
Automatic recognition of
complementary strands: lessons
regarding machine learning
abilities in RNA folding

Simon Chasles1,2 and François Major1,2*
1Institute for Research in Immunology and Cancer, Montréal, QC, Canada, 2Department of Computer
Science and Operations Research, Université de Montréal, Montréal, QC, Canada

Introduction: Prediction of RNA secondary structure from single sequences still
needs substantial improvements. The application of machine learning (ML) to this
problem has become increasingly popular. However, ML algorithms are prone to
overfitting, limiting the ability to learn more about the inherent mechanisms
governing RNA folding. It is natural to use high-capacity models when solving
such a difficult task, but poor generalization is expected when too few examples
are available.

Methods: Here, we report the relation between capacity and performance on a
fundamental related problem: determining whether two sequences are fully
complementary. Our analysis focused on the impact of model architecture and
capacity as well as dataset size and nature on classification accuracy.

Results:We observed that low-capacity models are better suited for learning with
mislabelled training examples, while large capacities improve the ability to
generalize to structurally dissimilar data. It turns out that neural networks
struggle to grasp the fundamental concept of base complementarity, especially
in lengthwise extrapolation context.

Discussion: Given a more complex task like RNA folding, it comes as no surprise
that the scarcity of useable examples hurdles the applicability of machine learning
techniques to this field.
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Introduction

Identifying potential structural candidates for a single RNA sequence is a
computationally demanding task. The Zuker-style dynamic programming approach to
fold an RNA sequence of length L without pseudoknots requires time complexity in
O(L3) (Zuker and Stiegler 1981; Hofacker et al., 1994). Algorithms that take into
account pseudoknots are even more complex and have been reported to require
significantly more computational power ranging from O(L4) to O(L6) (Rivas and Eddy
1999; Condon et al., 2004), or higher (Marchand et al., 2022).

Machine learning (ML) algorithms offer an alternative to traditional methods for
identifying RNA structural candidates. In particular, neural networks can compute
structures in an end-to-end fashion, allowing for quick inference in a single feedforward
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pass, especially when running on GPU (Chen et al., 2020; Fu et al.,
2022). However, the training phase can take several days, which can
complicate software updates (Shen et al., 2022). Regardless of the
approach, predicting RNA structure requires significant
computational resources due to the inherent complexity of RNA
folding. As prediction methods must be at least as complex as the
problems they aim to solve, it is important in the case of ML to avoid
overfitting to this task.

To match the inherent complexity of RNA structure prediction,
ML algorithms require high capacity, meaning they should be
capable of learning a wide variety of mathematical functions
(Goodfellow et al., 2016). Actually, because statistical learning
relies heavily on training data, ML algorithms require high finite-
sample expressivity to learn effectively (Zhang et al., 2021).
However, high expressivity can lead to overfitting if the neural
networks perform well on the training data without being able to
generalize to structurally dissimilar testing data (LeCun et al., 1989).
Therefore, it is crucial to balance expressivity with generalization to
ensure accurate predictions on unseen data.

Several ML algorithms have been developed for RNA secondary
structure prediction in recent years (Chen et al., 2020; Fu et al., 2022;
Zakov et al., 2011; Singh et al., 2019; Wang et al., 2019). However,

many of these algorithms are suspected of overfitting (Rivas et al.,
2012; Sato et al., 2021; Zhao et al., 2021) and have limited ability to
generalize across RNA families (Szikszai et al., 2022). Generalization
is crucial for accurate RNA structure prediction since known RNA
structures only represent a small fraction of the entire RNA structure
space. Prediction algorithms must be able to accurately predict
structures for molecules that are similar and dissimilar to known
structures. Therefore, it is important to develop ML algorithms with
stronger generalization properties to accurately predict RNA
structures across a wider range of sequences and structures.

The aim of this study is to explore the performance and behavior
of ML algorithms on a fundamental RNA-related task: determining
if two RNA strands are fully complementary. Specifically, we
examined the behavior of four families of neural networks with a
focus on overfitting. We tackled three major challenges encountered
when applying ML to RNA folding: 1) learning with mislabelled
training examples (mislabels), 2) generalizing to structurally
dissimilar data, and 3) training with limited examples (Rivas
et al., 2012; Flamm et al., 2021; Burley et al., 2022; Danaee et al.,
2018).

Our results indicate that low-capacity models are more
effective for learning with mislabels, as they have the ability to

FIGURE 1
The four neural network architectures. The 4 tested neural network architectures take nucleotide encodings as input and output the positivity score.
All models have three layers, with the first layer being a characteristic layer, and the last two layers having the form Lin-B-R-D-Lin-σ, where Lin refers to a
linear layer, Conv refers to a convolutional layer, Self-Att refers to a multi-head self-attention layer, BLSTM refers to a bidirectional long-short term
memory layer, Pos Enc refers to positional encodings, and letters σ, B, R and D refer respectively to sigmoid activation, batch normalization, ReLU
activation and dropout regularization. The capacity of the models is controlled by hyperparameters Hi and Ui.

TABLE 1 Hyper-parameters used to control the capacity of each model.

log10C ≈ 2.70 ≈ 3.00 ≈ 3.50 ≈ 4.15 ≈ 4.75 ≈ 5.50

MLP (H1, U1) (5, 5) (10, 10) (30, 30) (80, 80) (200, 200) (500, 500)

Att (H2, U2) (2, 9) (4, 12) (6, 24) (12, 60) (24, 120) (80, 180)

LSTM (H3, U3) (2, 5) (3, 8) (4, 18) (10, 35) (16, 78) (48, 145)

CNN (H4, U4) (1, 1) (1, 2) (2, 4) (4, 9) (8, 16) (20, 36)

Hi refers to the capacity of the characteristic layer and Ui indicates the number of units in the second to last linear layer. The quantity log10C gives an order of magnitude for the number C of

trainable parameters.
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ignore them. Conversely, high-capacity models demonstrate
better generalization performance in length-wise extrapolation
context. On top of that, learning with few examples poses
challenges for both low and high-capacity models, highlighting
the importance of problem representation and architecture
choice.

Materials and methods

Learning task

Given the RNA alphabet Σ � {A, C, G, U}, complementary
strands are those in which each nucleotide on one strand pairs

FIGURE 2
Performance of MLP and Att models when learning with mislabels. Train (red) and test (blue) mean accuracies over 50 simulations reported for MLP
and Att models. Sequence length and mislabelling probability are fixed to (L, μ) = (8, 0.2).

FIGURE 3
Cross-over behavior when learning with mislabels. Influence of the training dataset size over train (Trn) and test (Tst) accuracies for low-capacity
models (A) and high-capacity models (B). Sequence length is fixed to L = 8 and mislabelling probability is fixed to μ = 0.2, with low capacity meaning
log10C ≈ 3.5 and high capacity meaning log10C ≈ 5.5. Dotted lines indicate the 100% and 80% accuracy marks since μ =20%.
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with its Watson-Crick partner on the other strand (A with U and C
with G). For example, the RNA strand 5′-AGUCAG-3′ is
complementary to 5′-CUGACU-3′. We defined the task of
automatic recognition of complementary strands as a binary

classification problem that involves comparing and determining
whether pairs of RNA strands of the same length are
complementary or not. The target is True if the strands are
fully complementary and False otherwise.

FIGURE 4
Performance of CNN and Att models in length-wise extrapolation context. Train (red) and test (blue) mean accuracies over 50 simulations reported
for CNN and Att models. Models were trained on sequences of length 6 before being tested on sequences of length 8, without mislabelling in the
training set.

FIGURE 5
Influence of capacity in length-wise extrapolation context. Impact of the number of trainable parameters over train (Trn) and test (Tst) accuracies in
length-wise extrapolation context. Results when training with 500 examples of length 5 shown in (A) and 2000 examples of length 6 in (B). Sequence
length is set to 8 in the testing datasets and mislabelling probability is set to 0 in the training datasets. Dotted lines indicate the 100% and 90% accuracy
marks to highlight acceptable test performance.
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To have a fixed-size noisy input and simulate the structure of
a hairpin loop, we restricted the maximum length of an RNA
strand to 10 nucleotides and inserted an apical loop of 4 random
nucleotides between each pair of RNA strands. During the
experiments, the lengths of the apical loops varied from 3 to
7 nucleotides, but no significative impact was observed based on
apical loop length, so we used the results computed with
tetraloops as representatives of our key findings. More
specifically, given strands s, �s ∈ ΣL with L ≤ 10 and a ∈ Σ4, we

represented the input as the sequence 010−Lsa�s010−L, where
0 denotes zero-padding.

The target of the classification is t = 1 if for all i ∈ {1, . . ., L}, si is
paired with its Watson-Crick complement on the other strand, that
is, if si � c(�sL+1−i), where c: Σ → Σ is the Watson-Crick
complementarity function defined as c(A) � U, c(C) � G,
c(G) � C, and c(U) � A. Otherwise, the target is t = 0.

Each nucleotide was represented by a vector of size 4, and a word
embedding layer was used to update these vectors during training.
Therefore, the inputs are fixed-size real-valued matrices x ∈ R24×4

and the outputs are real values y ∈ (0, 1). The output can be
interpreted as the probability of the RNA sequence being a
positive example, which we also refer to as the positivity score.

The loss function used to train the models is the binary cross-
entropy with adjustments made to account for varying ratios of
positive and negative examples. Specifically, for a training dataset
D � (x(i), t(i)){ }Ni�1 with positive example ratio α � 1

N∑N
i�1t(i), the loss

value for a model prediction y(i) � f(x(i)) was computed by Eq. 1.

l y i( ), t i( )( ) � − 1 − α

α
( )t i( ) log y i( )( ) + 1 − t i( )( )log 1 − y i( )( )[ ] (1)

This correction ensured that the loss for positive examples was
scaled up or down relative to the loss for negative examples, subject
to the dataset’s positive example ratio. For instance, if there were
twice as many negative as positive examples in a dataset (i.e., α = 1/3),
the loss value for each positive example would be multiplied by a factor
of 2, effectively balancing the contribution of positive and negative
examples to the training loss. The parameter α could be controlled when
creating synthetic datasets.

Artificial data

Our data generation process aimed to create diverse training and
testing datasets that would enable us to evaluate our models in
various scenarios. To achieve this, we introduced structural and

FIGURE 6
Limits to length-wise extrapolation with zero-padding and fixed-
size inputs. Distribution of model outputs (positivity score) on specific
sequences of length 8 when trained on 500 sequences of length 5.
The first sequence is a positive example and the second and third
ones are the same positive example where 3 mismatches have been
introduced respectively at base pair positions 6 to 8 and 2 to 4. We use
the best tested capacity for each model so log10C ≈ 3.5 for the MLP
and log10C ≈ 5.5 for all other models. The classification threshold is
represented by the red dotted line.

FIGURE 7
Evolution of performance in the extrapolation context of various positivity rates. Influence of the concentration of positive examples in the training
set on the train (Trn) and test (Tst) accuracies for low-capacity models (A) and high-capacity models (B). Parameters were fixed to (N, L, μ) = (500, 6, 0).
Dotted lines indicate the 100% and 90% accuracy marks to highlight acceptable test performance.
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FIGURE 8
Performances for all models when learning with mislabels in extrapolation context. Test accuracies for all models when tested on sequences of
length 8 after being trained on sequences of length 6 with 20% mislabelled training examples and 40% positivity rate.

FIGURE 9
Limits when learning with few examples with mislabels in extrapolation context. (A) Influence of capacity on train (Trn) and test (tst) accuracies. The
training sets are unbalanced and mislabelled as parameters (N, L, μ, α) are fixed to (500, 6, 0.2, 0.4). The testing sets on the opposite are balanced and
correctly labelled with parameters (N, L, μ, α) being fixed to (48, 8, 0.0, 0.5). (B) With the same parameters, distributions of test accuracies over
50 simulations are reported, with models being trained on 500 examples (e.g., MLP−) or 4,000 examples (e.g., MLP+). The capacity used for each
situation is the best capacity achieved on the test sets with respect to the heatmaps in Figure 8. Dotted lines indicate the 100% and 80% accuracy marks
since μ = 20%.
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statistical dissimilarities between the datasets, including differences
in quality, sequence length and positivity rate. Mainly, we aimed at
simulating the use of all known data (a training set) to infer
predictions on a portion of the unseen data of interest (a
corresponding testing set).

To produce a pair of training and testing datasets, we ensured
that there was no overlap between the training and testing examples
by randomly partitioning the set of all 4L sequences of length L into
two sets. For each example, we concatenated a sequence s ∈ ΣLwith a
randomly generated apical loop a and a complementary sequence �s.
Specifically, for positive examples, we set �s to be the exact
complement of s (denoted by s*), while for negative examples, we
chose �s randomly in ΣL \{s*}. We carefully controlled the ratio α of
positive examples in the training sets and ensured that the testing
sets had an equal number of positive and negative examples, thereby
avoiding bias when measuring the performance on a test set.

To introduce structural dissimilarities, we varied the sequence
length and the positive example ratio between the training and
testing datasets. This allowed us to measure the extrapolation
abilities of our models. Additionally, to control the quality of a
training dataset, we introduced a proportion μ ∈ [0, 12] of mislabelled
examples, where a positive example could have label 0 with
probability μ, and a negative example could have label 1 with
probability μ. However, we ensured that all examples in the
testing datasets were correctly labelled. By doing so, we tested the
models’ ability to ignore errors and avoid overfitting.

Overall, our data generation process produced realistic and
diverse datasets, allowing us to evaluate our models under
various conditions. Fully aware of the similarity between the task
defined here and the prediction of binding sites of microRNAs, we
are mostly interested in the abilities and behaviors of ML algorithms
(and neural networks in particular) when trained and tested in
various conditions, which we better control using artificial data.

Performance measure

To evaluate the performance of our models, we measured their
classification accuracy on the testing datasets using a classification
threshold θ ∈ (0, 1) to distinguish between examples of class 0 and 1.
Specifically, given a model f(·) and a dataset D � {(x(i), t(i))}Ni�1, the
accuracy of f(·) on D with threshold θ was calculated by Eq. 2.

A f ·( ),D, θ( ) � 1
N

∑
N

i�1
t i( )1 f x i( )( )> θ{ } + 1 − t i( )( )1 f x i( )( )≤ θ{ }( )

(2)
where 1{·} is the indicator function that equals 1 if the condition
inside the bracket is true, and 0 otherwise.

While threshold θ could be optimized through methods such as
SVM (Smola and Schölkopf 2004) or maximizing accuracy on the
training dataset (Singh et al., 2019), we set θ = 1/2 to study the
behavior of our neural networks independently of any additional
optimization steps. We considered the mean accuracy over
50 simulations, each of which generated datasets as described
above, trained a model as described in the next section, and
evaluated its performance using the aforementioned accuracy
metric.

Architectures and training

The four tested models are relatively small representatives of
four types of neural networks that have been recently used to predict
RNA structures (Chen et al., 2020; Singh et al., 2019; Sato et al.,
2021). All models have only three layers, where the first layer is
unique to each architecture and the last two layers have the form
linear—batchnorm—ReLU—dropout—linear-sigmoid (Goodfellow

FIGURE 10
Behaviors of classical ML methods when extrapolating with mislabels. (A) Influence of the training dataset size over train (Trn) and test (Tst)
accuracies for specific classical ML algorithms. Sequence length and mislabelling probability are fixed to (L, μ) = (8, 0.2). (B) With (μ, α) = (0.2, 0.4), the
models are trained on sequences of length 6 before being tested on the whole set of sequences of length 8. Distributions of test accuracies over
50 simulations are reported. The dataset size varies betweenN= 500 (e.g., KNN−) andN=4,000 (e.g., KNN+). Dotted lines indicate the 100% and 80%
accuracy marks since μ = 20%.
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et al., 2016; Ioffe and Szegedy 2015; Nair and Hinton 2010; Hinton
et al., 2012). We used a dropout rate of 0.1 and a weight decay of 10–3

for all models, and the number of epochs was set to 8 × 104
N to ensure

that all models were trained for the same number of iterations,
regardless of the number of training examplesN. We used the Adam
optimizer with a learning rate of 10–3 and default parameters in
PyTorch (Kingma and Ba 2014) with a batch size of 256.

The four tested models and their capacity control are
summarized in Figure 1. The multi-layer perceptron model
(MLP) (Goodfellow et al., 2016) has a first layer of the form
linear—batchnorm—ReLU—dropout, and its capacity is
controlled by the number H1 of hidden units in the linear
module. For the multi-head self-attention model (Att), the first
layer uses a skip connection of the form h1 � conv(x +
positionalencoding) and h2 � batchnorm(h1 + dropout

(multi − head − self − attention(h1))), where the multi-head
attention and positional encoding are described by Vaswani and
co-workers (Vaswani et al., 2017). The capacity of this layer is
controlled by the number H2 of heads in the multi-head attention,
so the 1D-convolution uses a kernel of size 1 to project the 4-
dimensional embedding into a H2-dimensional input for the
attention module. For the long-short term memory model
(LSTM) (Hochreiter and Schmidhuber 1997; Sak et al., 2014),
the first layer is a one-layer bidirectional LSTM without dropout,
and its capacity is controlled by the number H3 of hidden units in
the LSTM module. Finally, for the convolutional neural network
(CNN) (LeCun et al., 1989; Dumoulin and Visin 2016), the first
layer has the form outer concatenation—3 × 3conv—batchnorm—

ReLU—dropout with a stride and padding of size 1. The outer
concatenation operation takes the 24 × 4 input matrix and returns
a 24 × 24 × 8 tensor, where the 8-dimensional vector at position i, j
is the concatenation of the 4-dimensional encodings at positions i
and j in the initial matrix. The capacity of the CNN is controlled by
the number H4 of feature maps produced by the convolution
module.

To further manipulate the capacity of the models, we also varied
the number Ui of hidden units in the second layer of our four
architectures. Our main interest lies in the number C of parameters
in each model, and more specifically in log10C. The actual number of
heads, hidden units, and feature maps for each value of C is provided
in Table 1. As discussed earlier, we trained 50 instances of each
model on 50 different training datasets and reported the
corresponding mean test accuracy. Our goal was to investigate
how the test accuracy is affected by N and C for different values
of L, μ and α.

Results and discussion

Learning with mislabels

The concept of mislabelling introduced in this section can be
seen as a form of double standard. Our goal was to complicate the
learning process deliberately by labelling some positive examples as
class 0 and some negative examples as class 1. Thus, the term
mislabelling is used because a ground truth classification is defined
based on sequence complementarity. However, mislabelling on its
own is not necessarily a problem for the learning process. A model

f(·) that generalizes well on a completely mislabelled dataset could
perform equally well on a correctly labelled dataset sampled from the
same distribution by simply outputting 1 − f(·). Therefore, the
learning process is complicated when a proportion μ ∈ (0, 1) of
the training dataset is mislabelled, creating a double standard as
different pairs of complementary strands are labelled differently.

Moreover, since the labels can be interchanged without loss of
generality, we focused on mislabelling probabilities μ ∈ (0, 12). The
special case where μ � 1

2 behaves as if the labels were randomly
assigned (Zhang et al., 2021). In this study, we used a mislabelling
probability of μ = 0.2, which we find to be a good representative of
the key findings presented in this section.

In comparison to the actual RNA structure prediction task,
learning with mislabels can be seen as analogous to learning on a
dataset that contains structures with non-canonical base pairs as
well as structures within which non-canonical base pairs are
ignored, even though such pairs exist and can be identified.
Similarly, the same concept applies when training on a dataset
aimed at predicting pseudoknots and triplets when these kinds of
interactions are only reported for some structures but not for others.
Without defining the structural elements that need to be predicted,
situations of double standard can arise when certain types of base
pairs can be labelled as present (positive) as well as absent (negative)
in a single dataset.

We were interested in investigating how the number of
parameters C and the number of training examples N affect the
test accuracy of the models for the automatic recognition of
complementary strands. In particular, we focused on fixed
sequence length L = 8 and mislabelling probability μ = 0.2. The
results for the MLP and Att models are presented in Figure 2, where
heatmaps depict the performance of the models for different values
of C and N. Shades of red depict train accuracies; blue testing. See
Supplementary Figure S1 for the equivalent LSTM and CNN results.
As expected, the accuracy increases with N, and overfitting behavior
is observable for log10C ≥ 4.15.

Remarkably, these results demonstrate the models’ ability to
handle mislabels, as they achieve a test accuracy of over 80% even
when 20% of the training set is mislabelled. Moreover, the models
can achieve near-perfect test accuracies as long as they are trained on
a sufficiently large dataset. This finding suggests that models with
relatively low capacity can still learn effectively when trained on low-
quality high-quantity datasets.

Indeed, it appears that low-capacity models (log10C ≈ 3.5) are
more likely to achieve test accuracies above 1 − μ than high-capacity
models (log10C ≈ 5.5). This is likely due to the fact that mislabels
introduce irregularities into the sample space that are difficult for
low-capacity models to account for. Low-capacity models tend to
compute smoother functions than high-capacity models. They are
thus less capable of capturing the intricate patterns that arise from
mislabelling, especially in large training datasets. They have however
enough capacity to estimate the function of interest, yielding test
accuracies near 100% and train accuracies around 1 − μ.

On the other hand, high-capacity models can account for the
irregularities introduced by the mislabels for larger training datasets,
delaying the cross-over point of train and test accuracies to larger N.
They thus require a broader view of the sample space to attain high
test accuracies, coupled with sufficient regularization to prevent
overfitting. The graphs in Figure 3 illustrate these behaviors. As in
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Figure 2, shades of red and blue depict train and test accuracies
respectively.

However, it is important to note that these reported accuracies
may be too optimistic because the models were trained and tested on
sequences of the same length with the same ratios of positive and
negative examples. Although no training sequence was repeated in
the testing set, this setup only evaluates a model’s ability to
generalize within structurally similar data, but not to extrapolate
to structurally dissimilar data. While this section highlights the
effectiveness of low-capacity models in learning with mislabels, the
following section presents a contrast as high-capacity models appear
to be more suitable for generalizing to structurally dissimilar data.

Generalizing to structurally dissimilar data

In the context of the automatic recognition of complementary
strands, the ability to generalize to structurally dissimilar data refers to
the ability of a model to make accurate predictions over a subspace of
the sample space that it has not or poorly seen during training. This
means that models could be trained and tested on datasets containing
different sequence lengths and positivity rates to evaluate their
understanding of sequence complementarity. For example, a model
can be trained on sequences of length 5 or 6 and then tested on
sequences of length 8, or trained on datasets with few or a lot of positive
examples and then tested on balanced datasets. This approach allows us
to investigate how well a model can generalize and extrapolate its
understanding of the problem. In light of current discussions regarding
extrapolation in ML conditions (Berrada et al. 2020; Balestriero et al.
2021), the concept of extrapolation is used here to convey how
sequences of length 8 cannot belong to the convex hull of a set of
sequences of length 6 with zero-padding.

In contrast, ML algorithms used for predicting actual RNA
structure face different challenges. For instance, hardware limitations
may restrict the maximum length of training sequences, but the model
is still expected to predict the structure of longer sequences. The
presence of non-canonical base pairs, pseudoknots, and base triples
can increase the number of base pairs per nucleotide, making it difficult
for models trained on sequences with a lower base pair density to
generalize to more sophisticated structures. Moreover, different RNA
families may have varying frequencies of certain structural motifs
(Moore 1999), further complicating the generalization of models to
unseen families. Despite these challenges, the ultimate goal of predicting
RNA structure for all families remains the same, regardless of their
structural similarity to previously known RNA structures.

To better visualize the impact of training example count N and
the number of model parameters C on test accuracies for the
automatic recognition of complementary strands, we report
experiments on CNN and Att models. Specifically, the models
were trained on correctly labelled sequences of length 6 and then
tested on the full set of 48 sequences of length 8. We present
heatmaps (Figure 4) that illustrate the performance of the models
as the number of parameters and training examples are varied. See
Supplementary Figure S2 for the equivalent MLP and LSTM results.
We observed that higher model capacity tends to yield better
performance, regardless of the number of training examples.

Nevertheless, as we increase the capacity, signs of overfitting can
still be observed. Notably, in the graphs presented in Figure 5, we

observe signs of overfitting from the MLPmodel when log10C ≥ 4, for
both (L, N) = (5, 500) on the left and (L, N) = (6, 2000) on the right.

Interestingly, we observe that the MLP and CNNmodels appear
to be better suited for extrapolation than the Att and LSTM models.
The former can achieve test accuracies of over 90% with ease, while
the latter struggle to do so. Additionally, the Att and LSTM models
exhibit greater variability in their performances. For instance, the
Att model of capacity log10C ≈ 4.15 with (L, N) = (6, 2000) has a
mean test accuracy of 84.8% over 50 simulations. However, its best
accuracy is over 99% and its worst accuracy is around 50%. In
Figure 5, the error bars have been omitted to better highlight the
performance of the four models. Furthermore, as it is challenging to
perform well on bigger sequences than those on which the models
were trained, the reverse can be equally challenging. It is notably the
case for the low-capacity LSTM which presents poorer
generalization performances as the absolute difference between
train and test sequence lengths gets bigger (Supplementary
Figure S4).

Despite the impressive statistical performance of the MLP
model, it fails to capture the nuances that make two RNA
sequences complementary. Specifically, when trained on 500
sequences of length 5, the MLP model tends to mistake a
negative example with mismatches in the upper three base pairs
for a positive example. The MLP model with log10C ≈ 3.5 achieves a
statistical accuracy of 98.1%, yet it incorrectly classifies the sequence
ACGUACGUGAAAACGUAGCA as a positive example with a
mean positivity score of 0.9810 (Figure 6). Interestingly, all other
models exhibit a similar trend, as they assign a comparable (albeit
slightly lower) mean positivity score to this negative sequence as
they do to its corresponding positive sequence.

Furthermore, the negative example with mismatches in the
lower five base pair positions is correctly classified most of the
time by all models. This suggests that the use of zero-padding to have
fixed-size intputs limits the length-wise extrapolation abilities of ML
models to the nucleotide positions seen during training. The MLP
model seems to be particularly affected by the zero-padding, while
the LSTM tends to produce lower positivity scores for the negative
sequence with mismatches in the upper three base pair positions,
probably due to its sequential calculation.

It is worth noting that all results presented so far were obtained
by training and testing on datasets with an equal number of positive
and negative examples. However, we can manipulate the proportion
α of positive examples in the training dataset while still testing on a
balanced dataset. Despite the loss function correction that accounts
for an equal number of positive and negative examples, when the
concentration of positive examples is too low or too high, all four
models perform poorly (Figure 7); even when classification
threshold θ is equal to α.

It is worth mentioning that in Figure 7, the test accuracy curves are
skewed to the left, indicating that the models perform better with too
many positive examples than too few. This behavior can likely be due to
the fact that the positive examples require complete Watson-Crick
complementarity. To be fair to the models, a distinction could be made
between negative examples with 0% Watson-Crick pairs and 90%
Watson-Crick pairs. In this line of thought, we also formulated the
problem as a regression task where we wanted to predict the
concentration of Watson-Crick pairs within each example. Even so,
themain conclusions are not affected by such formulation of the task, so
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we stick to the binary classification formulation since we are motivated
by structured prediction problems that can be modeled using a
collection of binary classification tasks.

If we aim to extrapolate accurately without mislabels, high-capacity
models are favorable, which means that the training datasets must be
sufficiently large to support this level of expressiveness. Moreover, when
our training dataset contains mislabelling, the models require a
substantial number of training examples before they can disregard
the errors. In the next section, we will address the challenge of learning
from a small training dataset while also consolidating the insights from
the previous two sections on capacity.

Learning with few training examples

Here we focus on learning with small training datasets, but this
at the same time provides us with an opportunity to explore how all
our initial challenges interact with each other, both for neural
networks and some classical ML methods. Thus, it is an
important section that consolidates the insights gained from the
previous sections.

We can note from last sections that learning with high capacity is
advantageous for extrapolating without mislabels, while learning with
low capacity is necessary to account for mislabels. However, when both
challenges are combined, model behaviors become more complex.

To illustrate this complexity, we present heatmaps showing the
behavior of the four tested architectures when trained with various
quantities of sequences of length 6 with a mislabelling probability of
20% and a positivity ratio of 40% (Figure 8), the later being an
arbitrary value to further challenge the extrapolation abilities of the
models. The test accuracies are reported over the whole set of
sequences of length 8 with as many positive and negative
examples. See Supplementary Figure S3 for the corresponding
train accuracies. These heatmaps demonstrate that the ability to
ignore errors is conserved even when extrapolating, provided
enough training examples are supplied. However, the required
capacity to maximize generalization performance varies among
the models and can be influenced by the number of training
examples. For instance, the MLP and CNN require low capacity
to attain their best generalization performance, while the Att and
LSTM require high capacity. Additionally, the CNN’s best
generalization performance requires high capacity with fewer
training examples, but low capacity with more training examples.

However, achieving acceptable performances with test accuracy
over 80% requires a substantial number of training examples (N≥ 2000)
when extrapolating with mislabels. When only a few training examples
are available (N ≤ 500), test accuracies over 80% become challenging to
achieve. Figure 9A shows the influence of capacity on the accuracies
when trained on 500 sequences of length 6 with 20% mislabelling and
40% positivity rate, tested on the whole balanced set of correctly labelled
sequences of length 8. It appears that variations in capacity have a low
impact on the model’s performance, although a general slight
improvement can be observed as capacity increases.

In order to gain more insight into the behavior of the four
models when dealing with few or many training examples, we
compared their distributions of performances (Figure 9B). To
produce this figure, we used the capacities that maximize
accuracy based on the heatmaps presented in Figure 8. As a

result, a wide range of capacities was needed for the models, with
the MLP using C ≈ 3,500 and the CNN using C ≈ 15,000 when
trained on many examples. On the other hand, the Att and LSTM
required much higher capacities, with the Att using C ≈ 60,000 and
the LSTM using C ≈ 300,000 regardless of the number of training
examples. Analyzing these distributions, we observe that the MLP
model appears to be the most suitable for extrapolating with
mislabels since its test accuracies have a higher mean and lesser
variance than the other three models.

With such a fundamental binary classification task, the behaviors of
some specific classical ML algorithms can put the results on neural
networks into perspective. Focusing on the k-nearest neighbors (KNN),
the support vector machine (SVM), the decision tree (tree) and the
random forest (forest) algorithms, we measured the performances of
such methods when learning on few examples with mislabels in a
length-wise extrapolation context. All algorithms use default sklearn
implementation except the KNN uses 35 neighbors, the tree uses a
maximum depth of 12 decisions and the forest uses 400 classification
trees. These parameters were determined by grid searchmaximizing the
generalization performance for most training dataset sizes.

First of all, we measured the ability of these algorithms to
account for mislabels in the training dataset (Figure 10A). In
comparison to the four tested neural networks, the method that
behaves in the most similar way is the SVM, as the test accuracy
tends to 100% while the train accuracy tends to 1 − μ asN→∞. The
decision tree bahaves similarly, but its generalization performances
are not as good. The KNN also performs poorly, but its train
accuracies are stuck at 100%. The most surprising behavior is
held by the random forest algorithm: Even tough it fits 100% of
the training datasets, which include 20% of mislabelled examples,
the test accuracies can simultaneously reach above 99%, which
shows an ability to minimize both test and training risks (Belkin
et al. 2019; Peters and Schuld 2022). The accuracy distributions
presented in Figure 10B allow to further visualize this diversity of
behaviors when algorithms are trained with 500 and 4,000 examples
of length 6 before being tested on the whole set of sequences of
length 8. Note that despite the relatively good performances of the
SVM and random forest algorithms, they also suffer from the same
misclassification problem presented in Figure 6.

Overall, this section highlights the importance of considering
multiple challenges simultaneously when measuring the impact of
capacity and training dataset size on the generalization performance
of a variety of ML models. It also underscores the need for a better
understanding of the trade-offs involved in choosing appropriatemodels
and capacity for specific tasks, especially when dealing with small
training datasets.

Conclusion

Inconclusion, theuseof statistical learning throughneuralnetworks
holds great promise for gaining insight into the complex mechanisms
that governRNAfolding. Even thoughover-parameterizedmodelsmay
be adequate for learninguseful representations, the fact remains that the
quality of aMLmodel highly depends on the data on which it has been
trained. Our study highlights three main challenges researchers face
whenworkingwithcurrentRNAstructuredataandprovidessuggestions
for overcoming them.

Frontiers in Genetics frontiersin.org10

Chasles and Major 10.3389/fgene.2023.1254226

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1254226


A binary classification task has been defined to measure the
abilities of a variety of ML algorithms to learn Watson-Crick
complementarity. The definition of the task has allowed us to
generate synthetical datasets to properly test our models in light
of specific challenges one can encounter when dealing with RNA
structure prediction. An emphasis has been put on four types of
neural networks that act as representatives of four families of
commonly used neural networks in the field.

Specifically,whendealingwithmislabels, low-capacitymodelsmay
be preferable, as long as enough training examples are provided.
Moreover, for tasks that require extrapolating to structurally
dissimilar data, high-capacity models may provide better
performance. With the fixed-size input involving limitations
regarding length-wise generalization, we propose using models that
can adapt to different RNA sequence lengths like recurrent neural
networks or fully convolutional networks. Finally, we recommend
exploring the behavior of a variety of neural networks on synthetic
data to better understand their specific risks and benefits in predicting
RNA structure. Overall, by addressing these challenges, machine
learning could provide valuable insights into RNA folding and
contribute to the development of new approaches for studying
biological systems involving RNA.
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SUPPLEMENTARY FIGURE S1
Performance of LSTM and CNN models when learning with mislabels. Train
(red) and test (blue) mean accuracies over 50 simulations reported for LSTM
and CNN models. Sequence length and mislabelling probability are
respectively fixed to L = 8 and μ = 0.2.

SUPPLEMENTARY FIGURE S2
Performance of MLP and LSTMmodels in length-wise extrapolation context.
Train (red) and test (blue) mean accuracies over 50 simulations reported for
MLP and LSTM models. Models were trained on sequences of length
6 before being tested on sequences of length 8, without mislabelling in the
training set.

SUPPLEMENTARY FIGURE S3
Training performances for all models when learning with mislabels in
extrapolation context. Train accuracies for all models when trained on
sequences of length 6 with 20% mislabelled training examples and 40%
positivity rate.

SUPPLEMENTARY FIGURE S4
Performance for low-capacity LSTM when trained and tested on a variety of
sequence lengths. Test accuracies for the LSTM model with log10C ≈ 3.5
when trained and tested on 500 sequences of length 5 to 10 without
mislabelling with a 50% positivity rate.
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