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Introduction: Diabetes is considered one of the leading healthcare concerns
affectingmillions worldwide. Taking appropriate action at the earliest stages of the
disease depends on early diabetes prediction and identification. To support
healthcare providers for better diagnosis and prognosis of diseases, machine
learning has been explored in the healthcare industry in recent years.

Methods: To predict diabetes, this research has conducted experiments on five
boosting algorithms on the Pima diabetes dataset. The dataset was obtained from the
University of California, Irvine (UCI) machine learning repository, which contains
several important clinical features. Exploratory data analysis was used to identify
the characteristics of the dataset. Moreover, upsampling, normalisation, feature
selection, and hyperparameter tuning were employed for predictive analytics.

Results: The results were analysed using various statistical/machine learning metrics
and k-fold cross-validation techniques. Gradient boosting achieved the greatest
accuracy rate of 92.85% among all the classifiers. Precision, recall, f1-score, and
receiver operating characteristic (ROC) curveswere used to further validate themodel.

Discussion: The suggested model outperformed the current studies in terms of
prediction accuracy, demonstrating its applicability to other diseases with similar
predicate indications.
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1 Introduction

Diabetes mellitus is a severe and chronic disease characterised by metabolic disorders in
which the pancreas either fails to produce insulin, or the body cannot effectively utilise the
insulin produced (Sneha and Gangil, 2019). Lack of awareness about the symptoms and
complications of diabetes is prevalent due to limited healthcare resources in many parts of
the world (Webber, 2013). There are approximately 40 different types of diabetes, with some
common types being Type 1 (insulin-dependent), Type 2 (insulin-independent), gestational
diabetes, and pre-diabetes (Kharroubi and Darwish, 2015).

According to statistical reports from various healthcare organisations, it is estimated that
globally, 463 million adults, which accounts for 9.3% of the population aged between 20 and
79 years, are affected by this chronic disease (Diabetes Federation International and IDF,
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2019). This highlights the widespread prevalence and significance of
diabetes as a global health issue.

Projections suggest that the prevalence of diabetes will continue
to increase significantly, with an estimated 578 million individuals
affected by 2030. According to the Diabetes Atlas 2019 by the
International Diabetes Federation (IDF), approximately 50% or
231 million people living with diabetes remain undiagnosed and
unaware of their condition due to limited healthcare resources
(Diabetes Federation International and IDF, 2019).

In 2019 alone, diabetes was responsible for 4.2 million deaths
worldwide. This chronic disease can have detrimental effects on various
organs in the human body, including the brain, nerves, heart, kidneys,
eyes, and skin. Recognising the symptoms and signs of diabetes is
crucial for early detection and management. Some common early
symptoms observed in individuals with diabetes or those at risk
include excessive thirst, fatigue, unexplained weight gain, dizziness,
skin discoloration, sexual dysfunction, fungal infections, high blood
sugar levels, and frequent urination (Sneha and Gangil, 2019). These
symptoms serve as important indicators for seeking medical attention
and further evaluation.

Indeed, given the significant impact and global burden of diabetes,
there is an urgent need to leverage computational intelligence techniques
for improved prediction and prevention of this disease. By utilising
advanced machine learning and artificial intelligence algorithms, we can
develop models that can effectively identify individuals at risk of
developing diabetes. These models can analyse large-scale datasets,
extract meaningful patterns, and generate accurate predictions.

The application of computational intelligence techniques in diabetes
prediction can have several benefits. Firstly, it can enable early disease
detection, allowing for timely intervention and management strategies.
This early detection can aid in preventing or delaying diabetes-related
problems, improving overall health outcomes for people.

Furthermore, by accurately predicting diabetes, healthcare
professionals can implement preventive measures and provide
personalised care plans for high-risk individuals. This can involve
lifestyle modifications, dietary interventions, exercise regimens, and
medication management to effectively manage and control blood sugar
levels.

Overall, applying computational intelligence techniques to
diabetes prediction can significantly enhance medical results, lessen
the condition’s toll, and encourage proactive and preventative
healthcare practices for those at risk.

However, healthcare data are growing drastically, and the
traditional machine learning approaches have been found inadequate
to handle such voluminous data for accurate disease predictions.
Ensemble learning techniques offer better performance in this regard.

This work aims to create a model that accurately predicts
diabetes using ensemble learning approaches. Our work’s
contribution is as follows:

FIGURE 1
Proposed methodology for research work.

TABLE 1 Attributes information of the dataset.

Attribute Description Measurement Value range

Pregnancy (PR) Participant number of times pregnant Numeric 0–17

Glucose (GL) Plasma glucose concentration of the participant mg/dL 0–199

Blood pressure (BP) Diastolic blood pressure of the participant mmHg 0–122

Skin thickness (ST) Triceps skin fold thickness of the participant mm 0–99

Insulin (IN) Participant’s insulin level (2-h serum) (mu U/mL) 0–846

Body mass index (BMI) Body fat based on the height and weight of the participant kg/m2 0–67

Diabetes pedigree function (DPF) Likelihood of diabetes based on the family history of the participant p-value 0.07–2.42

Age (AG) Age of the participant Years 21–81

Diabetes (DB) Class attribute 0 = no diabetes, 1 = diabetes 0 or 1

Frontiers in Genetics frontiersin.org02

Ganie et al. 10.3389/fgene.2023.1252159

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1252159


• Performing exploratory data analysis to improve the dataset’s
quality assessment.

• Performing data augmentation and processing using
upsampling and data normalisation, respectively.

• Using a k-fold cross-validation procedure to confirm the
results.

• Building the model by employing boosting algorithms in
conjunction with an ensemble learning strategy.

• Increasing prediction accuracy through hyperparameter tuning.
• Determining the contribution of the features towards diabetes.
• Comparing the proposed model’s performance assessment to
other research studies of a similar nature.

The rest of the paper is organised as follows. Related work is
discussed in Section 2. The adopted methodology and the dataset are
presented in Section 3. Then, the experimental details and results are
described and analysed in Section 4. Next, the comparative analysis with
existing similar works is presented in Section 5. Lastly, the conclusion
and the future direction of the research are provided in Section 6.

2 Related work

In recent years, copious work has been done on the prediction of
diabetes using machine learning and ensemble learning tools and
techniques (Ganie et al., 2022a; Ganie and Malik, 2022a). Different
datasets, algorithms, and methodologies used by the researchers to
carry out this research work have been discussed. The developed
models have yielded better results and can be used to support

FIGURE 2
Histogram of attributes.

TABLE 2 Attributes information of the dataset.

Attribute Count Mean Std Min Max

PR 768 3.84 3.36 0 17

GL 120.89 31.97 0 199

BP 69.10 19.35 0 122

ST 20.53 15.95 0 99

IN 79.79 115.24 0 846

BMI 31.99 7.88 0 67.10

DPF 0.47 0.33 0.78 2.42

AG 33.24 11.76 21 81

DB 0.34 0.47 0 1
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healthcare providers in data-driven decision-making. This section
reviews some of the key relevant papers on applying ensemble
learning approaches to forecast diabetes.

Li et al. (2020) developed a model to predict diabetes using
ensemble learning techniques to enhance disease prediction using the
Pima diabetes dataset. They achieved the highest results with extreme
gradient boosting (XGBoost), with an accuracy rate of 80.20%. The
authors proposed the improved feature combination classifier using the
XGBoost model, which can be explored to better predict diseases in the
healthcare industry. Mahabub (2019) tested different ensemble learning
techniques, such as AdaBoost, gradient boost, XGBoost, random forest,
etc., to predict diabetes, considering several clinical parameters such as
pregnancy, skin thickness, glucose, insulin, blood pressure, diabetes
pedigree function, body mass index (BMI), age, and class variable

(outcome). They achieved the highest accuracy rate of 84.42% with
the multilayer perceptron algorithm. Mushtaq et al. (2022) proposed an
optimised model using a voting classification based on the ensemble
method to predict diabetes using the Pima diabetes dataset. This
research work used a two-stage model selection process to develop
themodel. The voting classifier reached the best accuracy rate of 81.50%
among all the classifiers. Furthermore, Tomek and synthetic minority
oversampling technique (SMOTE) techniques were used for data
balancing to remove the biases from the dataset. The authors
suggested that the research be continued to estimate the likelihood
that nondiabetic patients will develop this condition in the future.

Beschi Raja et al. (2019) employed different boosting algorithms
for the diabetes prediction model development. The gradient boosting
algorithm attained the highest accuracy rate of 89.70% among all the

FIGURE 3
Distribution of attributes for nondiabetics and diabetics.
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classifiers. Other statistical measurements have also been evaluated to
validate the proposed model. Khan et al. (2021) developed a model for
diabetes prediction using boosting method. The authors explored
different classifiers such as gradient boosting, hybrid k-nearest
neighbour (kNN), j48, deep learning, naive Bayes, and artificial
neural network (ANN) for predictive analytics. Among all the
classifiers, the gradient boosting algorithm attained the best results.
In addition, the results were validated using the k-fold cross-validation
method. The authors suggested that this model can be used as a
prognosis tool in the healthcare industry for early disease prediction.
Lai et al. (2019) developed a complete framework for the predictive
analysis of diabetes. The gradient boosting machine techniques were
usedwith hyperparameter tuning, particularly for class balancing, which
minimised the loss of prediction probabilities regarding classification.

Singh et al. (2021) introduced an ensemble approach based
framework called eDiaPredict to forecast the diabetes status of
patients. The proposed methodology incorporates XGBoost, random
forest, support vector machine (SVM), neural network, and decision
tree. The efficacy of eDiaPredict is demonstrated through its
implementation on the PIMA Indian diabetes dataset, resulting in an
attained accuracy, precision, and sensitivity of 95%, 88%, and 90.32%,
respectively, with the combination of XGBoost and random forest.
Hasan et al. (2020) presented a framework for predicting diabetes using
kNN, decision trees, random forest, AdaBoost, Naive Bayes, XGBoost,
and multilayer perceptron. They employed a weighted ensemble of the
machine learning models to improve the prediction accuracy, and

experimented on the PIMA Indian diabetes dataset. The proposed
ensemble model achieved a significantly higher AUC and specificity of
0.950 and 0.934, respectively. However, it exhibited lower accuracy,
precision and sensitivity of 88.84%, 84.32%, and 78%, respectively.

3 Research methodology

Figure 1 illustrates the procedural flow of the proposed framework
employed in this experimental study. It outlines the sequential steps
undertaken to enhance the prediction accuracy of diabetes using an
ensemble learning technique based on boosting methods. The Pima
Indians diabetes dataset, obtained from the Kaggle community, was
utilised for this study. Initially, the necessary Python library packages
were installed in Jupyter Notebook. Exploratory data analysis was
conducted to enhance the dataset’s quality assessment. During this
phase, missing values were identified and replaced through data
imputation. The Interquartile Range method was applied to detect
outliers in the dataset (Ganie et al., 2023).

Other necessary libraries were run to check the dataset for any
corrupted data. Upsampling and normalising were also carried out
before the five boosting methods under consideration were created.
The dataset was split with a ratio of 80:20, where 80% of the data was
employed for training the boosting algorithms, and 20% was used to
test and validate their efficacy. Hyperparameter tuning was applied
during the model-building process for better results.

FIGURE 4
Boxplot of attributes.
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3.1 Boosting algorithms adopted

Ensemble learning has been utilised in several real-life problems
(Ganie et al., 2023). In healthcare, ensemble learning has gained
significant popularity due to its effectiveness in predicting, detecting,
diagnosing, and prognosing various diseases. In this particular

experiment focusing on diabetes prediction, we examined the
following five boosting algorithms based on ensemble learning:

• XGBoost: XGBoost operates by integrating diverse types of
decision trees, also known as weak learners, to independently
compute similarity scores (Santhanam et al., 2016). By

FIGURE 5
Correlation coefficient analysis.

FIGURE 6
Upsampling technique for class balancing in training dataset. (A) Before SMOTE, (B) After SMOTE.
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incorporating gradient descent and regularisation techniques,
XGBoost effectively addresses the issue of overfitting that can
arise during the training phase. Modifying the gradient descent
and regularisation procedure, it aids in overcoming the issue of
overfitting during the training phase.

• CatBoost: The CatBoost short form of categorical boosting is
faster than other boosting algorithms, as it does not require
the exploration of data preprocessing (Hancock and
Khoshgoftaar, 2020). It is used to deal with high
cardinality categorical variables. In the case of low

TABLE 3 Hyperparameter tuning of boosting algorithms.

Boosting algorithm Hyperparameters

XGBoost learning_rate = 0.01, n_estimators = 1000, max_depth = 4, min_child_weight = 8, subsample = 0.6, reg_alpha = 0.005, seed = 27

CatBoost learning_rate = 0.010, 0.004, “depth” = 4, leaf_reg’, 1.0, min_child_samples = 1, 4, 8, 16, 32, iterations = 3000, random_state = 42

LightGBM boosting_type = “lgbm”, class_weight = Auto, min_child_weight = 0.01, random_state = 124, num_leaves = 11, n_estimators = 1500,
n_jobs = 6

AdaBoost learning_rate = [0.0001, 0.001, 0.01, 0.1, 1.0], base_estimator = base, grid_search = GridSearchCV, param_grid = grid, parameters, cv = 5,
n_jobs = n_jobs

Gradient boosting learning_rate = 0.01, n_estimators = 100000, max_depth = 8, colsample_bytree = 0.8, reg_alpha = 0.002, scoring = roc_curve, weight = 4,
subsample = 0.6, seed = 23

FIGURE 7
Feature importance for prediction using (A) XGBoost, (B) CatBoost, (C) LightGBM, (D) AdaBoost, and (E) Gradient boosting.
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cardinality variables, one-hot encoding technique is used for
conversion.

• LightGBM: Light gradient boosting machine (LightGBM) is
an extension of a gradient boosting algorithm capable of
handling large datasets with less memory utilisation during
the model evaluation process (Machado et al., 2019).
Gradient-based one-sided sampling method is used for
splitting the data samples, reducing the number of features
in sparse datasets during training.

• AdaBoost: AdaBoost, also known as adaptive boosting,
operates by dynamically adjusting weak learners’ weights
without prior knowledge (Sevinc, 2022). During the training
process, the weakness of each base learner is evaluated based on
the estimator’s error rate. The AdaBoost algorithm commonly
employs decision tree stumps to address classification and
regression problems.

• Gradient boosting: The gradient boosting (GB) method trains
weak learners in a sequential manner, with each estimator being
added one by one by adjusting their weights (Aziz et al., 2020).
This algorithm’s main goal is to forecast residual errors from
earlier estimators and reduce the difference between anticipated
and actual values. This iterative process allows for continuous
improvement in the overall predictive performance.

3.2 Attribute information

The dataset consists of 768 instances and nine attributes. The first
eight attributes are independent variables, also known as predicates,
while the last attribute is the dependent or target variable. Table 1
provides detailed information about the attributes, including their
descriptions, measurements, and range values.

3.3 Dataset description

Descriptive statistics are crucial in revealing the characteristics of
data samples, summarising information to facilitate human
interpretation. Table 2 presents attribute information along with

their corresponding measures, including the record count,
minimum (min) value, maximum (max) value, mean, and standard
deviation (std). For example, the Pregnancy (PR) attribute has a record
count of 786, amean value of 3.84, a standard deviation of 3.36, and the
maximum and minimum PR values are 17 and 0, respectively. Similar
statistical measurements have been computed for the remaining
attributes as well. These metrics provide valuable insights into the
data distribution and properties.

3.4 Histogram of attributes

A histogram is a useful tool for visualising and understanding the
distribution of data samples in a dataset. It provides insights into
whether the data follows a uniform, normal, left-skewed, or right-
skewed distribution. In Figure 2, normally distributed histograms are
presented, depicting the grouping of all attributes within their
respective range values. This visualisation helps to better understand
the data distribution and identify any patterns or anomalies present in
the dataset. The X-axis describes the input attributes, and the Y-axis
presents the value of that attributes. The distribution of attributes for
nondiabetics and diabetics is shown in Figure 3. In the figure, 0 (blue
color) and 1 (orange color) represent nondiabetic and diabetic patients,
respectively. It can be seen that in most of the attribute combinations,
the tendency of being diabetic increases when their respective range
values increase. For example, in the age vs. glucose level plot, we
understand that patients more than 30 years with glucose levels more
than 125 are more likely to be diabetic patients.

3.5 Boxplot for each attribute

Figure 4 depicts the boxplot of all the considered attributes of the
dataset. It provides a good indication of how the dispersion of values is
spread out. The Interquartile Range (IQR) method, based on the
probability density function, has been employed to display boxplots
for the characteristics tomanage outliers in the dataset. This approach
aids in visually representing data distribution, particularly focusing on
the median, quartiles, and any potential outliers. By incorporating the

FIGURE 8
Accuracy of all the boosting algorithms before and after data processing, augmentation and hyperparameter tuning.
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IQR method, the boxplots provide valuable insights into the central
tendency and variability of each attribute, while effectively addressing
and visualising the presence of outliers.

3.6 Correlation coefficient analysis

The dataset’s attribute associations are examined and visualised
using the correlation coefficient analysis (CCA) approach (Hussain

and Naaz, 2021). A high correlation between the independent
qualities set and the dependent attribute is desired to judge a
good dataset (Ganie et al., 2023). The CCA plot of every variable
used to predict disease is shown in Figure 5. The intensity and
direction of the correlations between the qualities are shown by the
x-axis and y-axis, which describe the range of associations and
range from +1 to −1. The interdependencies between the variables
in the dataset are better understood and identified thanks to this
study.

FIGURE 9
Confusion matrices of (A) XGBoost, (B) CatBoost, (C) LightGBM, (D) AdaBoost, and (E) Gradient boosting.
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4 Experiment, results, and discussion

The experimental minutiae and findings generated by the
application of boosting algorithms for diabetes prediction are
presented and discussed in this part. The outcomes obtained
after using the suggested framework are methodically presented
and examined. The evaluation is carried out thoroughly, considering
several measures for the evaluated boosting algorithms, including
accuracy, recall, precision, F1-score, micro-weighted score, average
weighted score, and the receiver operating characteristic (ROC)
curve. These measures give us important information about how
well the boosting algorithms perform and how well they forecast
diabetes.

4.1 System specification

The research work was conducted using an HP Z60 workstation
with the following hardware specifications: Intel XEON 2.4 GHz
CPU (12 core), 8 GB RAM, 1 TB hard disk, and running on
Windows 10 Pro 64-bit operating system.

The tools utilised for implementation included Python as the
programming language, the web-based computing platform Jupyter
Notebook, and the graphical user interface-based Anaconda Navigator.

4.2 Data preprocessing

Data preparation is essential in creating a strong and reliable
system before applying machine learning techniques to the model
(Jazayeri et al., 2020). In this work, various strategies were used to
manage various data preparation issues.

Firstly, missing values were located and dealt with using the data
imputation method. All of the missing values were found using the
isnull() function, and they were then filled using the mean and mode
imputation method and the SimpleImputer() method. With this
method, the mean, median, or mode of the relevant column was
used to fill in the gaps left by the missing data.

To handle outliers, the IQR method was applied. The
distribution of each data sample was altered using the Z-score to
make the mean equal to 0. This process helped in identifying and
replacing outliers in the dataset.

Furthermore, data cleaning methods were employed to address
duplication, inconsistency, and corrupted data. These techniques
ensured the integrity and reliability of the dataset by removing or
resolving any duplicate records, inconsistent values, or corrupted
data points.

By implementing these data preprocessing techniques, the
dataset was prepared and optimised for subsequent machine
learning methods, enhancing the quality and reliability of the
analysis.

4.3 Data upsampling

If the dataset is not balanced, machine learning and deep
learning algorithms produce subpar outcomes (Ganie et al.,
2023). In this work, the dataset was highly biased toward the
negative class, i.e., “0-non-diabetic” over the positive class “1-
diabetic.” Initially, out of 786 instances, 500 records were
negative class, whereas only 268 instances were held for positive
class. After splitting, we had 614 records in the training dataset, in
which 396 was for non-diabetic and 218 for diabetic. To balance the
training set, the SMOTE was used, as shown in Figure 6.

FIGURE 10
Other measurements of classifiers.
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4.4 Data normalisation

Normalisation is a part of the feature scaling process that fits the
data samples into a specific range. The nature of the dataset can

determine the range of values. Mostly, the values fit between the
range of 0–1. In our study, we used min-max scaling to bring the
attribute values between 0 and 1. The mathematical expression used
to perform data min-max scaling is given in Eq. 1.

FIGURE 11
The ROC curves for (A) XGBoost, (B) CatBoost, (C) LightGBM, (D) AdaBoost, and (E) Gradient boosting.
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xscaled � x − x min

x max − x min
(1)

where x is the attribute value, and xmin and xmax denote the
minimum and maximum values of x, respectively.

4.5 K-fold cross validation

K-fold cross validation is typically used to remove the biasness in
the dataset. In this method, the dataset is partitioned into k
approximately equal-sized subsets, also known as “folds”. In this
experiment, applied K-fold cross validation on the training dataset
and got the best result using the value of k as 10. The results in the
following sections are based on this value.

4.6 Hyperparameter tuning

Hyperparameter tuning is important because it controls the
training algorithm’s behavior and significantly impacts the model’s

performance evaluation. Grid search and random search methods
were used for hyperparameter tuning, as presented in Table 3. The
listed values for each parameter for the respective algorithms were
found to be the best performers in our experiment.

4.7 Feature importance

Based on their contribution to forecasting the output feature
(target variable), the feature significance procedure assigns scores to
input attributes (predicate variables) (Dutta et al., 2019). This phase
is essential for machine learning or ensemble learning models to
produce better predictions.

The feature significance score (F-score), which measures how
frequently an attribute is used for splitting during training, is
employed in this study. A characteristic, such as DPF (Diabetes
Pedigree Function), with a higher F-score is considered an essential
attribute since it contributes more significantly to the prediction process.

According to their relative F-scores for each boosting algorithm,
Figure 7 displays the contribution of all attributes to the prediction
task. It can be observed that overall, age, BMI, and skin thickness are
the most common indicators of the patient having diabetes.
Increased glucose level and high blood pressure are also a matter
of concern. Out of eight features, none of them were found to be
absolutely insignificant for diabetes.

4.8 Accuracy of classifiers

The testing accuracy (calculated using Eq. 2) (Pramanik et al.,
2020) of the boosting algorithms (i.e., XGBoost, CatBoost, LightGBM,
AdaBoost, and gradient boosting) is presented in Figure 8. The figure
presents a comparison of the accuracy of the considered algorithms
before and after conducting data processing, augmentation and
hyperparameter tuning. It can be observed that before data
processing CatBoost performed best with the highest accuracy of
81.81%. In comparison, gradient boosting emerged as the top
performer after data processing, with the highest accuracy of 96.75%.

Accuracy � TN + TP( )/ TN + FN + TP + FP( ) (2)

FIGURE 12
The AUPRC for the experimented boosting algorithms.

FIGURE 13
Comparative analysis of the considered algorithms in terms of (A) accuracy, (B) AUC, and (C) runtime (in seconds).
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where TN: true negative, TP: true positive, FN: false negative, and
FP: false positive.

4.9 Confusion matrices

The performance evaluation of all classifiers was evaluated using
a confusion matrix. The confusion matrices of all considered
boosting algorithms are shown in Figure 9.

4.10 Other measurements

The precision (Eq. 3) (Ganie et al., 2022a), recall (Eq. 4)
(Ganie and Malik, 2022b), and f1-score (Eq. 5) (Ganie et al.,
2022b) of the five considered classifiers were calculated.
Furthermore, the macro average and the weighted average
were measured for both classes (0: no diabetes, 1: diabetes), as
shown in Figure 10. On average, gradient boosting exhibited
better results than other models in all respects. However, in the
case no diabetes precision the performance of gradient boosting is
at par with XGBoost and Light GBM. In most of the cases,
XGBoost and Light GBM exhibited similar performances while
in some cases, the performance of CatBoost and AdaBoost are
found equivalent.

Precision � TP/ TP + FP( ) (3)
Recall � TP/ TP + FN( ) (4)

f1 − score � 2TP/ 2TP + FP + FN( ) (5)

4.11 ROC curve

The prediction ability of the discussed boosting algorithms is
evaluated at various levels using the receiver operating

characteristic (ROC) curve. On the y-axis, it displays the true-
positive rate (TPR) (Eq. 7) (Pramanik et al., 2020)) and on the
x-axis, the false-positive rate (FPR) (Eq. 6) (Pramanik et al., 2020).
We may assess how well the models can differentiate between the
two classes—0 (non-diabetic) and 1 (diabetic)—by examining the
ROC curve.

FPR � FP/ FP + TN( ) (6)
TPR � TP/ TP + FN( ) (7)

A higher ROC curve indicates that the model performs well in
differentiating between the two classes (Ganie et al., 2023).
Moreover, the area under the ROC curve (AUC) is used as a
measure of separability. An AUC value close to 1 indicates a
good separability measure, while a value close to 0 signifies a
poor measure of discrimination. A value of 0.5 suggests that the
model is not effectively separating the classes.

Figure 11 displays the ROC curves for XGBoost, CatBoost,
LightGBM, AdaBoost, and gradient boosting. Based on the
curves, gradient boosting performed the best, while AdaBoost
exhibited the poorest performance among the considered
boosting algorithms.

4.12 AUPRC

Area Under the Precision-Recall Curve (AUPRC) metric is
employed to assess the machine learning model’s performance,
distinguishing between a positive class and a negative class. It
illustrates the relationship between precision, representing the
positive predictive value, and recall, indicating sensitivity or the
genuine positive rate. This curve is constructed by considering
different probability thresholds for the positive class. The
AUPRC for our proposed model is shown in Figure 12, from
which it is observed that gradient boosting and AdaBoost have
the best and worst performances, respectively.

TABLE 4 Comparison of the proposed work with existing similar works.

Research work Adopted ensemble methods Dataset used Highest accuracy

Li et al. (2020) XGBoost, XGBoost + logistic regression, data feature stitching + XGBoost PIMA Indian diabetes
dataset

80.20% with data feature stitching
+ XGBoost

Mahabub (2019) kNN, AdaBoost, decision tree, random forest, support vector classification, gradient
boosting, multilayer perceptron, XGBoost, gaussian naive Bayes

Do 84.42% with multilayer
perceptron

Mushtaq et al. (2022) kNN, random forest, naive Bayes, SVM, gradient boosting, logistic regression, and
voting classifier

Do 81.30% with voting classifier

Beschi Raja et al.
(2019)

Neural networks, random forest, and GBC Do 76.10% with GBC

Khan et al. (2021) Gradient boosting, hybrid K-mean, J48, decision tree, deep learning, naive Bayes,
and ANN

Do 92% with gradient boosting
algorithm

Singh et al. (2021) XGBoost, random forest, SVM, neural network, and decision tree Do 95% with XGBoost and random
forest

Hasan et al. (2020) kNN, decision trees, random forest, AdaBoost, naive Bayes, XGBoost, and multilayer
perceptron

Do 88.84 with AdaBoost + XGboost

This paper XGBoost, CatBoost, LightGBM, AdaBoost, and gradient boosting Do 96.75% with gradient boosting
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5 Comparative analysis

Figure 13 presents a comparative analysis of the five boosting
algorithms considered in the experiment. The algorithms were
compared in terms of accuracy, AUC value, and runtimes.
Among these algorithms, gradient boosting achieved the highest
accuracy rate, reaching a maximum accuracy of 96.75%. Following
gradient boosting, LightGBM achieved an accuracy rate of 94.15%,
AdaBoost achieved 91.55%, CatBoost achieved 92.2%, and XGBoost
achieved 93.5%. In addition, gradient boosting also excels in terms of
AUC. However, in terms of runtime XGBoost outperforms others,
requiring the least runtime.

We compared the highest accuracy achieved by our proposed
method (i.e., using gradient boosting) with several relevant literature
in terms of accuracy, as shown in Table 4. The implemented
processes, such as data imputation for handling missing values,
detection, and box plotting for outlier elimination, could be credited
with the reason for achieving improved accuracy.

6 Conclusion and future scope

In this research, we investigated the effectiveness of five boosting
algorithms, namely, XGBoost, CatBoost, LightGBM, AdaBoost,
and gradient boosting, for predicting diabetes disease. Various
preprocessing techniques, such as imputation, Z-score, and cleaning
methods, were applied to improve the quality of the dataset.
Additionally, to enhance disease prediction, data normalisation,
upsampling, and hyperparameter tuning were performed.

According to the experimental findings, gradient boosting had
the greatest accuracy rate of 96%. Additionally, it did well in terms of
other evaluation criteria like ROC curve, precision, recall, and f1-
score. The feature importance technique revealed how independent
features contributed to the outcome of the final prediction.

Furthermore, when compared to similar related efforts, the
suggested framework performed better than existing systems.
Other ensemble learning strategies, such as bagging and stacking,
can be added to further increase the quality of the outcomes. To
increase the scope of this research, the proposed method can also be
used for other healthcare datasets with comparable features.

In future studies, exploring deep learning techniques could lead
to better detection and prediction of diabetes. These advancements

in machine learning and deep learning can contribute to more
accurate and efficient healthcare solutions.
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