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DNA N4-methylcytosine (4mC) is significantly involved in biological processes,
such as DNA expression, repair, and replication. Therefore, accurate prediction
methods are urgently needed. Deep learning methods have transformed
applications that previously require sequencing expertise into engineering
challenges that do not require expertise to solve. Here, we compare a variety
of state-of-the-art deep learning models on six benchmark datasets to evaluate
their performance in 4mC methylation site detection. We visualize the statistical
analysis of the datasets and the performance of different deep-learning models.
We conclude that deep learning can greatly expand the potential of methylation
site prediction.
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Introduction

The rapid progress in genome sequencing technologies has facilitated the investigation of
the functional effects of DNA chemical modifications with unprecedented precision
(Larranaga et al., 2006; Jiao and Du, 2016; Hamdy et al., 2022). DNA methylation, as a
vital epigenetic modification, plays a crucial role in normal organism development and
essential biological processes (Lv et al., 2021). In the genomes of both prokaryotic and
eukaryotic organisms, the most prevalent kinds of DNA methylation include N6-
methyladenine (6mA) (Huang et al., 2020; Li et al., 2021; Chen et al., 2022), C5-
methylcytosine (5mC) (Cao et al., 2022), and N4-methylcytosine (4mC) (Moore et al.,
2013; Plongthongkum et al., 2014; Ao et al., 2022a; Zulfiqar et al., 2022a; Zulfiqar et al.,
2022b). The distribution of 4mC sites in the genome is highly significant as they play a crucial
role in regulating gene expression and maintaining genome stability. Accurate identification
and analysis of 4mC sites allow for a deeper understanding of the role of DNAmethylation in
gene regulation and disease mechanisms. This has important implications for the study of
epigenetics, cancer etiology, biological evolution, and potential therapeutic strategies.
Therefore, the development of efficient and accurate methods for detecting and
identifying 4mC sites is of great importance for understanding biological processes and
disease research (Razin and Cedar, 1991; Kulis and Esteller, 2010).

Several experimental techniques have been utilized to identify epigenetic 4mC sites.
These methodologies include methylation-specific PCR, mass spectrometry, 4mC-Tet-
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assisted bisulfite-sequencing (4mCTABseq), whole-genome bisulfite
sequencing, nanopore sequencing, and single-molecule real-time
(SMRT) sequencing (Buryanov and Shevchuk, 2005; Laird, 2010;
Chen et al., 2016; Chen et al., 2017; Ni et al., 2019). These
experiment-based methods suffer from limitations such as low
throughput, high cost, and restricted detection sensitivity.
Nowadays, machine learning has been widely utilized and are
successful technology in bioinformatics for extracting knowledge
from huge data (Larranaga et al., 2006; Dwyer et al., 2018; Hu et al.,
2020; Hu et al., 2021; Hu et al., 2022a; Zeng et al., 2022a; Zeng et al.,
2022b; Li et al., 2023; Xu et al., 2023) and numerous computer
techniques have been created to anticipate DNA 4mC sites. Both
standard machine learning techniques and more current deep
learning algorithms have been used to provide a strong result. In
the field of 4mC site prediction, researchers have made significant
strides by leveraging machine learning algorithms. These
approaches utilize computational models to identify and classify
4mC sites within DNA sequences. Various machine learning
techniques have been explored, including support vector machine
(SVM) (Chen et al., 2017), random forest (RF), Markov model
(MM), and ensemble methods. Additionally, advanced techniques
such as extreme gradient boosting (XGBoost) and Laplacian
Regularized Sparse Representation have also been employed in
this context (Chen et al., 2017; Manavalan et al., 2019; He et al.,
2019; Hasan et al., 2020; Zhao et al., 2020; Ao et al., 2022b; Xiao et al.,
2022). However, traditional machine learning algorithms rely
significantly on data representations known as features for
appropriate performance, and it’s tough to figure out which
features are best for a certain task. Deep learning overcomes the
limitations of traditional methods by offering adaptivity, fault
tolerance, nonlinearity, and improved input-to-output mapping.
Deep learning methods, such as convolutional neural networks
(CNNs) and recurrent neural networks (RNNs), have been
developed for the detection of 4mC sites, leveraging their ability
to capture sequence patterns and dependencies, thereby
contributing to accurate identification of these sites and
enhancing our understanding of DNA methylation in gene
regulation and epigenetics (Xu et al., 2021; Liu et al., 2022). Yet
there are still many deep learning methods that have not been
applied, which have achieved great success in various application
scenarios, including computer vision, speech recognition, biomarker
identification (Zeng et al., 2020; Cai et al., 2021) and drug discovery
(Chen et al., 2021; Zhang et al., 2021; Hu et al., 2022b; Dong et al.,
2022; Pan et al., 2022; Song et al., 2022).

Choosing an appropriate deep learning model for
bioinformatics problems poses a significant challenge for
biologists. Understanding and comparing the performance of
different models on specific datasets is of paramount importance
for guiding practical applications. Therefore, our research focuses on
evaluating the performance of multiple deep learning models on the
4mC datasets, aiming to assist biologists in making informed
decisions when selecting suitable models.

We selected several common deep learning models, including
RNN (Recurrent Nerual Network) (Rumelhart et al., 1986), long
short-term memory (LSTM) (Graves, 2012), bi-directional long
short-term memory (Bi-LSTM) (Graves and Schmidhuber, 2005;
Sharma and Srivastava, 2021), text convolutional neural network
(Text-CNN) (Kim, 2014), and bidirectional encoder representations

from transformers (BERT) (Ji et al., 2021; Tran and Nguyen, 2022),
and compared their performances on the 4mC datasets through
optimization of model hyperparameters. Our research findings
provide strong evidence-based support for biologists, aiding them
in making informed choices when addressing bioinformatics
problems on the 4mC datasets. By comparing the performance of
multiple models, we can offer recommendations tailored to different
problems and datasets, enabling biologists to better understand and
leverage the advantages of deep learning models.

Materials and methods

The implementation of our experiments relies on the DeepBIO
(Wang et al., 2022) platform, which provides a wide selection of deep
learning models and a visual comparison of multiple models.
Figure 1 illustrates the overall framework of our works. We
selected four deep learning models (RNN, LSTM, Bi-LSTM,
Text-CNN) and pre-trained BERT models from the DeepBIO
platform, and BERT is used as our main method to compare
with other methods.

Datasets

The first step in creating a strong and trustworthy classification
model is creating high-quality benchmark datasets. In this study, six
benchmark datasets were utilized (Yu et al., 2021). Table 1 provides a
statistical summary of the datasets. The positive samples consisted of
sequences that were 41 base pairs (bp) in length and contained a
4mC (4-methylcytosine) site located in the middle. These datasets
have undergone rigorous preprocessing and quality control
measures to ensure data accuracy and consistency (Jin et al.,
2022). By training and evaluating the model on data from
multiple species, including humans, animals, and plants, we
ensure its broad applicability and provide valuable insights for
biologists in selecting deep learning models.

Input feature matrix

Deep learning algorithms possess the capability to
autonomously extract valuable features from data,
distinguishing them from conventional machine learning
methods that necessitate manual feature engineering.
Nonetheless, when dealing with a string of nucleotide letters
(A, C, G, and T), a conversion into a matrix format is required
prior to feeding it into a neural network layer. Unlike prior
methods that used several feature encodings schemes to represent
the sequence as the input to train the model, this method uses a
single feature encoding scheme. We took the dictionary encoding
approaches for representing DNA sequences. To represent DNA
sequences, we utilized a dictionary encoding method where each
nucleotide (A, C, G, and T) is assigned a numeric value.
Specifically, A is represented by 1, C by 2, G by 3, and T by 4.
This encoding scheme allows us to convert the sequence into an
N-dimensional vector, facilitating its input into the neural
network for further analysis.
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Model construction and parameters

We have selected deep-learning models that have received a lot
of attention in recent years as follows: RNN, LSTM, Bi-LSTM, Text-
CNN, and BERT. The first four deep learning models we used are the
models provided by the DeepBIO platform with parameters already
set and the BERT model we used is pre-trained DNABERT (Ji et al.,
2021; Ren et al., 2022), which achieves the best performance on
several DNA sequence classification tasks.

RNN is a type of neural network where the output of the
previous neuron is fed back as input to the current neuron,
creating temporal memory and enabling the processing of
dynamic input sequences. RNNs find wide applications in
various domains, including voice recognition, time series analysis,
DNA sequences, and sequential data processing. One notable
variant of RNNs that addresses the issue of capturing long-term
dependencies is Long Short-Term Memory (LSTM). LSTM
introduces a cell state that serves as a memory component,
allowing the network to retain relevant information over
extended periods. The forget gate in LSTM controls which
information should be discarded and retained by using a sigmoid
activation function. Additionally, Bidirectional LSTM (BiLSTM)

processes input data in both forward and backward directions,
effectively incorporating information from both past and future
states. This bidirectional approach enables BiLSTM to capture
intricate sequential relationships between words and sentences,
making it particularly advantageous for Natural Language
Processing (NLP) tasks that require contextual information from
both preceding and succeeding elements in the input sequence. The
RNN, LSTM, and Bi-LSTM architectures consist of stacked RNN
cells, LSTM cells, and bidirectional LSTM cells, respectively. All
these architectures share a similar structure, featuring 128 hidden
neurons and a single layer for optimal performance. To prevent
overfitting and promote generalization, a dropout rate of 0.2 was
applied, and the output layer utilized sigmoid activation with a single
neuron.

Text-CNN, a powerful deep learning approach for language
classification tasks, such as sentiment analysis and question
categorization, is a convolutional neural network tailored for text
processing. The core structure comprises four layers: an embedding
layer, a convolution layer, a pooling layer, and a fully connected
layer. In our implementation, we set four convolutional kernel sizes
(1, 2, 4, 8), and the number of convolutional kernels is uniformly set
to 128. The embeddings undergo convolutional operations with a
sliding kernel, producing convolutions that are subsequently
downsampled through a Max Pooling layer to manage
complexity and computational requirements. The scalar pooling
outputs are then concatenated to form a vector representation of the
input sequence. To mitigate overfitting, regularization methods,
including a dropout layer with a rate of 0.2 and ReLU activation,
are employed in the penultimate layer, preventing overfitting of the
hidden layer.

BERT, an abbreviation for Bidirectional Encoder
Representations from Transformers, originates from the
Transformer architecture. In the Transformer model, every
output element is intricately connected to every input element,
with dynamically calculated weightings based on their

FIGURE 1
The workflow of the main modules. The benchmark datasets are initially divided into training and test sets. Subsequently, the divided dataset is fed
into various deep learning models for prediction. The results of the predictions from different models are then evaluated. Finally, the data generated
throughout these steps are visualized and analyzed for further insights.

TABLE 1 Statistical summary of benchmark datasets.

Species Positive sample Negative sample Total

C. elegans 1,554 1,554 3,108

D. melanogaster 1,769 1,769 3,538

A. thaliana 1,978 1,978 3,956

E. coli 388 388 776

G. subterraneus 906 906 1,812

G. pickeringii 569 569 1,138
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connections. BERT is a pre-trained model that benefits from its
ability to learn rich contextualized representations by considering
the entire input sequence during training. Our study employs the
pre-trained DNABert model, which has demonstrated superior
performance in several DNA sequence classification tasks. We
specifically fine-tune the 6mer-BERT variant on the 4mC
methylation site benchmark dataset. Fine-tuning a pre-trained
model on a task-specific dataset allows us to transfer the
knowledge acquired during pre-training, enabling the model to
achieve state-of-the-art performance in predicting DNA 4mC
methylation sites. The incorporation of BERT’s pre-trained
knowledge provides significant advantages, as the model has
already learned from vast amounts of data and captures intricate
sequence patterns and dependencies. By leveraging pre-trained
models like BERT, we achieve robust and accurate predictions,
even in scenarios with limited training data.

Evaluation metrics

In order to compare with previous related work, we selected
the commonly used evaluation indicators comprised of accuracy
(ACC), sensitivity (SN), specificity (SP), Matthews’ coefficient
correlation (MCC), and area under the receiver operating
characteristic curve (AUC). These indicators are calculated by
the following formula:

ACC � TP + TN

TP + TN + FP + FN

Sensitivity � TP

TP + FN

Specificity � TN

TN + FP

MCC � TP × TN − FP × FN�������������������������������������
TP + FN( ) TP + FP( ) TN + FP( ) TN + FN( )√

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

where TP represents true positives, which is the number of correctly
predicted positive samples; TN represents true negatives, which is
the number of correctly predicted negative samples; FP represents
false positives, which is the number of negative samples wrongly
predicted as positive; and FN represents false negatives, which is the
number of positive samples wrongly predicted as negative.

Experimental setup

In our experimental design, we adopted the default settings of
DeepBIO for other hyperparameters. For instance, when performing
data set deduplication, we limited the duplication rate to 0.8 using
the CDHIT algorithm integrated in the DeepBIO platform.
Furthermore, we conducted a grid search on hyperparameters
such as learning rate and batch size for each model. Grid search
is a method for hyperparameter tuning, where different
combinations of hyperparameters are tried to determine the
optimal model configuration. Such experimental settings ensure
that the models achieve their maximum potential performance
while maintaining the reliability, fairness, and accuracy of the
experiments.

Result

In this section, we evaluate the performance of the different
models and analyze the features extracted by the different models. In
addition, we also compare the features learnt from deep-learning
models with the traditional manual feature extraction methods
applied in other studies to further demonstrate the superiority of
deep learning in solving the 4mC methylation site detection
problem. To ensure a balanced representation, the samples were
randomly divided into training and test datasets for each species.
The division was done in a ratio of 9:1, with 90% of the samples
allocated to the training dataset and the remaining 10% assigned to
the test dataset.

Performance evaluation of multiple models

We conducted a comprehensive performance evaluation of four
different models on six datasets to assess their performance in
various data environments. The evaluation process involved the
use of common binary classification metrics, such as accuracy
(ACC), sensitivity, specificity, area under the curve (AUC), and
Matthews correlation coefficient (MCC), to provide a
comprehensive understanding of the models’ classification
capabilities and highlight their performance differences. In
addition to these metrics, we also employed receiver operating
characteristic (ROC) curves and precision-recall curves (PRC) to
further analyze the models’ performance.

Throughout our evaluation, we observed variations in
performance across different datasets. While certain models
demonstrated superior predictive performance on most datasets,
their performance might vary on specific datasets. As shown in
Figures 2A, B, the RNN and TextCNN models exhibited promising
performance on the G. pickeringii dataset, while DNABERT
outperformed others on the G. subterraneus dataset. Overall,
DNABERT consistently showcased superior performance across
the evaluated datasets.

Furthermore, let’s consider the results obtained on the E. coli
dataset. The density distribution of prediction confidence by
different deep learning models (Figure 2C) provides insights
into the prediction preferences of each model. In the case of
LSTM and Text-CNN, their density distribution shows a
preference towards the center part of the X-axis, around 0.5.
This indicates their poor binary classification ability and
confusion in distinguishing between positive and negative
instances. On the other hand, the density distribution for
DNABERT is skewed towards the right side of the X-axis,
indicating a better classification performance. This suggests
that DNABERT exhibits a stronger ability to differentiate
between positive and negative instances. And this is consistent
with the conclusions drawn from the performance comparison in
Figure 2A.

We also performed statistics on the overlap of predictions
between different models for the same dataset. Take the results
obtained on the G. subterraneus dataset as an example, the
distribution of sets classified as negative classes by different
models in the test set is shown in Figure 2D. In the VN diagram
on the left, 41.4% of the test set is judged as negative by all models
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(negative classes account for 50% of the test set in total). The
difference in quantity is shown more clearly in the right figure,
and we can find that DNABERT may be one of the less effective
models for classification under this dataset, as it predicts more
negative cases individually. However, given that most of the model
predictions converge on the same, we can conclude that most of the
models are consistent in their classification results.

Deep learning model feature analysis

We conduct a comparative study on the features learned by deep
learning from biological information. This includes comparisons
between different deep learning models as well as comparisons

between deep learning features and manually designed features.
By conducting feature comparisons, we aim to further validate the
superiority of deep learning methods and enhance the
interpretability of deep learning models. We select ANF, binary,
CKSNAP, and DNC approaches to extracting features and using
SVM for unsupervised classification to compare with our deep
learning models. Figure 3A presents the ROC and PR curves for
all models on the G. pickeringii dataset. We only display the two
best-performing traditional manual feature methods for
comparison. It is evident that most of the deep learning methods
outperform the traditional approaches in terms of classification
performance.

To visualize the results of deep learning features, we utilized
UMAP (Uniform Manifold Approximation and Projection) and

FIGURE 2
Performance evaluation of multiple models. (A) The basic statistics of ACC, Sensitivity, Specificity, AUC, and MCC in different models. (B)
Performance comparison between DNABERT and other state-of-the-art methods on the benchmark datasets. (C) Density distribution of the prediction
confidence by different deep learning models. (D) VENN and Upset plots show the overlap of different models’ predictions.
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SHAP (Shapley Additive Explanations) plots for display (Figure 3B).
The UMAP plot reduces the dimensionality of the features while
preserving the underlying data structure. It enables data clustering
and categorization by mapping high-dimensional features into a
lower-dimensional space, allowing for an analysis of feature
similarity between positive and negative instances. The SHAP
plot facilitates the understanding of feature importance and
contribution to model predictions, providing interpretability to
the model and enabling comparison of feature impacts. It helps
to comprehend the significance of features in model predictions,

enhancing interpretability and facilitating comparison among
different features. In the feature visualization figure, each row
corresponds to a specific feature, and the x-axis represents the
snap value, providing a clearer understanding of the feature. The
color gradient indicates the feature value, with higher values
represented by redder colors and lower values represented by
bluer colors. Each line represents a feature, and the horizontal
position represents the SHAP value assigned to that feature in a
particular sample. Each point represents a sample. The intensity of
the color reflects the impact of the feature, with redder colors

FIGURE 3
Deep learning model feature analysis. (A) Feature performance comparison between hand-crafted features and the features learned by deep
learning models. (B) UMAP feature visualization and SHAP feature importance visualization.
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indicating a larger impact and bluer colors indicating a smaller
impact. The scattered distribution of points indicates a greater
influence of the feature.

Conclusion

In this study, we use several currently popular deep learning
models on the problem of 4mC methylation detection of DNA.
We first present the current status of DNA 4mC methylation site
detection, followed by the design of deep learning model
workflows on six benchmark datasets, and finally, we evaluate
the output of all models and conclude that deep learning has great
potential for methylation detection, leading the way to future
sequencing technologies along with newer bio-experimental
methods. In fact, deep learning methods consistently
outperformed traditional machine learning methods on all
datasets. Furthermore, it was observed that pre-trained deep
learning models with a higher number of parameters exhibited
even better performance. We believe this may be because deep
learning models with more parameters capture more features and
analyze the features acquired by each model. By attempting to
explain the model’s internal workings and shed light on its
internal representations, we aim to define its “black box”
behavior.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be directed
to the corresponding authors.

Author contributions

HJ: Data curation, Validation, Writing–original draft,
Writing–review and editing. JB: Writing–review and editing. JJ:
Data curation, Writing–review and editing. YC: Data curation,
Writing–review and editing. XC: Writing–review and editing.

Funding

The author(s) declare financial support was received for the
research, authorship, and/or publication of this article. This research
work was supported by the Innovation Fund of the Ministry of
Education’s Engineering Research Center for the Integration and
Application of Digital Learning Technologies, under project grant
number 1221001.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and
do not necessarily represent those of their affiliated organizations, or
those of the publisher, the editors and the reviewers. Any product that
may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

References

Ao, C., Jiao, S., Wang, Y., Yu, L., and Zou, Q. (2022a). Biological sequence
classification: A review on data and general methods. Research 2022, 0011. doi:10.
34133/research.0011

Ao, C., Zou, Q., and Yu, L. (2022b). NmRF: Identification of multispecies RNA 2’-O-
methylation modification sites from RNA sequences. Briefings Bioinforma. 23, bbab480.
doi:10.1093/bib/bbab480

Buryanov, Y. I., and Shevchuk, T. (2005). DNA methyltransferases and structural-
functional specificity of eukaryotic DNA modification. Biochem. Mosc. 70, 730–742.
doi:10.1007/s10541-005-0178-0

Cai, L., Wang, L., Fu, X., and Zeng, X. (2021). Active semisupervised model for
improving the identification of anticancer peptides.ACS Omega 6, 23998–24008. doi:10.
1021/acsomega.1c03132

Cao, C., Wang, J., Kwok, D., Cui, F., Zhang, Z., Zhao, D., et al. (2022). webTWAS:
a resource for disease candidate susceptibility genes identified by transcriptome-
wide association study. Nucleic Acids Res. 50, D1123–D1130. doi:10.1093/nar/
gkab957

Chen, J., Zou, Q., and Li, J. (2022). DeepM6ASeq-EL: Prediction of human N6-
methyladenosine (m6A) sites with LSTM and ensemble learning. Front. Comput. Sci. 16,
162302. doi:10.1007/s11704-020-0180-0

Chen, K., Zhao, B. S., and He, C. (2016). Nucleic acid modifications in
regulation of gene expression. Cell Chem. Biol. 23, 74–85. doi:10.1016/j.
chembiol.2015.11.007

Chen, W., Yang, H., Feng, P., Ding, H., and Lin, H. (2017). iDNA4mC: identifying
DNA N4-methylcytosine sites based on nucleotide chemical properties. Bioinformatics
33, 3518–3523. doi:10.1093/bioinformatics/btx479

Chen, Y., Yang, X., Wang, J., Song, B., and Zeng, X. (2021). Muffin: Multi-scale feature
fusion for drug–drug interaction prediction. Bioinformatics 37, 2651–2658. doi:10.1093/
bioinformatics/btab169

Dong, J., Zhao, M., Liu, Y., Su, Y., and Zeng, X. (2022). Deep learning in retrosynthesis
planning: Datasets, models and tools. Briefings Bioinforma. 23, bbab391. doi:10.1093/
bib/bbab391

Dwyer, D. B., Falkai, P., and Koutsouleris, N. (2018). Machine learning approaches for
clinical psychology and psychiatry. Annu. Rev. Clin. Psychol. 14, 91–118. doi:10.1146/
annurev-clinpsy-032816-045037

Graves, A. (2012). “Long Short-TermMemory,” in Supervised Sequence Labelling with
Recurrent Neural Networks. Studies in Computational Intelligence (Berlin, Heidelberg:
Springer) 385, 37–45.

Graves, A., and Schmidhuber, J. (2005). Framewise phoneme classification with
bidirectional LSTM and other neural network architectures. Neural Netw. 18, 602–610.
doi:10.1016/j.neunet.2005.06.042

Hamdy, R., Maghraby, F. A., and Omar, Y. M. K. (2022). ConvChrome: Predicting
gene expression based on histone modifications using deep learning techniques. Curr.
Bioinforma. 17, 273–283. doi:10.2174/1574893616666211214110625

Hasan, M. M., Manavalan, B., Shoombuatong, W., Khatun, M. S., and Kurata, H.
(2020). i4mC-Mouse: Improved identification of DNA N4-methylcytosine sites in the
mouse genome using multiple encoding schemes. Comput. Struct. Biotechnol. J. 18,
906–912. doi:10.1016/j.csbj.2020.04.001

He, W., Jia, C., and Zou, Q. (2019). 4mCPred: Machine learning methods for DNA
N4-methylcytosine sites prediction. Bioinformatics 35, 593–601. doi:10.1093/
bioinformatics/bty668

Hu, Y., Sun, J. Y., Zhang, Y., Zhang, H., Gao, S., Wang, T., et al. (2021). rs1990622 variant
associates with Alzheimer’s disease and regulates TMEM106B expression in human brain
tissues. BMC Med. 19, 11. doi:10.1186/s12916-020-01883-5

Hu, Y., Zhang, H., Liu, B., Gao, S., Wang, T., Han, Z., et al. (2020).
rs34331204 regulates TSPAN13 expression and contributes to Alzheimer’s disease
with sex differences. Brain 143, e95. doi:10.1093/brain/awaa302

Frontiers in Genetics frontiersin.org07

Ju et al. 10.3389/fgene.2023.1254827

https://doi.org/10.34133/research.0011
https://doi.org/10.34133/research.0011
https://doi.org/10.1093/bib/bbab480
https://doi.org/10.1007/s10541-005-0178-0
https://doi.org/10.1021/acsomega.1c03132
https://doi.org/10.1021/acsomega.1c03132
https://doi.org/10.1093/nar/gkab957
https://doi.org/10.1093/nar/gkab957
https://doi.org/10.1007/s11704-020-0180-0
https://doi.org/10.1016/j.chembiol.2015.11.007
https://doi.org/10.1016/j.chembiol.2015.11.007
https://doi.org/10.1093/bioinformatics/btx479
https://doi.org/10.1093/bioinformatics/btab169
https://doi.org/10.1093/bioinformatics/btab169
https://doi.org/10.1093/bib/bbab391
https://doi.org/10.1093/bib/bbab391
https://doi.org/10.1146/annurev-clinpsy-032816-045037
https://doi.org/10.1146/annurev-clinpsy-032816-045037
https://doi.org/10.1016/j.neunet.2005.06.042
https://doi.org/10.2174/1574893616666211214110625
https://doi.org/10.1016/j.csbj.2020.04.001
https://doi.org/10.1093/bioinformatics/bty668
https://doi.org/10.1093/bioinformatics/bty668
https://doi.org/10.1186/s12916-020-01883-5
https://doi.org/10.1093/brain/awaa302
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1254827


Hu, Y., Zhang, Y., Zhang, H., Gao, S., Wang, L., Wang, T., et al. (2022a). Cognitive
performance protects against Alzheimer’s disease independently of educational attainment
and intelligence. Mol. Psychiatry 27, 4297–4306. doi:10.1038/s41380-022-01695-4

Hu, Y., Zhang, Y., Zhang, H., Gao, S., Wang, L., Wang, T., et al. (2022b). Mendelian
randomizationhighlights causal associationbetweengenetically increasedC-reactiveprotein levels
and reduced Alzheimer’s disease risk. Alzheimers Dement. 18, 2003–2006. doi:10.1002/alz.12687

Huang, Q. F., Zhang, J., Wei, L. Y., Guo, F., and Zou, Q. (2020). 6mA-RicePred: A
method for identifying DNA N (6)-methyladenine sites in the rice genome based on
feature fusion. Front. Plant Sci. 11, 4. doi:10.3389/fpls.2020.00004

Ji, Y., Zhou, Z., Liu, H., and Davuluri, R. V. (2021). Dnabert: Pre-trained bidirectional
encoder representations from transformers model for DNA-language in genome.
Bioinformatics 37, 2112–2120. doi:10.1093/bioinformatics/btab083

Jiao, Y., and Du, P. (2016). Performance measures in evaluating machine learning
based bioinformatics predictors for classifications.Quant. Biol. 4, 320–330. doi:10.1007/
s40484-016-0081-2

Jin, J., Yu, Y., Wang, R., Zeng, X., Pang, C., Jiang, Y., et al. (2022). iDNA-ABF: multi-
scale deep biological language learning model for the interpretable prediction of DNA
methylations. Genome Biol. 23, 219–223. doi:10.1186/s13059-022-02780-1

Kim, Y. (2014). Convolutional neural network for sentence classification[J]. Waterloo,
ON: University of Waterloo. arXiv preprint arXiv:1408.5882.

Kulis, M., and Esteller, M. (2010). DNA methylation and cancer. Adv. Genet. 70,
27–56. doi:10.1016/B978-0-12-380866-0.60002-2

Laird, P. W. (2010). Principles and challenges of genome-wide DNA methylation
analysis. Nat. Rev. Genet. 11, 191–203. doi:10.1038/nrg2732

Larranaga, P., Calvo, B., Santana, R., Bielza, C., Galdiano, J., Inza, I., et al. (2006). Machine
learning in bioinformatics. Briefings Bioinforma. 7, 86–112. doi:10.1093/bib/bbk007

Li, J., He, S. D., Guo, F., and Zou, Q. (2021). HSM6AP: A high-precision predictor for
the Homo sapiens N6-methyladenosine (m̂6 A) based on multiple weights and feature
stitching. Rna Biol. 18, 1882–1892. doi:10.1080/15476286.2021.1875180

Li, Z., Zhu, S., Shao, B., Zeng, X., Wang, T., and Liu, T. Y. (2023). DSN-DDI: An
accurate and generalized framework for drug–drug interaction prediction by dual-view
representation learning. Briefings Bioinforma. 24, bbac597. doi:10.1093/bib/bbac597

Liu, C., Song, J., Ogata, H., and Akutsu, T. (2022). MSNet-4mC: Learning effective
multi-scale representations for identifying DNA N4-methylcytosine sites.
Bioinformatics 38, 5160–5167. doi:10.1093/bioinformatics/btac671

Lv, H., Dao, F. Y., Zhang, D., Yang, H., and Lin, H. (2021). Advances in mapping
the epigenetic modifications of 5-methylcytosine (5mC), N6-methyladenine
(6mA), and N4-methylcytosine (4mC). Biotechnol. Bioeng. 118, 4204–4216.
doi:10.1002/bit.27911

Manavalan, B., Basith, S., Shin, T. H., Lee, D. Y.,Wei, L., and Lee, G. (2019). 4mCpred-
EL: An ensemble learning framework for identification of DNAN4-methylcytosine sites
in the mouse genome. Cells 8, 1332. doi:10.3390/cells8111332

Moore, L. D., Le, T., and Fan, G. (2013). DNA methylation and its basic function.
Neuropsychopharmacology 38, 23–38. doi:10.1038/npp.2012.112

Ni, P., Huang, N., Zhang, Z., Wang, D. P., Liang, F., Miao, Y., et al. (2019). DeepSignal:
Detecting DNAmethylation state from nanopore sequencing reads using deep-learning.
Bioinformatics 35, 4586–4595. doi:10.1093/bioinformatics/btz276

Pan, X., Lin, X., Cao, D., Zeng, X., Yu, P. S., He, L., et al. (2022). Deep learning for drug
repurposing: Methods, databases, and applications. Wiley Interdiscip. Rev. Comput.
Mol. Sci. 12, e1597. doi:10.1002/wcms.1597

Plongthongkum, N., Diep, D. H., and Zhang, K. (2014). Advances in the profiling of
DNA modifications: Cytosine methylation and beyond. Nat. Rev. Genet. 15, 647–661.
doi:10.1038/nrg3772

Razin, A., and Cedar, H. (1991). DNA methylation and gene expression. Microbiol.
Rev. 55, 451–458. doi:10.1128/mr.55.3.451-458.1991

Ren, S. J., Yu, L., and Gao, L. (2022). Multidrug representation learning based on
pretraining model and molecular graph for drug interaction and combination
prediction. Bioinformatics 38, 4387–4394. doi:10.1093/bioinformatics/btac538

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning representations
by back-propagating errors. nature 323, 533–536. doi:10.1038/323533a0

Sharma, A. K., and Srivastava, R. (2021). Protein secondary structure prediction using
character bi-gram embedding and Bi-LSTM. Curr. Bioinforma. 16, 333–338. doi:10.
2174/1574893615999200601122840

Song, B., Luo, X., Luo, X., Liu, Y., Niu, Z., and Zeng, X. (2022). Learning spatial
structures of proteins improves protein–protein interaction prediction. Briefings
Bioinforma. 23, bbab558. doi:10.1093/bib/bbab558

Tran, H. V., and Nguyen, Q. H. (2022). iAnt: Combination of convolutional neural
network and random forest models using PSSM and BERT features to identify
antioxidant proteins. Curr. Bioinforma. 17, 184–195. doi:10.2174/
1574893616666210820095144

Wang, R., Jiang, Y., Jin, J., Yin, C., Yu, H., Wang, F., et al. (2022). DeepBIO is an
automated and interpretable deep-learning platform for biological sequence prediction,
functional annotation, and visualization analysis, 2022.2009.2029.509859. bioRxiv.
doi:10.1101/2022.09.29.509859

Xiao, Z. C., Wang, L. Z., Ding, Y. J., and Yu, L. A. (2022). iEnhancer-MRBF:
Identifying enhancers and their strength with a multiple Laplacian-regularized radial
basis function network. Methods 208, 1–8. doi:10.1016/j.ymeth.2022.10.001

Xu, H., Jia, P., and Zhao, Z. (2021). Deep4mC: Systematic assessment and
computational prediction for DNA N4-methylcytosine sites by deep learning.
Briefings Bioinforma. 22, bbaa099. doi:10.1093/bib/bbaa099

Xu, J., Meng, Y., Lu, C., Cai, L., Zeng, X., Nussinov, R., et al. (2023). Graph embedding
and Gaussian mixture variational autoencoder network for end-to-end analysis of
single-cell RNA sequencing data. Cell Rep. Methods 3, 100382. doi:10.1016/j.crmeth.
2022.100382

Yu, Y., He, W., Jin, J., Xiao, G., Cui, L., Zeng, R., et al. (2021). iDNA-ABT: advanced
deep learning model for detecting DNA methylation with adaptive features and
transductive information maximization. Bioinformatics 37, 4603–4610. doi:10.1093/
bioinformatics/btab677

Zeng, X., Wang, F., Luo, Y., Kang, S. G., Tang, J., Lightstone, F. C., et al. (2022a). Deep
generative molecular design reshapes drug discovery. Cell Rep. Med. 4, 100794. doi:10.
1016/j.xcrm.2022.100794

Zeng, X., Xiang, H., Yu, L., Wang, J., Li, K., Nussinov, R., et al. (2022b). Accurate
prediction of molecular properties and drug targets using a self-supervised image
representation learning framework. Nat. Mach. Intell. 4, 1004–1016. doi:10.1038/
s42256-022-00557-6

Zeng, X., Zhu, S., Lu, W., Liu, Z., Huang, J., Zhou, Y., et al. (2020). Target
identification among known drugs by deep learning from heterogeneous networks.
Chem. Sci. 11, 1775–1797. doi:10.1039/c9sc04336e

Zhang, Y., Lin, J., Zhao, L., Zeng, X., and Liu, X. (2021). A novel antibacterial peptide
recognition algorithm based on BERT. Briefings Bioinforma. 22, bbab200. doi:10.1093/
bib/bbab200

Zhao, Z., Zhang, X., Chen, F., Fang, L., and Li, J. (2020). Accurate prediction of DNA
N4-methylcytosine sites via boost-learning various types of sequence features. BMC
genomics 21, 627. doi:10.1186/s12864-020-07033-8

Zulfiqar, H., Huang, Q. L., Lv, H., Sun, Z. J., Dao, F. Y., and Lin, H. (2022b). Deep-
4mCGP: A deep learning approach to predict 4mC sites in geobacter pickeringii by
using correlation-based feature selection technique. Int. J. Mol. Sci. 23, 1251. doi:10.
3390/ijms23031251

Zulfiqar, H., Sun, Z. J., Huang, Q. L., Yuan, S. S., Lv, H., Dao, F. Y., et al. (2022a).
Deep-4mCW2V: A sequence-based predictor to identify N4-methylcytosine sites in
Escherichia coli. Methods 203, 558–563. doi:10.1016/j.ymeth.2021.07.011

Frontiers in Genetics frontiersin.org08

Ju et al. 10.3389/fgene.2023.1254827

https://doi.org/10.1038/s41380-022-01695-4
https://doi.org/10.1002/alz.12687
https://doi.org/10.3389/fpls.2020.00004
https://doi.org/10.1093/bioinformatics/btab083
https://doi.org/10.1007/s40484-016-0081-2
https://doi.org/10.1007/s40484-016-0081-2
https://doi.org/10.1186/s13059-022-02780-1
https://doi.org/10.1016/B978-0-12-380866-0.60002-2
https://doi.org/10.1038/nrg2732
https://doi.org/10.1093/bib/bbk007
https://doi.org/10.1080/15476286.2021.1875180
https://doi.org/10.1093/bib/bbac597
https://doi.org/10.1093/bioinformatics/btac671
https://doi.org/10.1002/bit.27911
https://doi.org/10.3390/cells8111332
https://doi.org/10.1038/npp.2012.112
https://doi.org/10.1093/bioinformatics/btz276
https://doi.org/10.1002/wcms.1597
https://doi.org/10.1038/nrg3772
https://doi.org/10.1128/mr.55.3.451-458.1991
https://doi.org/10.1093/bioinformatics/btac538
https://doi.org/10.1038/323533a0
https://doi.org/10.2174/1574893615999200601122840
https://doi.org/10.2174/1574893615999200601122840
https://doi.org/10.1093/bib/bbab558
https://doi.org/10.2174/1574893616666210820095144
https://doi.org/10.2174/1574893616666210820095144
https://doi.org/10.1101/2022.09.29.509859
https://doi.org/10.1016/j.ymeth.2022.10.001
https://doi.org/10.1093/bib/bbaa099
https://doi.org/10.1016/j.crmeth.2022.100382
https://doi.org/10.1016/j.crmeth.2022.100382
https://doi.org/10.1093/bioinformatics/btab677
https://doi.org/10.1093/bioinformatics/btab677
https://doi.org/10.1016/j.xcrm.2022.100794
https://doi.org/10.1016/j.xcrm.2022.100794
https://doi.org/10.1038/s42256-022-00557-6
https://doi.org/10.1038/s42256-022-00557-6
https://doi.org/10.1039/c9sc04336e
https://doi.org/10.1093/bib/bbab200
https://doi.org/10.1093/bib/bbab200
https://doi.org/10.1186/s12864-020-07033-8
https://doi.org/10.3390/ijms23031251
https://doi.org/10.3390/ijms23031251
https://doi.org/10.1016/j.ymeth.2021.07.011
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1254827

	Comparative evaluation and analysis of DNA N4-methylcytosine methylation sites using deep learning
	Introduction
	Materials and methods
	Datasets
	Input feature matrix
	Model construction and parameters
	Evaluation metrics
	Experimental setup
	Result
	Performance evaluation of multiple models
	Deep learning model feature analysis

	Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


