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Fanconi anemia (FA) is a rare disease (incidence of 1:300,000) primarily based on
the inheritance of pathogenic variants in genes of the FA/BRCA (breast cancer)
pathway. These variants ultimately reduce the functionality of different proteins
involved in the repair of DNA interstrand crosslinks andDNAdouble-strand breaks.
At birth, individuals with FA might present with typical malformations, particularly
radial axis and renal malformations, as well as other physical abnormalities like skin
pigmentation anomalies. During the first decade of life, FA mostly causes bone
marrow failure due to reduced capacity and loss of the hematopoietic stem and
progenitor cells. This often makes hematopoietic stem cell transplantation
necessary, but this therapy increases the already intrinsic risk of developing
squamous cell carcinoma (SCC) in early adult age. Due to the underlying
genetic defect in FA, classical chemo-radiation-based treatment protocols
cannot be applied. Therefore, detecting and treating the multi-step
tumorigenesis process of SCC in an early stage, or even its progenitors, is the
best option for prolonging the life of adult FA individuals. However, the small
number of FA individuals makes classical evidence-based medicine approaches
based on results from randomized clinical trials impossible. As an alternative, we
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introduce here the concept of multi-level dynamical modelling using large,
longitudinally collected genome, proteome- and transcriptome-wide data sets
from a small number of FA individuals. This mechanistic modelling approach is
based on the “hallmarks of cancer in FA”, whichwe derive fromour unique database
of the clinical history of over 750 FA individuals. Multi-omic data from healthy and
diseased tissue samples of FA individuals are to be used for training constituent
models of a multi-level tumorigenesis model, which will then be used to make
experimentally testable predictions. In this way, mechanistic models facilitate not
only a descriptive but also a functional understanding of SCC in FA. This approach
will provide the basis for detecting signatures of SCCs at early stages and their
precursors so they can be efficiently treated or even prevented, leading to a better
prognosis and quality of life for the FA individual.

KEYWORDS

Fanconi anemia, mechanistic modelling, squamous cell carcinoma, hallmarks of cancer,
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Introduction

Rare diseases are disorders that affect less than one case in
2000 people, i.e., only a small percentage of the population.
However, there are more than 6000 known rare diseases,
affecting over 300 million people worldwide (Boycott et al., 2017;
The Lancet Diabetes Endocrinology, 2019). In 80% of the cases, the
origin of a rare disease is one or multiple disadvantageous inherited
variations of the genome (Wang et al., 2021). These are present in all
cell types of the affected individual. Nevertheless, most rare diseases,
which are not already prenatally lethal, are rather tissue specific.
Pediatricians are more likely confronted with rare diseases than
healthcare specialists from other disciplines, as those diseases
frequently present symptoms early in life. Rare diseases are often
referred to as “orphan diseases,” since in comparison to common
non-communicable diseases, such as cardiovascular diseases and
type 2 diabetes, there is less research and development of therapies
for them. Fanconi anemia (FA) belongs to a small group of rare
diseases that are investigated more intensively than most others
(Velleuer and Carlberg, 2020). This is also the result of significant
contributions from patient organizations in the United States,
Germany and many other countries (Wu, 2013).

In general, evidence-based medicine aims to make optimal
medical decisions by integrating the experience of a clinician
with data from the individual patient and available scientific
information on the respective disease (Akobeng, 2005). The latter
information often derives from randomized clinical trials involving
large numbers of cases and controls. Those trials are the source for
the construction of statistical models, i.e., to quantify mathematical
relationships between non-random variables measured from the
study participants (Figure 1, left). For common diseases, there is no
problem identifying a sufficiently large number of cases to achieve
acceptable statistical power of the applied statistical model, e.g.,
reflected by the p-value. However, this approach cannot be used for
rare diseases due to the small number of cases. An alternative
approach is to study a few individuals in very high detail by
collecting longitudinal samples for many biological parameters
(Wheatley et al., 2021) (Figure 1, right). For example, multi-omic
analyses provide many thousands of data points per individual, such
as genome-wide DNA methylation, histone modifications and gene

expression. These data, together with information on biochemical
and regulatory pathways from public databases, such as KEGG
(Kyoto Encyclopedia of Genes and Genomes) (Kanehisa et al.,
2017), Wikipathways (Pico et al., 2008) and SPOKE (Scalable
Precision Medicine Open Knowledge Engine) (Himmelstein and
Baranzini, 2015), can then be used to construct multi-level,
mechanistic dynamical computational models (Aldridge et al.,
2006; Harris et al., 2019; Niarakis and Helikar, 2021).
Importantly, mechanistic models differ from statistical models in
that they encode existing biological knowledge, often obtained from
decades of published experimental studies, into a formal, physics-
based mathematical representation that mimics the real living
system. Mechanistic models do not require experimental data for
their construction, but they do require it to constrain the values of
model parameters, which can be numerous. Indeed, the difficulty of
estimating values of large numbers of adjustable parameters has
been the primary barrier to the widespread utilization of mechanistic
models in human health and disease applications. However, the
situation is beginning to change. With recent advances in parameter
estimation (Eydgahi et al., 2013; Shockley et al., 2018), model
analysis and model selection methodologies (Beik et al., 2023),
the construction of large-scale, executable models of whole cells,
whole tissues and whole patients may now be within reach. Indeed,
efforts to develop such detailed computational models, termed
“medical digital twins” (Laubenbacher et al., 2021; Masison et al.,
2021), are underway. These models can act as virtual platforms for
identifying novel therapeutic targets and for designing treatment
and preventative protocols to aid clinicians improving individual
patient outcomes. In this Perspective article, we introduce the
concept of mechanistic modelling as a clinical decision support
tool in FA, using the example of the multi-step tumorigenesis of
squamous cell carcinoma (SCC) in FA individuals.

Fanconi anemia: a master example of a
rare disease

FA is a rare disease (1 case in 300,000 persons) that was first
described nearly 100 years ago by Guido Fanconi (Lobitz and
Velleuer, 2006). The clinical characteristics of FA are: i)
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congenital malformations including absent radius, thumb
hypoplasia, disturbed skin pigmentation, as well as inner
organ abnormalities most frequently found in the renal and
cardiac system (Fiesco-Roa et al., 2019), ii) progressive bone
marrow failure already at childhood age (Alter, 2017; Dufour,
2017), and iii) dramatically increased risk of developing cancers,
such as acute myeloid leukemia (Alter et al., 2018) and SCC,
especially of the head and neck, in early adulthood (Kutler et al.,
2003). FA individuals have defects in the molecular machinery of
detection and repair of interstrand crosslinks (ICLs) and DNA
double-strand breaks (DSBs), which are mostly due to the
biallelic inheritance of recessive pathogenic variants in a
subset of at least 20 FANC genes (FANCA, FANCC, FANCD1
(BRACA2), FANCD2, FANCE, FANCF, FANCG, FANCI, FANCJ
(BRIP1), FANCL, FANCM, FANCN (PALB2), FANCO (RAD51C),
FANCP (SLX4), FANC (ERCC4), FANCS (BRCA1), FANCT (UBE2T),
FANCU (XRCC2), FANCV (MAD2L2), FANCW (RFWD3)) (Wang
and Smogorzewska, 2015). Moreover, variants in the FANCB gene are
inherited in an autosomal recessive X-linked manner, whereas the
FANCR (RAD51) shows an autosomal dominant inheritance pattern
and can also be spontaneously mutated (Meetei et al., 2004; Ameziane
et al., 2015; Wang and Smogorzewska, 2015). FANC genes encode for
proteins that maintain genomic integrity during DNA replication,
i.e., their inactivation leads to accumulation of DSBs and genomic
instability (Ceccaldi et al., 2016). However, patients with identical
variants, such as siblings, often show significant differences in their
clinical presentation, i.e., there are more factors than the mutated
FANC genes contributing to the disease (Tischkowitz and Hodgson,
2003; Dufour, 2017).

To date, hematopoietic stem cell transplantation is the only
curative treatment option for the hematological complications of FA
(Gluckman, 2015) and the main reason for improved life expectancy
of young FA individuals (Bonfim et al., 2016). In addition, treatment
with supra-pharmacological doses of testosterone analogs, such as
Oxymetholone, Danazol and others, can stabilize declining blood
counts and even improve them (Scheckenbach et al., 2012; Rose
et al., 2014; Paustian et al., 2016; Calado and Cle, 2017). Non-
transplanted and, in particular, transplanted FA individuals have a
several 100-fold increased risk for developing SCC, especially of
their oral mucosa but also in their pharynx, larynx, esophagus, anus,
and vulva (Alter et al., 2018), even without the main risk factors like
alcohol and tobacco exposure. For adult FA individuals, developing
SCC is the most life-threatening complication. Due to their
dysregulated DNA repair machinery, FA patients cannot tolerate
standard chemo-radiation therapies and treatment side effects are
difficult to predict (Lin and Kutler, 2013; Kutler et al., 2016). This
makes non-surgical systemic therapeutical options very limited.
Therefore, detecting SCC at an early stage and eliminating it
surgically is, at present, the best way to prolong the lives of FA
individuals (Velleuer et al., 2020). Ultimately, prevention of disease
progression should be the goal but is still far away from the clinical
routine.

Based on its clinical and cellular phenotype, FA can also serve as
a cellular model for the study of general molecular functions and
physiological aspects, like aging, as well as other non-communicable
diseases occurring in the general population. In that respect, the
study of FA has had a major impact on the molecular understanding
of breast/ovarian cancer (Howlett et al., 2002). Moreover, FANC

FIGURE 1
Evidence-based medicine versus network analysis. Number of participants of a clinical study versus the number of variables measured for each
individual. In classical evidence-basedmedicine, many cases and controls are studied for a small number of variables (top left), whereas network analysis,
can build upon fewer patients, for whichmany variables aremeasured longitudinally (bottom right). The latter benefits from usingmechanistic modelling
for analyzing data, while evidence-based medicine largely relies on statistical modelling. Big data systems medicine (top right) fuses both
approaches by integrating large number of data points derived from several patients into predictive mechanistic models.
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genes are frequently mutated or dysregulated in sporadic cancers
(Del Valle et al., 2020), as well as in childhood cancers (Pouliot et al.,
2019). Nevertheless, the enormous and quite specific cancer risk of
SCC for FA individuals is poorly understood from a mechanistic
standpoint.

Hallmarks of cancers arising in FA
individuals

During tumorigenesis, the cells of all types of solid cancers
arising in adults undergo a multi-step process from a healthy, non-

FIGURE 2
Hallmarks of cancer in FA. Depiction of the multi-step tumorigenesis process (A). Eight major hallmarks describe the onset and progression of
cancer in FA individuals (B). In FA, genome instability is the first hallmark to emerge, which influences other hallmarks (arrows). Themedical histories of five
FA individuals are illustrated as examples such hallmark sequences (C).
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transformed cell to low-grade and high-grade dysplasia, carcinoma
in situ, and invasive cancer (Carlberg and Velleuer, 2021)
(Figure 2A). The early stages of this process are reversible, but
when a “point of no return” is reached, an aggressive carcinoma
forms, which via the spreading of metastases will eventually lead to
patient mortality. In cancer patients in the general population, this
multi-step tumorigenesis process takes decades, but in FA
individuals it can take only months to a few years.

During tumorigenesis, transformed cells acquire a conserved set
of cancer hallmarks, including self-sufficiency in growth signals,
insensitivity to antigrowth signals, and tissue invasion and
metastasis (Hanahan and Weinberg, 2000). These are altered
functional capabilities, the accumulation of which allows
malignant cells to survive, proliferate, and disseminate. The
hallmarks are outcomes of specific cell fate-controlling regulatory
pathways, which in turn are affected by cancer driver genemutations
(Vogelstein et al., 2013). Environmental factors, like lifestyle
decisions on diet, physical activity, and smoking, modulate these
pathways. In addition, germline mutations may accelerate
tumorigenesis like in the Li-Fraumeni syndrome (Carlberg and
Velleuer, 2021). In contrast, 100% of all cancers arising in FA
individuals (here termed “FA cancers”) are based on heredity of
a defective FA/BRCA pathway of DNA repair. Therefore, genome
instability and mutation prominently affects other physiological
processes, which can result in the emergence of additional
hallmarks, such as polymorphic microbiomes, tumor-promoting
inflammation, deregulating cellular metabolism, activating invasion
and metastasis, senescent cells, avoiding immune destruction, and
non-mutational epigenetic reprogramming. These eight hallmarks
of FA cancers (Figure 2B) summarize clinical, cellular and molecular
observations in the field (Webster et al., 2022) (Box 1). They overlap
largely with the latest version of 14 hallmarks of cancer (Hanahan,
2022). However, while in the general population the order in which
the cancer hallmarks are established, as well as the underlying
mechanisms, varies significantly, in FA cancers the hallmark
“genome instability and mutation” always emerges first. For
example, we illustrate five real cases of tumorigenesis in FA
individuals (Figure 2C; Box 1). Note that these also demonstrate
that in FA cancers there is variability in the order of appearance of
subsequent hallmarks.

Box 1 Real world FA patient examples
Patient 1: Diagnosed with FA at age 4 due to bone marrow failure

and was transplanted with the bone marrow of his sister. Clinically, no
signs for graft versus host disease (GvHD) had been observed but
severe viral reactivation complicated the clinical course. He was
treated both with anti-viral and immunosuppressive medication.
Patient started to drink alcohol at a social occasion at age 18. A
visible lesion developed at age 22 at the gingiva and was biopsied
revealing moderate dysplasia. Since then, the patient stopped
drinking.

Patient 2:Diagnosed with FA at age 6. Additionally, he was a carrier
of an inherited mutation in the APC (APC regulator of WNT signaling
pathway) gene. At age 8, the patient needed hematopoietic stem cell
transplantation due to bone marrow failure. Unfortunately, he
developed severe GvHD. At age 16, he was diagnosed with oral
candida infection in a lesion at the gingiva. Due to persistence of
the lesion, it was biopsied and the diagnosis of SCC was made. After
local excision with clear margins, the patient developed 3 months
later a local soft tissue metastasis. Further treatment including

(Continued in next column)

Box 1 (Continued) Real world FA patient examples
radiation and CD274 blockage were not able to save the patient and
he deceased at age 19.

Patient 3: Diagnosed with FA at age 6 due to bone marrow failure.
She was treated with anabolic steroids after a period of transfusions
and severe infection. The treatment brought the blood counts up but
due to the development of clonal hematopoiesis with pre-leukemia,
she was transplanted at age 16. At age 21, an oral lesion at the tongue
developed and the diagnosis of a candida infection was made.
However, after initial treatment, the lesion came back showing
signs of inflammation. Due to persistence of the lesion, a biopsy
was done at age 23 and a severe dysplasia was diagnosed.

Patient 4: Started social drinking and smoking at least one pack a
day at age of 16. At age 20, a small lesion at the right side of the tongue
was noticed by the patient. Clinical diagnosis of a local inflammation
was made and the patient was treated over 2 months with immune
suppression. Because there was no clinical benefit from the
treatment, the patient stopped the medication on his own. Due to
growing of the lesion and development of pain, eventually a biopsy
was performed, confirming the diagnosis of T1 stage SCC at age 21.
Due to the unusual age at presentation, investigations revealed the
underlying FA diagnosis. Patient was treated with local excision.

Patient 5: Diagnosed with FA at age 8 and directly transplanted.
Mild GvHD was clinically present. At age 28, an oral lesion at the
gingiva developed. An infection with candida was diagnosed but the
patient did not get any further treatment. At age 29, the lesion was
biopsied due to increase in size. Histologically, a high-grade dysplasia
and an invasive candida infection were seen.

Modelling FA cancer development

Cancer progression is a dynamical process ranging from early,
mostly clinically asymptomatic, to late stages that are difficult to
reverse. Each stage is characterized by a particular configuration
(emergent behavior) of the tissue, such as infiltration of immune
cells, the microbiome, cell cycle speed and the grade of cell dysplasia
(Figure 3A). Disease onset and aggravation emerge from the
dynamic interplay between hallmarks of SCC in FA (Figure 2B).
The hallmarks are connected mechanistically by complex, multi-
level regulatory networks that under homeostatic conditions
maintain a healthy phenotype (Figure 3B). At the cellular level,
the stratified epithelium underlying the epithelial barrier function
interplays with the oral microbiome and the infiltration of immune
cells, which together shape themicro-environment of tumor cells. At
the sub-cellular level, genetic factors such as mutations in FANC
genes, copy number variations and epigenetic reprogramming,
together with micro-environmental perturbations, such as
chronic inflammation and exposure to pathogens or a disturbed
microbiome, can lead to altered cell fate decisions. These factors can
be intrinsically disturbed, e.g., by aldehydes, but also influenced by
lifestyle decisions, such as physical exercise, antibiotic treatment,
immunosuppressants or chemotherapy. The complex interplay
between these processes makes prevention but also optimal
treatment protocols and individual patient assessments extremely
challenging without a dynamical computational framework as
an aid.

Based on the hallmarks of FA SCC and known underlying
cellular and subcellular regulatory networks, we developed a
blueprint for modelling SCC development in FA individuals
(Figure 3C). Biological processes comprising the blueprint
include: i) microbial interactions in the oral cavity (pink inset),
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ii) circulating immune cells and immune response (orange inset), iii)
metabolites affected by food intake or endogenously generated
within a cell (yellow inset), iv) DNA damage sensing and repair
(red inset), v) epigenetic reprogramming (green inset), vi) stratified
epithelial dynamics (brown inset), and vii) loss of epithelial function
through EMT (epithelial-mesenchymal transition) (dark blue inset).
Together, these tissue level processes are sensed and integrated by
the cells and their inner regulatory networks (black inset), resulting
in (viii) stress response and xi) cell cycle progression or senescence,
x) leading finally to cell fate decisions, including survival,
proliferation, cell death/apoptosis. The blueprint amounts to a
preliminary wiring diagram connecting these processes and will
act as a template for an executable computational model the
dynamical multi-level dynamical network underlying the
tumorigenesis in FA individuals.

Principles of mechanistic modelling

The construction, calibration and validation of mechanistic
mathematical models require a constant dialogue between the

mathematical/computational implementation and analysis of the
model, with the experimental and clinical data. As a first step, all
available relevant empirical data describing the biological
phenomenon are gathered from the literature together with in-
house measurements from clinical, animal and in vitro studies.
These data can be complemented using publicly available
databases, such as String-DB (Szklarczyk et al., 2021), KEGG
(Kanehisa et al., 2017) and the Human Cell Atlas (Regev et al.,
2017). In principle, all types of data, from low-to high-throughput,
single-timepoint to dynamic and mean-field to single-patient-
single-cell resolution, can be used (Figure 4A).

After cleaning, filtering and pre-processing the data using standard
statistical and bioinformatic methods (Sinha, 2014; Sinha, 2015),
regulatory networks at the cellular- and tissue-level scales are
assembled from the data and visually represented using the Systems
BiologyMarkup Language (SBML) (Keating et al., 2020). The networks
are translated into mechanistic mathematical models using a chosen
modeling formalism that depends on the scale and resolution of the
data. Multi-scale mathematical models can be modularly constructed
and assembled using a variety of formalisms from dynamical systems
(de Jong, 2002), including Boolean networks for genetic regulatory

FIGURE 3
Blueprint for mechanistic modelling of SCC in FA cancer. Disease onset and aggravation emerges as a gradual loss of epithelial tissue function (A).
The hallmarks of FA cancer are connected mechanistically through complex multi-level regulatory networks that, under homeostatic conditions,
maintain a healthy phenotype (B). The blueprint for modeling SCC development in FA individuals is based on the hallmarks of FA cancer as well as cellular
and subcellular regulatory networks. At the cellular level, it includes interplays between the epithelial barrier function, the oral microbiome and the
immune responses. Together, these factors shape a microenvironment that is sensed at the sub-cellular level by regulatory networks Driving cell fate
decisions. These are targeted by epigenetic and genetic processes including mutations and genomic instability (C).
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networks, systems of nonlinear ordinary differential equations (ODEs)
for signaling networks and interactions between cell types in the tissue,
compartmental differential equations or agent based models to
explicitly model spatial coupling between different cell types,
stochastic differential equations to simulate population-level
distributions of cell markers and delay-differential equations for

multi-level regulatory loops that control tissue homeostasis. In
general, when constructing a model for a specific disease affecting a
particular tissue (e.g., FA-related SCC in the oral mucosa), a good
starting point is to identify mathematical models previously proposed
and experimentally validated, which can then be extended and adapted
to reproduce specific experimental and clinical observations. For

FIGURE 4
Principles of mechanistic modelling. The preconditions for performing mechanistic modelling of diseases, such as SCC in FA individuals, are clinical
data derived directly from patients and experimental data obtained either in vitro from patient samples or in vivo. Additional data can be obtained from
public databases and repositories (A). Amathematical model of regulatory networks is constructed after filtering and processing of the data on the level of
either cells or whole tissues. The model is formalized using dynamical systems, which are calibrated and validated with the data (B). The model is
analyzed for robustness, sensitivity, and ability to reflect abrupt phenotypic changes in response to perturbations, and resulting model predictions, e.g.,
the map between a risk factor and the disease severity, are compared with real-world data (C). The mathematical model can be used to systematically
explore different types of treatment options for the SCC of an FA individual. Once validated, the most effective predicted treatments may then be applied
to patients (D).
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example, mathematical models of loss of epithelial homeostasis,
originally developed for atopic diseases (Domínguez-Hüttinger et al.,
2017), could be extended to include SCC in FA-specific hallmarks. The
quantitative models are then calibrated with a training set of
experimental data, using global parametric optimization algorithms
(Balsa-Canto et al., 2012; Shockley et al., 2018; Tsiantis et al., 2018). This
allows one to adapt the mathematical models to specific experimental
conditions, as well as to integrate scattered experimental data into a
formal and coherent framework that articulates all the individual
regulatory players that are typically described in isolation, to
understand how they give rise to different clinical manifestations.
Finally, model validation is achieved by ensuring that the model can
reproduce an additional set of empirical data (the validation set) that
was not used for the calibration (Figure 4B).

Next, the calibrated and validated models are analyzed
extensively. For this, the nominal conditions, i.e., the calibrated
model, are perturbed, e.g., by systematically altering the magnitude

of the individual regulatory interactions (changing parameter
values), or by structurally altering the different regulatory
interactions (changing the equations). The output of the model,
e.g., the “phenotype”, is then collected. Examples of such
perturbations-to-response mappings are robustness analysis,
sensitivity analysis and bifurcation analysis. A robustness analysis
tells us which fraction of variations results in a given phenotype
(Domínguez-Hüttinger et al., 2017). Sensitivity analysis weights
each individual interaction (parameter) in terms of its
contribution to the change in the model output (Zi, 2011). In
bifurcation analysis, the model output is assessed as one (or
more) parameters are gradually changed (Kuznetsov, 2004).
Abrupt health-to-disease transitions mathematically correspond
to qualitative changes in the model, and they occur typically at
bifurcations. The value(s) of the parameter(s) at which such a
bifurcation occurs, known as a bifurcation (set), is particularly
interesting because it represents the critical threshold of a

FIGURE 5
Illustrative example of mechanistic modeling in FA. Schematic of the first two steps of ICL detection and repair, involving binding of the protein
FANCM to the DNA, followed by recruitment of the FA core complex (A). For demonstration purposes, we have chosen to model the protein
subcomplexes AG20, BL100, and CEF as independent species that reversibly bind to form the FA core complex. Note that this choice of model resolution
is at themodeler’s discretion, i.e., alternatively, each protein (FANCA, FANCG, FAAP20, etc.) comprising the subcomplexes could have beenmodeled
as independent species (B). Eight reversible biochemical interactions (16 reactions total) can describe the ICL detection and FA core complex recruitment
process (C). In silico time courses for different molecular species can be obtained in total by setting values of the binding/unbinding rate constants (all set
to 1 in this case) and numerically integrating the resultant set of coupled ODEs (D). ‘FANCM_free’: unbound FANCM; ‘FANCM_ICL’: FANCM bound to the
DNA around the ICL; ‘FA_complex’: FA core complex composed of AG20, BL100, and CEF that is not bound to FANCM; ‘FAcpx_M_ICL’: FA core complex
bound to FANCM, which is bound to the ICL.
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FIGURE 6
An SCC lesion from a FA patient analyzed by tCycIF imaging. The location within the oral cavity and stage of a hypopharynx tumor from a 41-year-old
woman with FA is indicated (A). The hematoxylin- and eosin-stained tumor sample shows multistage carcinogenesis, ranging from low-grade dysplasia
(yellow) via high-grade dysplasia (orange) to invasive carcinoma (red) (B). Multi-omic analysis of the tumor includes tissue transcriptomics, genomics,
proteomics, andmetagenomics for detection of pathogens inhabiting the tumor. Machine learning-basedmethods are applied in combination with
single-cell level segmentation of the tumors and delineation of tumor neighborhoods (C). In this inset of invasive carcinoma, every circle represents an
individual tumor cell, and its color indicates its stage within the multi-step tumorigenesis process. The data produced from tumor multi-omics can be
processed using non-supervised machine learning algorithms, such as UMAP, for detection of commonalities and divergencies in the tumor sections
from multiple patients, and information on markers expression can be extracted from every cell so as to generate graphs for comparing markers
expression across the carcinogenic progression.
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perturbation that can be tolerated by the regulatory structure.
Furthermore, the appearance of these bifurcation sets can often
be anticipated by early warning signals, such as an increased
variance in recovery times of the system (Bargaje et al., 2017).
Thus, early warning signals of bifurcating systems can be used to
improve early detection strategies for abrupt disease transitions
(Figure 4C).

Finally, once the mathematical model has been exhaustively
calibrated, validated and analyzed, it can be used for designing and
optimising personalised treatment strategies that consider the
specific disease stage and patient characteristics (Fey et al., 2015).
For this, one starts by identifying the potential targets of the
intervention strategy, e.g., growth hormone receptor inhibitors
that reduce excessive proliferation of malignant cells, and
modifying the model accordingly. Next, analysis of the extended
model, i.e., the system without treatments plus the dynamics of the
treatments, can be performed (Figure 4C). For example, one can use
bifurcation analysis to systematically explore how a given treatment
affects the overall virtual population of patients (e.g., considering the
natural variations that occur in a population due to polymorphisms)
by looking at how the bifurcation sets shift under a specific
treatment, such as cetuximab (an epidermal growth factor
receptor inhibitor). With a similar line of reasoning, it is possible
to use bifurcation analysis to explore how different treatment
combinations affect the phenotype of a given patient. Here,
again, it is particularly relevant to look for bifurcation sets that
separate the qualitatively different clinical phenotypes because these
curves correspond to all the minimal treatment combinations that
can effectively trigger a disease-to-health transition (Tanaka et al.,
2018). Besides bifurcation analysis, other techniques, such as model
predictive control (Christodoulides et al., 2017), can also be applied
to maximize treatment efficiency while minimizing duration,
dosing, and negative side effects (Figure 4D). In all stages of this
modelling pipeline, model predictions must be verified by
comparing them to empirical data.

As a simple but illustrative example of the model construction
process, we present a small biochemical model of the first few steps
of ICL detection and repair by the FA/BRCA pathway (Niraj et al.,
2019; Semlow and Walter, 2021). During DNA replication, the
presence of an ICL causes the replication fork to stall. This stressed
fork is detected by the protein FANCM, which binds to the
branched DNA structure caused by replication fork arrest and
recruits the FA “core complex” to the damage site (Figure 5A). The
FA core complex is composed of three protein subcomplexes, each
of which is composed of three proteins (Figure 5B): AG20 is a
complex of the proteins FANCA, FANCG, and FAAP20 (FA core
complex associated protein 20); BL100 is a complex of FANCB,
FANCL, and FAAP100; and CEF is a complex of FANCC, FANCE,
and FANCF. For simplicity, we have chosen to represent in the
model each of these subcomplexes as distinct molecular species
that reversibly bind to each other to form the FA core complex. The
complete computational model includes these subcomplex binding
reactions, the binding of FANCM to the ICL, and binding of the FA
core complex to ICL-bound FANCM (Figure 5C). By defining
parameter values for the rates of each of these individual reactions,
the model becomes executable, i.e., the populations (or
concentrations) of the constituent species can be simulated over
time (Figure 5D). In this way, hypotheses regarding the effects of

mutations (changing parameter values) and/or adding external
perturbagens (e.g., drugs) can be explored in silico.

Experimental data for FA model
development and validation: example
of multi-omic analysis of a SCC lesion
from one FA individual

The tumorigenesis process (Figure 6A) results in a heterogenous
composition of tumors, i.e., each tumor contains cells in various
stages of the transformation process to aggressively metastasizing
cells. Importantly, tumors are not only composed of malignant
proliferating cells, but also by multiple cell types, thus making the
tumor mass a complex ecosystem that includes immune cells of
multiple types (B cells, T cells, macrophages, etc.), tumor-associated
fibroblasts, endothelial cells (Anderson and Simon, 2020) and even
microbes, including bacteria and fungi (Zong et al., 2023). At the
same time, a tumor is not only composed of cells, but also of
extracellular matrix and secreted factors that can signal messages
among cells (Anderson and Simon, 2020). If malignant tumors from
individuals with FA are to be characterized and this information
used for accurate model building, all these factors must be accounted
for. In this respect, high throughput multi-omics technologies can
leverage the components of the tumor of interest, generating data in
multiple modalities that need to be integrated and potentially
exploited for discovering novel biomarkers and therapeutic
targets for individuals with FA.

Of note, classical DNA sequencing, RNA sequencing (RNA-
seq), and protein detection technologies are not able to
deconvolute and deconstruct the above-mentioned complex
composition of a given tumor, since they use the bulk content
of the tumor or tissue and are, therefore, constrained to detect the
mean expression of molecules, or the presence of a predominant
DNA sequence, thus losing information of minor cell populations
or incipient emergent cellular clones (Stark et al., 2019). However,
we are witnessing the appearance, development, and refinement of
multiple technologies with the capacity to resolve the cellular
heterogeneity of tumors. Among these technologies, one of the
most popular is single-cell RNA-seq (scRNAseq), which has given
rise to a growing number of datasets from liquid and solid tumors
(after tumor dissociation), as well as healthy tissue, leading to a
compendium of single-cell-resolution gene expression atlases of
multiple tissues and organs (Yuan et al., 2019). Although
scRNAseq is a technology that has revolutionized the resolution
at which we analyze cell populations and tissues, it still lacks a
critical component, i.e., preservation of tissue architecture in its
original context (Stark et al., 2019).

In the context of FA cancer, we are interested in the
implementation of technologies that, in a multi-omics fashion,
will generate single-cell resolution data but will prevent tissue
disaggregation and, therefore, maintain tissue architecture. The
latter implies the preservation of cellular neighborhoods and cell-
cell interactions, which are lost when the tissue is disaggregated.
These technologies are known as spatial omics and include spatial
transcriptomics, spatial proteomics, and spatial genomics, which
combine molecular characterization with spatial resolution
(Akhoundova and Rubin, 2022). The aim of these spatial
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resolution technologies is to assign omics information to spatial
locations in the tissues, reaching cellular and subcellular resolution.
Spatial genomics assigns DNA sequencing information, including
copy-number variants and somatic mutations; spatial
transcriptomics provides information on the number of
transcripts of a certain gene per region; and spatial proteomics
provides relative amounts of protein concentrations (Akhoundova
and Rubin, 2022). The data obtained by these multi-omics
technologies are highly dimensional in nature and require potent
computational tools for their analysis. Although intense research is
underway for improving all spatial omics technologies, the most
developed are spatial transcriptomics and spatial proteomics. These
technologies will allow for the detection and quantification of cell
populations of interest, the discovery of new cell populations, the
comparison of the abundance of cell populations across the
carcinogenic progression and the quantitative and qualitative
description of infiltrating immune cells (Pelka et al., 2021; Karimi
et al., 2023). These technologies have the capacity to compensate for
the lack of resolution of bulk sequencing analyses, which has
hampered the detection of premalignant clones at early stages in
bone marrow failure in FA (Rodriguez et al., 2021).

Here, we use as an example a hypopharynx cancer from a 41-
year-old woman with FA. The hematoxylin- and eosin-stained
tumor sample shows multistage carcinogenesis, ranging from low-
grade dysplasia (yellow) to high-grade dysplasia (orange) and
invasive carcinoma (red) (Figure 6B). This type of formalin-
fixed paraffin-embedded (FFPE) sample can be used for
exploration and information retrieval using one or multiple of
the multi-omics technologies discussed here (Box 2). If, e.g. tissue-
cyclic immunofluorescence (tCycIF) is used, multiple sequential
pictures of the tissue stained with fluorescent antibodies will be
acquired and stitched. The composite image that is generated must
first be segmented using artificial intelligence-based programs,
such as ASHLAR (Pelka et al., 2021), which recognize every cell
nucleus and apply single-cell-level segmentation of the tumor
(Figure 6C, upper left panel). For every cell, we can feature-
extract the expression of every marker of interest and proceed
to non-supervised machine learning-based algorithms, such as
uniform manifold approximation and projection (UMAP)
(Figure 6C, upper right panel), which generate clusters of cells
based on the similarity of their expressed markers. This allows the
separate visualization of cell populations (Becht et al., 2018), such
as cancer and immune tumor-infiltrating cells. After feature
extraction, we can explore the expression of markers of interest
in every tumor population or across the tumor progression, e.g. the
proportion of proliferating cells (Figure 6C, lower left panel), the
relative expression of p53 (Figure 6C, lower right panel) or other
markers of interest.

Box 2 Multi-omic analysis methods
Tissue spatial transcriptomics

Tissue spatial transcriptomics allows the characterization of gene
expression profiles keeping the tissue’s spatial architecture intact.
Multiple techniques have been developed for spatial transcriptomics,
mainly based on in situhybridization, in situ capturing, in situ sequencing
or microdissection (Marx, 2021).

(Continued in next column)

Box 2 (Continued) Multi-omic analysis methods
Fluorescent in situ hybridization (FISH)-based methods exploit the

hybridization of fluorescent-labelled RNA-targeting probes with pre-
defined transcripts of interest, followed by imaging, visualization, and
quantification, which however is limited to the simultaneous
detection of a small number of transcripts. Higher efficiency in
mRNA detection has been reached with the usage of array-based
in situ capturing methods. These arrays have attached barcoded
oligonucleotides that capture, through complementarity, the
mRNAs present in the sample. Capture is followed by reverse
transcription to cDNA and NGS, allowing the detection of more
than 10,000 targets (Lewis et al., 2021; Maniatis et al., 2021). The
widely used Visium technology is next-generation sequencing an
example of this approach (Visium spatial gene expression, 10X
Genomics) (Stahl et al., 2016).

Recent technologies allow to explore the transcriptome of specific
regions of interest in FFPE samples through microdissection. The
GeoMx Digital Spatial Profiler by Nanostring allows in situ capture
of mRNAs using fluorescent-tagged RNA probes, which are linked to
UV-photocleavable DNA oligonucleotides of known sequence. The
fluorescent-tagged RNA probes are also known as imaging reagents
since they will generate a fluorescent image that allows tissue
visualization of regions where a specific mRNA is expressed. Once
the investigator selects their regions of interest, these areas are
exposed to UV light that cleaves the DNA tags in a region-specific
manner. This releases indexing oligos that are collected via
microcapillary aspiration and dispensed into a microplate and
subject to Nanostring mediated counting, or NGS (Merritt et al.,
2020). The RNA from FFPE fixed samples very commonly suffers
degradation. However, Visium and GeoMx technologies can
retrieve good amounts of information from these tissue samples.

Tissue spatial proteomics
The most popular methods of tissue spatial proteomics have the

advantage that FFPE samples can be used and, therefore, precious
pathological archives can be studied. Strategies for exploring
spatial proteomics are based on i) immunofluorescence, ii)
imaging mass cytometry by time of flight and iii) sequencing
(Lewis et al., 2021). tCycIF is an immunofluoroenscence-based
stategy. that uses FFPE tumor and tissue specimens mounted on
glass slides that undergo staining cycles. In every cycle, the
specimens are stained with fluorochrome-conjugated antibodies
and imaged, followed by chemical inactivation of fluorochromes
after each round of immunofluorescence (Nirmal et al., 2022).
Conventional wide-field, confocal or super-resolution
microscopes can be used for image acquisition. After multiple
rounds of imaging, a final high-dimensional representation of all
the images is assembled into a unique image using computational
strategies. The final high-dimension image can be segmented into
all individual cells composing the tissue to give single-cell
resolution. Neighborhood analysis can also be performed to
quantify cell-cell interactions. Of note, tCycIF does not require
proprietary reagents, is robust and is a more economical option
compared to other spatial proteomics strategies.

CyTOF is a mass spectrometry-based method. In this technology,
cellular proteins are detected using antibodies that are conjugated to
isotopes from the lanthanide series of rare metals. The sample is
imaged using the Hyperion Imaging SystemTM, where these metal-
tagged antibodies are laser ablated from regions of interest in the
tissue and each ionized metal tag is detected based on differences in
their mass instead of the wavelength emitted by a fluorochrome. This
technology eliminates the autofluorescence inherent to biological
specimens, since the rare metal tags with which the antibodies are
conjugated are not present in cells. Also, compensation or
background elimination is not needed, since there is no overlap
among the signal produced by the ionized metals. In this
technology, FFPE samples can be stained with an entire panel of
multiple antibodies in a single scanning round without the need for
multiple staining and washing cycles. The image is analyzed using a
proprietary software (Giesen et al., 2014).

Finally, GeoMx Digital Spatial Profiler by Nanostring can be adapted
for detection of proteins instead of transcripts (described above). In
this setting, the FFPE tissues are immuno-stained with UV-
photocleavable oligonucleotide-labeled antibodies. The spatial

(Continued on following page)
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Box 2 (Continued) Multi-omic analysis methods
location of proteins is again achieved by exposure of the region of
interest to UV light that photocleaves the oligos, followed by retrieval
of the oligos and sequencing. This provides an average count of
oligonucleotides in every region of interest (Merritt et al., 2020;
Hernandez et al., 2022).

Tissue spatial genomics
Technologies for spatial resolution of the genome that can

preserve tissue architecture are less well developed. Nonetheless,
using spatially resolved DNA sequencing will finally deliver information
on the process of clonal evolution of solid tumors and provide a
timeframe for when a specific mutation appeared. FFPE samples are
especially problematic since DNA is very commonly degraded in these
specimens (Tang, 2022).

Slide-DNA-seq is one new technology that works with cryo-
sectioned intact tissues. Slide-DNA-seq uses cover slip arrays
coated with 10 μm DNA-barcoded polystyrene beads, each
containing a unique DNA barcode corresponding to its spatial
location in the cover slip. This is meant to provide spatial indexing.
Then, a 10-μm-thick fresh-frozen tissue section is placed onto the
barcoded bead array, treated with HCl for histones removal and
treated with the transposase Tn5 to generate DNA fragments that
will be flanked with sequencing Illumina adapters. The barcodes are
photocleaved from the beads and the resulting DNA sequencing
library is amplified by PCR (Tang, 2022; Zhao et al., 2022).

Toward “digital twins” of FA individuals

Studies on SCC prevention in FA are limited by the small
number of individuals with the condition, who are spread around
the world. In addition to regular histopathological diagnosis of oral
cancer development and cytology-based screening methods
(Velleuer et al., 2020), reliable molecular markers are limited.
Moreover, the scarcity of genotype-phenotype associations in FA
makes it highly likely that each patient will respond in an individual
way to drug treatments and/or lifestyle changes. Since robust
predictive in vitro and in vivo FA models are lacking, drug
screening and testing cannot be generalized for all FA
individuals. For example, in vitro analysis of radiation sensitivity
of fibroblasts from FA individuals does not correlate with the clinical
response of the same patient to radiotherapy (Marcou et al., 2001;
Alter, 2002) and the amount of chromosomal breaks found in
lymphocyte cultures does not correlate with the severity of the
disease, e.g., bone marrow function of the individuum. These issues
motivate the effort to create multi-level, dynamical computational
models of FA that can aid clinicians in tailoring therapies to each
specific FA patient. Models of this type have been termed “medical
digital twins” (Laubenbacher et al., 2021; Masison et al., 2021).

Although a consensus definition of a medical digital twin does not
yet exist, the concept of a digital twin is common in engineering
disciplines (Tao and Qi, 2019). Often referred to as “industrial digital
twins,” these models are computational replicas of complex devices or
processes, such as jet engines or wind turbines, that are used to diagnose
technical problems and guide interventions. Industrial digital twins are
typically composed of multiple, interconnected computational models
of the constituent components of an engineered system. Critically, this
integrated “template” model of the base processes of the engineered
system in question is subsequently tuned, or “calibrated,” to a specific
instance of that system, e.g., a particular jet engine, using performance
data collected from sensors in real time. It is this “twinning” process,

involving consistent feedback from real-time data streams, that
differentiates a multi-level, computational model of a dynamical
system from a true digital twin (An et al., 2022). Construction of
digital twins for medical and clinical applications has been receiving
increased interest lately (Laubenbacher et al., 2021;Masison et al., 2021).
However, biological systems are far more complex than engineered
systems, making their practical implementation much more
challenging. Nevertheless, there have been successful applications of
medical digital twins for the treatment of type 1 diabetes (Kovatchev,
2019) and pediatric cardiac patients (Shang et al., 2019). Furthermore, it
is important to note that medical digital twins differ from alternative
approaches gaining popularity in biomedical sciences, such as statistical
and machine-learning models (Swanson et al., 2023), in that they are
based on a mechanistic understanding of the underlying biological
system. As such, they are not constrained by the confines of the
experimental data on which they are constructed, which in FA is sparse.

The utility of a FA medical digital twin will be to aid clinicians
in determining best courses of action for individual patients in
both the prevention and treatment of malignant tumors. The
template model for an FA medical digital twin will comprise
the biological processes mentioned previously, including
microbiome interactions, DNA damage sensing and repair,
EMT, cell cycle progression, and cell death, among others
(Figure 3). Calibrating the template model to individual FA
patients will be challenging and require collecting spatially
resolved, single-cell resolution multi-omics data, epigenome
profiling, and metagenomics of the oral microbiome, from
patients at regular intervals, e.g., every 3 months in accordance
with clinical care guidelines for FA individuals with potentially
premalignant lesions in the epithelial tissue. Additional patient
data, such as blood draws, genetic screens, and oral swabs, together
with standard data from electronic health records, can also be
integrated into the calibration data stream. Once the model is
personalized in this way, it will be possible to test, in silico,
numerous preventive and/or therapeutic options before
applying them clinically to FA patients. Furthermore, medical
digital twins should be flexible and extensible, able to grow in
precision and predictive power as new knowledge is accrued and
experimental data sets are generated. In this way, the FA digital
twin will develop together with the patient and their clinician,
ultimately forecasting, with high accuracy and precision, responses
to novel personalized interventions and therapies.

However, the here suggested use of mechanistic modelling has a
few limitations. Often it is difficult to estimate the values of large
numbers of adjustable parameters, which makes the use of
mechanistic models in human health and disease a challenge. In
addition, most physicians are not used to apply computationally
generated recommendations in the general routine of patient
diagnosis and care. Furthermore, potentially identifiable data of
human subjects might make it difficult to exchange data across
country borders.

Conclusion

For FA cancers, especially oral SCC, the use of multi-level
dynamic mechanistic modelling provides a new perspective on
early-stage diagnosis and decision support for the treatment of
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this rare disease. Such an approach is critical, since classical
statistical models, using case studies and controls, cannot be
applied due to the dearth of large patient groups. As such, we aim
to build accurate computational models of tumorigenesis in a
limited but representative number of FA patients. These
mechanistic models will utilize pre-existing public knowledge
on biochemical and regulatory pathways together with our
knowledge of the life and disease course of more than 750 FA
individuals, which will be essential for distinguishing the
tumorigenesis process of FA cancer from that of regular
cancer. In this way, our mechanistic models of FA cancer will
take specific characteristics of this rare disease into account.
Using longitudinal information about the lifestyles of FA
individuals over years, together with multi-omics data at the
genomic, transcriptomic, and proteomic levels, will lead to the
construction of individual-specific models, or digital twins, that
can be used to develop personalized treatment options. This
approach has the potential to revolutionize the way FA
individuals are treated clinically. Since multi-omic data is
often used to build the digital twin, ethical approval needs to
be obtained. Although recommendations of physicians in the
context of disease prevention may not need ethical approval per
se, but we strongly suggest institutional review board
authorization, in particular when there is the aim to publish
the findings.
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