., Chan, L.-K., Cheung, T.-T., Lee, E., et al.
(2019). Single-cell transcriptomics reveals the landscape of intra-tumoral heterogeneity
and stemness-related subpopulations in liver cancer. Cancer Lett. 459, 176–185. doi:10.
1016/j.canlet.2019.06.002

Hong, F., Meng, Q., Zhang, W., Zheng, R., Li, X., Cheng, T., et al. (2021). Single-cell
analysis of the pan-cancer immune microenvironment and sctime portal. Cancer
Immunol. Res. 9, 939–951. doi:10.1158/2326-6066.cir-20-1026

Hou, W., Ji, Z., Ji, H., and Hicks, S. C. (2020). A systematic evaluation of single-cell rna-
sequencing imputation methods. Genome Biol. 21, 218. doi:10.1186/s13059-020-02132-x

Hu, Y., An, Q., Sheu, K., Trejo, B., Fan, S., and Guo, Y. (2018). Single cell multi-omics
technology: methodology and application. Front. Cell Dev. Biol. 6, 28. doi:10.3389/fcell.
2018.00028

Huang, H., Wang, Y., Rudin, C., and Browne, E. P. (2022a). Towards a comprehensive
evaluation of dimension reduction methods for transcriptomic data visualization.
Commun. Biol. 5, 719. doi:10.1038/s42003-022-03628-x

Huang, Z., Sun, S., Lee, M., Maslov, A. Y., Shi, M., Waldman, S., et al. (2022b). Single-
cell analysis of somatic mutations in human bronchial epithelial cells in relation to aging
and smoking. Nat. Genet. 54, 492–498. doi:10.1038/s41588-022-01035-w

Huh, R., Yang, Y., Jiang, Y., Shen, Y., and Li, Y. (2019). Same-clustering: single-cell
aggregated clustering via mixture model ensemble. Nucleic Acids Res. 48, 86–95. doi:10.
1093/nar/gkz959

i Mompel, P. B., Santiago, J. V., Braunger, J., Geiss, C., Dimitrov, D., Müller-Dott, S.,
et al. (2022). decoupler: ensemble of computational methods to infer biological activities
from omics data. Bioinforma. Adv. 2, vbac016. doi:10.1093/bioadv/vbac016

Janiszewska, M., Primi, M. C., and Izard, T. (2020). Cell adhesion in cancer: beyond the
migration of single cells. J. Biol. Chem. 295, 2495–2505. doi:10.1074/jbc.REV119.007759

Jiang, A., Lehnert, K., Reid, S. J., Handley, R. R., Jacobsen, J. C., Rudiger, S. R., et al.
(2023). Isolated nuclei from frozen tissue are the superior source for single cell rna-seq
compared with whole cells, 2023–2102. bioRxiv.

Jiang, L., Chen, H., Pinello, L., and Yuan, G.-C. (2016). Giniclust: detecting rare cell
types from single-cell gene expression data with gini index. Genome Biol. 17, 144–213.
doi:10.1186/s13059-016-1010-4

Jin, Z., Huang, W., Shen, N., Li, J., Wang, X., Dong, J., et al. (2022). Single-cell gene
fusion detection by scFusion. Nat. Commun. 13, 1084. doi:10.1038/s41467-022-28661-6

Johnson, W. E., Li, C., and Rabinovic, A. (2007). Adjusting batch effects in microarray
expression data using empirical bayes methods. Biostatistics 8, 118–127. doi:10.1093/
biostatistics/kxj037

Jones, M. G., Khodaverdian, A., Quinn, J. J., Chan, M. M., Hussmann, J. A., Wang, R.,
et al. (2020). Inference of single-cell phylogenies from lineage tracing data using
cassiopeia. Genome Biol. 21, 92. doi:10.1186/s13059-020-02000-8

Kamimoto, K., Stringa, B., Hoffmann, C. M., Jindal, K., Solnica-Krezel, L., andMorris,
S. A. (2023). Dissecting cell identity via network inference and in silico gene
perturbation. Nature 614, 742–751. doi:10.1038/s41586-022-05688-9

Kang, J. B., Nathan, A., Weinand, K., Zhang, F., Millard, N., Rumker, L., et al. (2021).
Efficient and precise single-cell reference atlas mapping with symphony. Nat. Commun.
12, 5890. doi:10.1038/s41467-021-25957-x

Ke, M., Elshenawy, B., Sheldon, H., Arora, A., and Buffa, F. M. (2022). Single cell rna-
sequencing: a powerful yet still challenging technology to study cellular heterogeneity.
BioEssays 44, 2200084. doi:10.1002/bies.202200084

Kester, L., and Van Oudenaarden, A. (2018). Single-cell transcriptomics meets lineage
tracing. Cell stem Cell 23, 166–179. doi:10.1016/j.stem.2018.04.014

Kim, J., and DeBerardinis, R. J. (2019). Mechanisms and implications of metabolic
heterogeneity in cancer. Cell Metab. 30, 434–446. doi:10.1016/j.cmet.2019.08.013

Kinker, G. S., Greenwald, A. C., Tal, R., Orlova, Z., Cuoco, M. S., McFarland, J. M.,
et al. (2019). Pan-cancer single cell rna-seq uncovers recurring programs of cellular
heterogeneity. bioRxiv. doi:10.1101/807552

Kivioja, T., Vähärautio, A., Karlsson, K., Bonke, M., Enge, M., Linnarsson, S., et al.
(2012). Counting absolute numbers of molecules using unique molecular identifiers.
Nat. Methods 9, 72–74. doi:10.1038/nmeth.1778

Klimovskaia, A., Lopez-Paz, D., Bottou, L., and Nickel, M. (2020). Poincaré maps for
analyzing complex hierarchies in single-cell data. Nat. Commun. 11, 2966. doi:10.1038/
s41467-020-16822-4

Kobak, D., and Berens, P. (2019). The art of using t-sne for single-cell transcriptomics.
Nat. Commun. 10, 5416. doi:10.1038/s41467-019-13056-x

Kolodziejczyk, A. A., Kim, J. K., Svensson, V., Marioni, J. C., and Teichmann, S. A.
(2015). The technology and biology of single-cell rna sequencing.Mol. Cell 58, 610–620.
doi:10.1016/j.molcel.2015.04.005

Korsunsky, I., Millard, N., Fan, J., Slowikowski, K., Zhang, F., Wei, K., et al. (2019).
Fast, sensitive and accurate integration of single-cell data with harmony. Nat. Methods
16, 1289–1296. doi:10.1038/s41592-019-0619-0

Lachmann, A., Giorgi, F. M., Lopez, G., and Califano, A. (2016). ARACNe-AP: gene
network reverse engineering through adaptive partitioning inference of mutual
information. Bioinformatics 32, 2233–2235. doi:10.1093/bioinformatics/btw216

Lafzi, A., Moutinho, C., Picelli, S., and Heyn, H. (2018). Tutorial: guidelines for the
experimental design of single-cell rna sequencing studies. Nat. Protoc. 13, 2742–2757.
doi:10.1038/s41596-018-0073-y

Lange, M., Bergen, V., Klein, M., Setty, M., Reuter, B., Bakhti, M., et al. (2022).
Cellrank for directed single-cell fate mapping. Nat. Methods 19, 159–170. doi:10.1038/
s41592-021-01346-6

Lawson, D. A., Bhakta, N. R., Kessenbrock, K., Prummel, K. D., Yu, Y., Takai, K., et al.
(2015). Single-cell analysis reveals a stem-cell program in human metastatic breast
cancer cells. Nature 526, 131–135. doi:10.1038/nature15260

Lee, A. H., Koh, I. L., and Dawson, M. R. (2022). The role of exosome heterogeneity in
epithelial ovarian cancer. Adv. Cancer Biol. - Metastasis 4, 100040. doi:10.1016/j.adcanc.2022.
100040

Lee, T.-J., Wu, T., Kim, Y.-J., Park, J.-H., Lee, D. S., and Bhang, S. H. (2021).
Alternative method for trypsin-based cell dissociation using poly (amino ester)
coating and ph 6.0 pbs. J. Bioact. Compatible Polym. 36, 77–89. doi:10.1177/
0883911520981710

Levitin, H. M., Yuan, J., and Sims, P. A. (2018). Single-cell transcriptomic analysis of
tumor heterogeneity. Trends cancer 4, 264–268. doi:10.1016/j.trecan.2018.02.003

Li, C., Guan, R., Li, W., Wei, D., Cao, S., Xu, C., et al. (2023a). Single-cell rna
sequencing reveals tumor immune microenvironment in human hypopharygeal
squamous cell carcinoma and lymphatic metastasis. Front. Immunol. 14, 1168191.
doi:10.3389/fimmu.2023.1168191

Li, W., Liu, J.-B., Hou, L.-K., Yu, F., Zhang, J., Wu, W., et al. (2022). Liquid biopsy in
lung cancer: significance in diagnostics, prediction, and treatment monitoring. Mol.
cancer 21, 25. doi:10.1186/s12943-022-01505-z

Frontiers in Genetics frontiersin.org16

Paas-Oliveros et al. 10.3389/fgene.2023.1256991

https://doi.org/10.1038/s41467-021-25133-1
https://doi.org/10.1038/s41467-021-25133-1
https://doi.org/10.12688/f1000research.22969.2
https://doi.org/10.1038/s41587-020-00795-2
https://doi.org/10.1073/pnas.1300136110
https://doi.org/10.1038/s41571-020-00449-x
https://doi.org/10.1186/s13059-017-1171-9
https://doi.org/10.1186/s13059-017-1171-9
https://doi.org/10.1038/s41591-018-0045-3
https://doi.org/10.1038/nbt.4091
https://doi.org/10.1158/2159-8290.cd-21-1059
https://doi.org/10.1016/j.cell.2021.04.048
https://doi.org/10.1038/s42003-021-02146-6
https://doi.org/10.1016/j.jhep.2020.11.036
https://doi.org/10.1016/j.jhep.2020.11.036
https://doi.org/10.1038/s41576-023-00586-w
https://doi.org/10.1038/s41467-021-24010-1
https://doi.org/10.1016/j.canlet.2019.06.002
https://doi.org/10.1016/j.canlet.2019.06.002
https://doi.org/10.1158/2326-6066.cir-20-1026
https://doi.org/10.1186/s13059-020-02132-x
https://doi.org/10.3389/fcell.2018.00028
https://doi.org/10.3389/fcell.2018.00028
https://doi.org/10.1038/s42003-022-03628-x
https://doi.org/10.1038/s41588-022-01035-w
https://doi.org/10.1093/nar/gkz959
https://doi.org/10.1093/nar/gkz959
https://doi.org/10.1093/bioadv/vbac016
https://doi.org/10.1074/jbc.REV119.007759
https://doi.org/10.1186/s13059-016-1010-4
https://doi.org/10.1038/s41467-022-28661-6
https://doi.org/10.1093/biostatistics/kxj037
https://doi.org/10.1093/biostatistics/kxj037
https://doi.org/10.1186/s13059-020-02000-8
https://doi.org/10.1038/s41586-022-05688-9
https://doi.org/10.1038/s41467-021-25957-x
https://doi.org/10.1002/bies.202200084
https://doi.org/10.1016/j.stem.2018.04.014
https://doi.org/10.1016/j.cmet.2019.08.013
https://doi.org/10.1101/807552
https://doi.org/10.1038/nmeth.1778
https://doi.org/10.1038/s41467-020-16822-4
https://doi.org/10.1038/s41467-020-16822-4
https://doi.org/10.1038/s41467-019-13056-x
https://doi.org/10.1016/j.molcel.2015.04.005
https://doi.org/10.1038/s41592-019-0619-0
https://doi.org/10.1093/bioinformatics/btw216
https://doi.org/10.1038/s41596-018-0073-y
https://doi.org/10.1038/s41592-021-01346-6
https://doi.org/10.1038/s41592-021-01346-6
https://doi.org/10.1038/nature15260
https://doi.org/10.1016/j.adcanc.2022.100040
https://doi.org/10.1016/j.adcanc.2022.100040
https://doi.org/10.1177/0883911520981710
https://doi.org/10.1177/0883911520981710
https://doi.org/10.1016/j.trecan.2018.02.003
https://doi.org/10.3389/fimmu.2023.1168191
https://doi.org/10.1186/s12943-022-01505-z
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1256991


Li, X., Poire, A., Jeong, K. J., Zhang, D., Chen, G., Sun, C., et al. (2023b). Single-cell
trajectory analysis reveals a cd9 positive state to contribute to exit from stem cell-like
and embryonic diapause states and transit to drug-resistant states. Cell Death Discov. 9,
285. doi:10.1038/s41420-023-01586-9

Li, X., Wang, K., Lyu, Y., Pan, H., Zhang, J., Stambolian, D., et al. (2020). Deep
learning enables accurate clustering with batch effect removal in single-cell rna-seq
analysis. Nat. Commun. 11, 2338. doi:10.1038/s41467-020-15851-3

Li, Y., Ma, L., Wu, D., and Chen, G. (2021). Advances in bulk and single-cell multi-
omics approaches for systems biology and precision medicine. Briefings Bioinforma. 22,
bbab024. doi:10.1093/bib/bbab024

Li, Y., Xu, X., Song, L., Hou, Y., Li, Z., Tsang, S., et al. (2012). Single-cell
sequencing analysis characterizes common and cell-lineage-specific mutations in a
muscle-invasive bladder cancer. Gigascience 1, 12–14. doi:10.1186/2047-217X-
1-12

Li, Z., Wang, Z., Tang, Y., Lu, X., Chen, J., Dong, Y., et al. (2019). Liquid biopsy-based
single-cell metabolic phenotyping of lung cancer patients for informative diagnostics.
Nat. Commun. 10, 3856. doi:10.1038/s41467-019-11808-3

Lim, S. B., Di Lee,W., Vasudevan, J., Lim,W.-T., and Lim, C. T. (2019). Liquid biopsy:
one cell at a time. NPJ Precis. Oncol. 3, 23. doi:10.1038/s41698-019-0095-0

Lin, L., Song, M., Jiang, Y., Zhao, X., Wang, H., and Zhang, L. (2020). Normalizing
single-cell rna sequencing data with internal spike-in-like genes. NAR Genomics
Bioinforma. 2, lqaa059. doi:10.1093/nargab/lqaa059

Lin, Y., Ghazanfar, S., Wang, K. Y. X., Gagnon-Bartsch, J. A., Lo, K. K., Su, X., et al.
(2019). Scmerge leverages factor analysis, stable expression, and pseudoreplication to
merge multiple single-cell rna-seq datasets. Proc. Natl. Acad. Sci. 116, 9775–9784.
doi:10.1073/pnas.1820006116

Liu, L., Zhang, Q., Wang, C., Guo, H., Mukwaya, V., Chen, R., et al. (2023a). Single-
cell diagnosis of cancer drug resistance through the differential endocytosis of
nanoparticles between drug-resistant and drug-sensitive cancer cells. ACS Nano 17,
19372–19386. doi:10.1021/acsnano.3c07030

Liu, W., Hu, H., Shao, Z., Lv, X., Zhang, Z., Deng, X., et al. (2023b). Characterizing the
tumor microenvironment at the single-cell level reveals a novel immune evasion
mechanism in osteosarcoma. Bone Res. 11, 4. doi:10.1038/s41413-022-00237-6

Lo, Y.-C., Liu, Y., Kammersgaard, M., Koladiya, A., Keyes, T. J., and Davis, K. L.
(2023). Single-cell technologies uncover intra-tumor heterogeneity in childhood
cancers. Seminars Immunopathol. 45, 61–69. doi:10.1007/s00281-022-00981-1

Lonardo, A. D., Nasi, S., and Pulciani, S. (2015). Cancer: we should not forget the past.
J. Cancer 6, 29–39. doi:10.7150/jca.10336

Lopez, R., Regier, J., Cole, M. B., Jordan, M. I., and Yosef, N. (2018). Deep generative
modeling for single-cell transcriptomics. Nat. Methods 15, 1053–1058. doi:10.1038/
s41592-018-0229-2

Losic, B., Craig, A. J., Villacorta-Martin, C., Martins-Filho, S. N., Akers, N., Chen, X.,
et al. (2020). Intratumoral heterogeneity and clonal evolution in liver cancer. Nat.
Commun. 11, 291. doi:10.1038/s41467-019-14050-z

Lotfollahi, M., Naghipourfar, M., Luecken, M. D., Khajavi, M., Büttner, M.,
Wagenstetter, M., et al. (2022). Mapping single-cell data to reference atlases by
transfer learning. Nat. Biotechnol. 40, 121–130. doi:10.1038/s41587-021-01001-7

Lotfollahi, M., Wolf, F. A., and Theis, F. J. (2019). Scgen predicts single-cell
perturbation responses. Nat. Methods 16, 715–721. doi:10.1038/s41592-019-0494-8

Love, M. I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change
and dispersion for rna-seq data with deseq2. Genome Biol. 15, 550. doi:10.1186/s13059-
014-0550-8

Lun, A. T. L., Bach, K., and Marioni, J. C. (2016). Pooling across cells to normalize
single-cell rna sequencing data with many zero counts. Genome Biol. 17, 75. doi:10.
1186/s13059-016-0947-7

Ma, A., Xin, G., and Ma, Q. (2022). The use of single-cell multi-omics in immuno-
oncology. Nat. Commun. 13, 2728. doi:10.1038/s41467-022-30549-4

Manno, G. L., Soldatov, R., Zeisel, A., Braun, E., Hochgerner, H., Petukhov, V., et al.
(2018). Rna velocity of single cells. Nature 560, 494–498. doi:10.1038/s41586-018-
0414-6

Margolin, A. A., Nemenman, I., Basso, K., Klein, U., Wiggins, C., Stolovitzky, G.,
et al. (2006). ARACNE: an algorithm for the reconstruction of gene regulatory
networks in a mammalian cellular context. BMC Bioinforma. 7, S7. doi:10.1186/
1471-2105-7-s1-s7

Martelotto, L. G., Ng, C. K., Piscuoglio, S., Weigelt, B., and Reis-Filho, J. S. (2014).
Breast cancer intra-tumor heterogeneity. Breast Cancer Res. 16, 210–211. doi:10.1186/
bcr3658

Matsumoto, H., Kiryu, H., Furusawa, C., Ko, M. S., Ko, S. B., Gouda, N., et al. (2017).
Scode: an efficient regulatory network inference algorithm from single-cell rna-seq
during differentiation. Bioinformatics 33, 2314–2321. doi:10.1093/bioinformatics/
btx194

Miles, L. A., Bowman, R. L., Merlinsky, T. R., Csete, I. S., Ooi, A. T., Durruthy-
Durruthy, R., et al. (2020). Single-cell mutation analysis of clonal evolution in myeloid
malignancies. Nature 587, 477–482. doi:10.1038/s41586-020-2864-x

Miller, A., Nagy, C., Knapp, B., Laengle, J., Ponweiser, E., Groeger, M., et al. (2017).
Exploring metabolic configurations of single cells within complex tissue
microenvironments. Cell metab. 26, 788–800. doi:10.1016/j.cmet.2017.08.014

Morita, K., Wang, F., Jahn, K., Hu, T., Tanaka, T., Sasaki, Y., et al. (2020). Clonal
evolution of acute myeloid leukemia revealed by high-throughput single-cell genomics.
Nat. Commun. 11, 5327. doi:10.1038/s41467-020-19119-8

Naitzat, G., Zhitnikov, A., and Lim, L.-H. (2020). Topology of deep neural networks.
arXiv. doi:10.48550/arxiv.2004.06093

Nam, A. S., Chaligne, R., and Landau, D. A. (2021). Integrating genetic and non-
genetic determinants of cancer evolution by single-cell multi-omics.Nat. Rev. Genet. 22,
3–18. doi:10.1038/s41576-020-0265-5

Nguyen, Q. H., Pervolarakis, N., Nee, K., and Kessenbrock, K. (2018). Experimental
considerations for single-cell rna sequencing approaches. Front. Cell Dev. Biol. 6, 108.
doi:10.3389/fcell.2018.00108

Nieto, P., Elosua-Bayes, M., Trincado, J. L., Marchese, D., Massoni-Badosa, R.,
Salvany, M., et al. (2021). A single-cell tumor immune atlas for precision oncology.
Genome Res. 31, 1913–1926. doi:10.1101/gr.273300.120

Niño, J. L. G., Wu, H., LaCourse, K. D., Kempchinsky, A. G., Baryiames, A., Barber, B.,
et al. (2022). Effect of the intratumoral microbiota on spatial and cellular heterogeneity
in cancer. Nature 611, 810–817. doi:10.1038/s41586-022-05435-0

Ogbeide, S., Giannese, F., Mincarelli, L., and Macaulay, I. C. (2022). Into the
multiverse: advances in single-cell multiomic profiling. Trends Genet. 38, 831–843.
doi:10.1016/j.tig.2022.03.015

Orrapin, S., Thongkumkoon, P., Udomruk, S., Moonmuang, S., Sutthitthasakul, S.,
Yongpitakwattana, P., et al. (2023). Deciphering the biology of circulating tumor cells
through single-cell rna sequencing: implications for precision medicine in cancer. Int.
J. Mol. Sci. 24, 12337. doi:10.3390/ijms241512337

Ortega, M. A., Poirion, O., Zhu, X., Huang, S., Wolfgruber, T. K., Sebra, R., et al.
(2017). Using single-cell multiple omics approaches to resolve tumor heterogeneity.
Clin. Transl. Med. 6, 46–16. doi:10.1186/s40169-017-0177-y

Pei, H., Li, L., Han, Z., Wang, Y., and Tang, B. (2020). Recent advances in microfluidic
technologies for circulating tumor cells: enrichment, single-cell analysis, and liquid
biopsy for clinical applications. Lab a Chip 20, 3854–3875. doi:10.1039/d0lc00577k

Peng, A., Mao, X., Zhong, J., Fan, S., and Hu, Y. (2020). Single-cell multi-omics and its
prospective application in cancer biology. Proteomics 20, 1900271. doi:10.1002/pmic.
201900271

Phan, H. V., van Gent, M., Drayman, N., Basu, A., Gack, M. U., and Tay, S. (2021).
High-throughput rna sequencing of paraformaldehyde-fixed single cells.Nat. Commun.
12, 5636. doi:10.1038/s41467-021-25871-2

Picelli, S., Bjöklund, Å. K. , Faridani, O. R., Sagasser, S., Winberg, G., and Sandberg, R.
(2013). Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat.
Methods 10, 1096–1098.

Pierce, S. E., Granja, J. M., and Greenleaf, W. J. (2021). High-throughput single-
cell chromatin accessibility crispr screens enable unbiased identification of
regulatory networks in cancer. Nat. Commun. 12, 2969. doi:10.1038/s41467-
021-23213-w

Pratapa, A., Jalihal, A. P., Law, J. N., Bharadwaj, A., and Murali, T. M. (2020).
Benchmarking algorithms for gene regulatory network inference from single-cell
transcriptomic data. Nat. Methods 17, 147–154. doi:10.1038/s41592-019-0690-6

Preissl, S., Gaulton, K. J., and Ren, B. (2023). Characterizing cis-regulatory elements
using single-cell epigenomics. Nat. Rev. Genet. 24, 21–43. doi:10.1038/s41576-022-
00509-1

Prieto-Vila, M., Usuba, W., Takahashi, R.-u., Shimomura, I., Sasaki, H., Ochiya, T.,
et al. (2019). Single-cell analysis reveals a preexisting drug-resistant subpopulation in
the luminal breast cancer subtype. Cancer Res. 79, 4412–4425. doi:10.1158/0008-5472.
CAN-19-0122

Puram, S. V., Tirosh, I., Parikh, A. S., Patel, A. P., Yizhak, K., Gillespie, S., et al. (2017).
Single-cell transcriptomic analysis of primary and metastatic tumor ecosystems in head
and neck cancer. Cell 171, 1611–1624. doi:10.1016/j.cell.2017.10.044

Rautenstrauch, P., Vlot, A. H. C., Saran, S., and Ohler, U. (2022). Intricacies of single-
cell multi-omics data integration. Trends Genet. 38, 128–139. doi:10.1016/j.tig.2021.
08.012

Ren, X., Zhang, L., Zhang, Y., Li, Z., Siemers, N., and Zhang, Z. (2021). Insights gained
from single-cell analysis of immune cells in the tumor microenvironment. Annu. Rev.
Immunol. 39, 583–609. doi:10.1146/annurev-immunol-110519-071134

Risso, D., Perraudeau, F., Gribkova, S., Dudoit, S., and Vert, J.-P. (2018). A general
and flexible method for signal extraction from single-cell rna-seq data.Nat. Commun. 9,
284. doi:10.1038/s41467-017-02554-5

Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., et al. (2015). Limma
powers differential expression analyses for rna-sequencing and microarray studies.
Nucleic Acids Res. 43, e47. doi:10.1093/nar/gkv007

Robinson, M. D., McCarthy, D. J., and Smyth, G. K. (2010). edger: a bioconductor
package for differential expression analysis of digital gene expression data.
Bioinformatics 26, 139–140. doi:10.1093/bioinformatics/btp616

Frontiers in Genetics frontiersin.org17

Paas-Oliveros et al. 10.3389/fgene.2023.1256991

https://doi.org/10.1038/s41420-023-01586-9
https://doi.org/10.1038/s41467-020-15851-3
https://doi.org/10.1093/bib/bbab024
https://doi.org/10.1186/2047-217X-1-12
https://doi.org/10.1186/2047-217X-1-12
https://doi.org/10.1038/s41467-019-11808-3
https://doi.org/10.1038/s41698-019-0095-0
https://doi.org/10.1093/nargab/lqaa059
https://doi.org/10.1073/pnas.1820006116
https://doi.org/10.1021/acsnano.3c07030
https://doi.org/10.1038/s41413-022-00237-6
https://doi.org/10.1007/s00281-022-00981-1
https://doi.org/10.7150/jca.10336
https://doi.org/10.1038/s41592-018-0229-2
https://doi.org/10.1038/s41592-018-0229-2
https://doi.org/10.1038/s41467-019-14050-z
https://doi.org/10.1038/s41587-021-01001-7
https://doi.org/10.1038/s41592-019-0494-8
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1186/s13059-016-0947-7
https://doi.org/10.1186/s13059-016-0947-7
https://doi.org/10.1038/s41467-022-30549-4
https://doi.org/10.1038/s41586-018-0414-6
https://doi.org/10.1038/s41586-018-0414-6
https://doi.org/10.1186/1471-2105-7-s1-s7
https://doi.org/10.1186/1471-2105-7-s1-s7
https://doi.org/10.1186/bcr3658
https://doi.org/10.1186/bcr3658
https://doi.org/10.1093/bioinformatics/btx194
https://doi.org/10.1093/bioinformatics/btx194
https://doi.org/10.1038/s41586-020-2864-x
https://doi.org/10.1016/j.cmet.2017.08.014
https://doi.org/10.1038/s41467-020-19119-8
https://doi.org/10.48550/arxiv.2004.06093
https://doi.org/10.1038/s41576-020-0265-5
https://doi.org/10.3389/fcell.2018.00108
https://doi.org/10.1101/gr.273300.120
https://doi.org/10.1038/s41586-022-05435-0
https://doi.org/10.1016/j.tig.2022.03.015
https://doi.org/10.3390/ijms241512337
https://doi.org/10.1186/s40169-017-0177-y
https://doi.org/10.1039/d0lc00577k
https://doi.org/10.1002/pmic.201900271
https://doi.org/10.1002/pmic.201900271
https://doi.org/10.1038/s41467-021-25871-2
https://doi.org/10.1038/s41467-021-23213-w
https://doi.org/10.1038/s41467-021-23213-w
https://doi.org/10.1038/s41592-019-0690-6
https://doi.org/10.1038/s41576-022-00509-1
https://doi.org/10.1038/s41576-022-00509-1
https://doi.org/10.1158/0008-5472.CAN-19-0122
https://doi.org/10.1158/0008-5472.CAN-19-0122
https://doi.org/10.1016/j.cell.2017.10.044
https://doi.org/10.1016/j.tig.2021.08.012
https://doi.org/10.1016/j.tig.2021.08.012
https://doi.org/10.1146/annurev-immunol-110519-071134
https://doi.org/10.1038/s41467-017-02554-5
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1093/bioinformatics/btp616
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1256991


Roerink, S. F., Sasaki, N., Lee-Six, H., Young, M. D., Alexandrov, L. B., Behjati, S., et al.
(2018). Intra-tumour diversification in colorectal cancer at the single-cell level. Nature
556, 457–462. doi:10.1038/s41586-018-0024-3

Ryu, Y.,Han,G.H., Jung, E., andHwang,D. (2023). Integration of single-cell rna-seq datasets:
a review of computational methods. Mol. Cells 46, 106–119. doi:10.14348/molcells.2023.0009

Shah, S., Lubeck, E., Zhou, W., and Cai, L. (2017). Seqfish accurately detects
transcripts in single cells and reveals robust spatial organization in the
hippocampus. Neuron 94, 752–758. doi:10.1016/j.neuron.2017.05.008

Sikkema, L., Strobl, D., Zappia, L., Madissoon, E., Markov, N., Zaragosi, L., et al.
(2022). An integrated cell atlas of the human lung in health and disease. bioRxiv. doi:10.
1101/2022.03.10.483747

Silverman, J. D., Roche, K., Mukherjee, S., and David, L. A. (2020). Naught all zeros in
sequence count data are the same. bioRxiv. doi:10.1101/477794

Simone, M. D., Rossetti, G., and Pagani, M. (2019). Single cell methods, sequencing
and proteomics. Methods Mol. Biology 1979, 87–110.

Skinnider, M. A., Squair, J. W., and Foster, L. J. (2019). Evaluating measures of association
for single-cell transcriptomics. Nat. methods 16, 381–386. doi:10.1038/s41592-019-0372-4

Slyper, M., Porter, C. B., Ashenberg, O., Waldman, J., Drokhlyansky, E., Wakiro, I.,
et al. (2020). A single-cell and single-nucleus rna-seq toolbox for fresh and frozen
human tumors. Nat. Med. 26, 792–802. doi:10.1038/s41591-020-0844-1

Squair, J. W., Gautier, M., Kathe, C., Anderson, M. A., James, N. D., Hutson, T. H.,
et al. (2021). Confronting false discoveries in single-cell differential expression. Nat.
Commun. 12, 5692. doi:10.1038/s41467-021-25960-2

Street, K., Risso, D., Fletcher, R. B., Das, D., Ngai, J., Yosef, N., et al. (2018). Slingshot:
cell lineage and pseudotime inference for single-cell transcriptomics. BMCGenomics 19,
477. doi:10.1186/s12864-018-4772-0

Su, E. Y., Spangler, A., Bian, Q., Kasamoto, J. Y., and Cahan, P. (2022). Reconstruction of
dynamic regulatory networks reveals signaling-induced topology changes associated with
germ layer specification. Stem Cell Rep. 17, 427–442. doi:10.1016/j.stemcr.2021.12.018

Su, K., Wu, Z., and Wu, H. (2020). Simulation, power evaluation and sample size
recommendation for single-cell rna-seq. Bioinformatics 36, 4860–4868. doi:10.1093/
bioinformatics/btaa607

Sun, Y.-F., Wu, L., Liu, S.-P., Jiang, M.-M., Hu, B., Zhou, K.-Q., et al. (2021). Dissecting
spatial heterogeneity and the immune-evasion mechanism of ctcs by single-cell rna-seq in
hepatocellular carcinoma. Nat. Commun. 12, 4091. doi:10.1038/s41467-021-24386-0

Suvà, M. L., and Tirosh, I. (2019). Single-cell rna sequencing in cancer: lessons learned
and emerging challenges. Mol. Cell 75, 7–12. doi:10.1016/j.molcel.2019.05.003

Teuwen, L.-A., Rooij, L. P. D., Cuypers, A., Rohlenova, K., Dumas, S. J., García-
Caballero, M., et al. (2021). Tumor vessel co-option probed by single-cell analysis. Cell
Rep. 35, 109253. doi:10.1016/j.celrep.2021.109253

Tian, L., Chen, F., and Macosko, E. Z. (2023a). The expanding vistas of spatial
transcriptomics. Nat. Biotechnol. 41, 773–782. doi:10.1038/s41587-022-01448-2

Tian, T., Zhong, C., Lin, X., Wei, Z., and Hakonarson, H. (2023b). Complex
hierarchical structures in single-cell genomics data unveiled by deep hyperbolic
manifold learning. Genome Res. 33, 232–246. doi:10.1101/gr.277068.122

Tirier, S. M., Mallm, J.-P., Steiger, S., Poos, A. M., Awwad, M. H., Giesen, N., et al.
(2021). Subclone-specific microenvironmental impact and drug response in refractory
multiple myeloma revealed by single-cell transcriptomics. Nat. Commun. 12, 6960.
doi:10.1038/s41467-021-26951-z

Tirosh, I., Venteicher, A. S., Hebert, C., Escalante, L. E., Patel, A. P., Yizhak, K., et al.
(2016). Single-cell rna-seq supports a developmental hierarchy in human
oligodendroglioma. Nature 539, 309–313. doi:10.1038/nature20123

Tran, B., Tran, D., Nguyen, H., Ro, S., and Nguyen, T. (2022). sccan: single-cell
clustering using autoencoder and network fusion. Sci. Rep. 12, 10267. doi:10.1038/
s41598-022-14218-6

Türei, D., Valdeolivas, A., Gul, L., Palacio-Escat, N., Klein, M., Ivanova, O., et al.
(2021). Integrated intra- and intercellular signaling knowledge for multicellular omics
analysis. Mol. Syst. Biol. 17, e9923. doi:10.15252/msb.20209923

Turki, T., and Taguchi, Y. H. (2020). Scgrns: novel supervised inference of single-cell
gene regulatory networks of complex diseases. Comput. Biol. Med. 118, 103656. doi:10.
1016/j.compbiomed.2020.103656

Van der Leun, A. M., Thommen, D. S., and Schumacher, T. N. (2020). Cd8+ t cell
states in human cancer: insights from single-cell analysis. Nat. Rev. Cancer 20, 218–232.
doi:10.1038/s41568-019-0235-4

Wang, F., Liang, S., Kumar, T., Navin, N., and Chen, K. (2019). Scmarker: ab initio
marker selection for single cell transcriptome profiling. PLoS Comput. Biol. 15,
e1007445. doi:10.1371/journal.pcbi.1007445

Wang, Q., Wang, Z., Zhang, Z., Zhang, W., Zhang, M., Shen, Z., et al. (2021).
Landscape of cell heterogeneity and evolutionary trajectory in ulcerative colitis-
associated colon cancer revealed by single-cell rna sequencing. Chin. J. Cancer Res.
33, 271–288. doi:10.21147/j.issn.1000-9604.2021.02.13

Wang, T., Shi, J., Li, L., Zhou, X., Zhang, H., Zhang, X., et al. (2022a). Single-cell
transcriptome analysis reveals inter-tumor heterogeneity in bilateral papillary thyroid
carcinoma. Front. Immunol. 13, 840811. doi:10.3389/fimmu.2022.840811

Wang, X., Xu, Y., Sun, Q., Zhou, X., Ma, W., Wu, J., et al. (2022b). New insights
from the single-cell level: tumor associated macrophages heterogeneity and
personalized therapy. Biomed. Pharmacother. 153, 113343. doi:10.1016/j.biopha.
2022.113343

Wang, Y., and Zhao, H. (2022). Non-linear archetypal analysis of single-cell rna-seq data
by deep autoencoders. PLoS Comput. Biol. 18, e1010025. doi:10.1371/journal.pcbi.1010025

Wei, N., Nie, Y., Liu, L., Zheng, X., andWu, H.-J. (2022). Secuer: ultrafast, scalable and
accurate clustering of single-cell rna-seq data. PLOS Comput. Biol. 18, e1010753. doi:10.
1371/journal.pcbi.1010753

Welch, J. D., Kozareva, V., Ferreira, A., Vanderburg, C., Martin, C., and Macosko, E.
Z. (2019). Single-cell multi-omic integration compares and contrasts features of brain
cell identity. Cell 177, 1873–1887. doi:10.1016/j.cell.2019.05.006

Wolf, F. A., Hamey, F. K., Plass, M., Solana, J., Dahlin, J. S., Göttgens, B., et al. (2019). Paga:
graph abstraction reconciles clustering with trajectory inference through a topology
preserving map of single cells. Genome Biol. 20, 59. doi:10.1186/s13059-019-1663-x

Woo, J., Winterhoff, B. J., Starr, T. K., Aliferis, C., and Wang, J. (2019). De novo
prediction of cell-type complexity in single-cell rna-seq and tumor microenvironments.
Life Sci. Alliance 2, e201900443. doi:10.26508/lsa.201900443

Wouters, J., Kalender-Atak, Z., Minnoye, L., Spanier, K. I., Waegeneer, M. D.,
González-Blas, C. B., et al. (2020). Robust gene expression programs underlie
recurrent cell states and phenotype switching in melanoma. Nat. Cell Biol. 22,
986–998. doi:10.1038/s41556-020-0547-3

Wu, F., Fan, J., He, Y., Xiong, A., Yu, J., Li, Y., et al. (2021a). Single-cell profiling of
tumor heterogeneity and the microenvironment in advanced non-small cell lung
cancer. Nat. Commun. 12, 2540. doi:10.1038/s41467-021-22801-0

Wu, S. Z., Al-Eryani, G., Roden, D. L., Junankar, S., Harvey, K., Andersson, A., et al.
(2021b). A single-cell and spatially resolved atlas of human breast cancers. Nat. Genet.
53, 1334–1347. doi:10.1038/s41588-021-00911-1

Xiang, R., Wang, W., Yang, L., Wang, S., Xu, C., and Chen, X. (2021). A comparison
for dimensionality reduction methods of single-cell rna-seq data. Front. Genet. 12,
646936. doi:10.3389/fgene.2021.646936

Xie, K., Huang, Y., Zeng, F., Liu, Z., and Chen, T. (2020). scaide: clustering of large-
scale single-cell rna-seq data reveals putative and rare cell types. NAR genomics
Bioinforma. 2, lqaa082. doi:10.1093/nargab/lqaa082

Xu, C., Lopez, R., Mehlman, E., Regier, J., Jordan, M. I., and Yosef, N. (2021).
Probabilistic harmonization and annotation of single-cell transcriptomics data with
deep generative models. Mol. Syst. Biol. 17, e9620. doi:10.15252/msb.20209620

Xu, C., Prete, M., Webb, S., Jardine, L., Stewart, B., Hoo, R., et al. (2023). Automatic
cell type harmonization and integration across human cell atlas datasets. BiorXiv. doi:10.
1101/2023.05.01.538994

Yancovitz, M., Litterman, A., Yoon, J., Ng, E., Shapiro, R. L., Berman, R. S., et al.
(2012). Intra-and inter-tumor heterogeneity of brafv600e mutations in primary and
metastatic melanoma. PloS one 7, e29336. doi:10.1371/journal.pone.0029336

Yang, Y., Huh, R., Culpepper, H. W., Lin, Y., Love, M. I., and Li, Y. (2018). Safe-
clustering: single-cell aggregated (from ensemble) clustering for single-cell rna-seq data.
Bioinformatics 35, 1269–1277. doi:10.1093/bioinformatics/bty793

Young, M. D., Mitchell, T. J., Braga, F. A. V., Tran, M. G. B., Stewart, B. J., Ferdinand,
J. R., et al. (2018). Single-cell transcriptomes from human kidneys reveal the cellular
identity of renal tumors. Science 361, 594–599. doi:10.1126/science.aat1699

Yuan, H., Yan, M., Zhang, G., Liu, W., Deng, C., Liao, G., et al. (2019). Cancersea: a
cancer single-cell state atlas. Nucleic acids Res. 47, D900-D908–D908. doi:10.1093/nar/
gky939

Yuan, S., Stewart, K. S., Yang, Y., Abdusselamoglu, M. D., Parigi, S. M., Feinberg, T. Y.,
et al. (2022). Ras drives malignancy through stem cell crosstalk with the
microenvironment. Nature 612, 555–563. doi:10.1038/s41586-022-05475-6

Zhang, Q., He, Y., Luo, N., Patel, S. J., Han, Y., Gao, R., et al. (2019). Landscape and
dynamics of single immune cells in hepatocellular carcinoma. Cell 179, 829–845. doi:10.
1016/j.cell.2019.10.003

Zhang, Y., Parmigiani, G., and Johnson, W. E. (2020). Combat-seq: batch effect
adjustment for rna-seq count data. NAR Genomics Bioinforma. 2, lqaa078. doi:10.1093/
nargab/lqaa078

Zheng, G. X. Y., Terry, J. M., Belgrader, P., Ryvkin, P., Bent, Z.W., Wilson, R., et al. (2017).
Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049.

Zhou, H., Zhu, L., Song, J., Wang, G., Li, P., Li, W., et al. (2022). Liquid biopsy at the
frontier of detection, prognosis and progression monitoring in colorectal cancer. Mol.
Cancer 21, 86. doi:10.1186/s12943-022-01556-2

Zhu, X., Li, J., Li, H.-D., Xie, M., and Wang, J. (2020). Sc-gpe: a graph partitioning-
based cluster ensemble method for single-cell. Front. Genet. 11, 604790. doi:10.3389/
fgene.2020.604790

Zilionis, R., Nainys, J., Veres, A., Savova, V., Zemmour, D., Klein, A.M., et al. (2017). Single-
cell barcoding and sequencing using droplet microfluidics. Nat. Protoc. 12, 44–73.

Zimmerman, K. D., Espeland, M. A., and Langefeld, C. D. (2021). A practical solution
to pseudoreplication bias in single-cell studies. Nat. Commun. 12, 738. doi:10.1038/
s41467-021-21038-1

Frontiers in Genetics frontiersin.org18

Paas-Oliveros et al. 10.3389/fgene.2023.1256991

https://doi.org/10.1038/s41586-018-0024-3
https://doi.org/10.14348/molcells.2023.0009
https://doi.org/10.1016/j.neuron.2017.05.008
https://doi.org/10.1101/2022.03.10.483747
https://doi.org/10.1101/2022.03.10.483747
https://doi.org/10.1101/477794
https://doi.org/10.1038/s41592-019-0372-4
https://doi.org/10.1038/s41591-020-0844-1
https://doi.org/10.1038/s41467-021-25960-2
https://doi.org/10.1186/s12864-018-4772-0
https://doi.org/10.1016/j.stemcr.2021.12.018
https://doi.org/10.1093/bioinformatics/btaa607
https://doi.org/10.1093/bioinformatics/btaa607
https://doi.org/10.1038/s41467-021-24386-0
https://doi.org/10.1016/j.molcel.2019.05.003
https://doi.org/10.1016/j.celrep.2021.109253
https://doi.org/10.1038/s41587-022-01448-2
https://doi.org/10.1101/gr.277068.122
https://doi.org/10.1038/s41467-021-26951-z
https://doi.org/10.1038/nature20123
https://doi.org/10.1038/s41598-022-14218-6
https://doi.org/10.1038/s41598-022-14218-6
https://doi.org/10.15252/msb.20209923
https://doi.org/10.1016/j.compbiomed.2020.103656
https://doi.org/10.1016/j.compbiomed.2020.103656
https://doi.org/10.1038/s41568-019-0235-4
https://doi.org/10.1371/journal.pcbi.1007445
https://doi.org/10.21147/j.issn.1000-9604.2021.02.13
https://doi.org/10.3389/fimmu.2022.840811
https://doi.org/10.1016/j.biopha.2022.113343
https://doi.org/10.1016/j.biopha.2022.113343
https://doi.org/10.1371/journal.pcbi.1010025
https://doi.org/10.1371/journal.pcbi.1010753
https://doi.org/10.1371/journal.pcbi.1010753
https://doi.org/10.1016/j.cell.2019.05.006
https://doi.org/10.1186/s13059-019-1663-x
https://doi.org/10.26508/lsa.201900443
https://doi.org/10.1038/s41556-020-0547-3
https://doi.org/10.1038/s41467-021-22801-0
https://doi.org/10.1038/s41588-021-00911-1
https://doi.org/10.3389/fgene.2021.646936
https://doi.org/10.1093/nargab/lqaa082
https://doi.org/10.15252/msb.20209620
https://doi.org/10.1101/2023.05.01.538994
https://doi.org/10.1101/2023.05.01.538994
https://doi.org/10.1371/journal.pone.0029336
https://doi.org/10.1093/bioinformatics/bty793
https://doi.org/10.1126/science.aat1699
https://doi.org/10.1093/nar/gky939
https://doi.org/10.1093/nar/gky939
https://doi.org/10.1038/s41586-022-05475-6
https://doi.org/10.1016/j.cell.2019.10.003
https://doi.org/10.1016/j.cell.2019.10.003
https://doi.org/10.1093/nargab/lqaa078
https://doi.org/10.1093/nargab/lqaa078
https://doi.org/10.1186/s12943-022-01556-2
https://doi.org/10.3389/fgene.2020.604790
https://doi.org/10.3389/fgene.2020.604790
https://doi.org/10.1038/s41467-021-21038-1
https://doi.org/10.1038/s41467-021-21038-1
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1256991

	Computational single cell oncology: state of the art
	1 Introduction
	1.1 Cellular heterogeneity in cancer

	2 The need for proper experimental designs for single cell analysis in oncology
	3 A primer on scRNA-seq analysis
	3.1 Cell separation
	3.2 Library generation and sequencing
	3.3 Preprocessing and quality control
	3.3.1 Filters and feature selection
	3.3.2 Imputation
	3.3.3 Normalization
	3.3.4 Batch effects and data integration
	3.3.5 Dimensionality reduction

	3.4 Downstream analyses using scRNA-seq
	3.4.1 Clustering
	3.4.2 Cluster annotation
	3.4.3 Tumor cell classification
	3.4.4 Trajectory inference
	3.4.5 Differential expression and gene set enrichment
	3.4.6 Networks


	4 Selected applications in cancer
	4.1 Single cell approaches are marking a difference in oncology studies

	5 Conclusion
	Author contributions 
	Funding 
	Conflict of interest 
	Publisher’s note
	References


