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Introduction: Camellia, the largest genus of Theaceae, is well-known for having
high economic values. Camellia granthamiana demonstrates large beautiful
flowers with some primitive characters, such as multiple large and persistent
bracteoles and sepals, was listed as Vulnerable species on the IUCN Red List.

Methods: In this study, we investigated all possible records of the species, and
sampled four natural populations and five cultivated individuals. By applying
shallow-genome sequencing for nine individuals and RAD-seq sequencing for
all the sampled 77 individuals, we investigated population genetic diversity and
population structure of the species.

Results and discussion: The results showed that the population sampled from
Fengkai, previously identified as C. albogigias, possessed different plastid
genome from other species possibly due to plastid capture; the species
possesses strong population structure possibly due to the effect of isolation
by distance, habitat fragmentation, and self-crossing tendency of the species,
whose effective population size declined quickly in the past 4,000 years.
Nevertheless, C. granthamiana maintains a medium level of genetic diversity
within population, and significant differentiation was observed among the four
investigated populations, it is anticipated that more populations are expected to
be found and all these extant populations should be taken into instant protection.
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1 Introduction

Camellia, the largest genus of Theaceae, contains approximately 280 species distributed
near the Tropic of Cancer in East Asia, and 238 species were recorded in China, which are
mainly distributed in Yunnan, Guangxi, Guangdong, and Sichuan provinces (Chang, 1998).
Camellia is well known for its high economic values (such as C. sinensis (Linnaeus) Kuntze,
known as China tea, and C. oleifera C. Abel, as an important source of oil) and ornamental
values (such as C. japonica Linnaeus, widely cultivated for beautiful flowers).
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Karyotypic studies on Camellia (Chang, 1998; Li, 2001)
showed that the number of chromosomes of most Camellia
species was estimated to be 30, with some exceptions such as
Camellia albogigas Hu and Camellia granthamiana Sealy (2n =
4x = 60) and C. vietnamensis and C. grandiflora (2n = 8x = 120).
Both C. granthamiana and C. albogigas were ascribed to the
sect. Archecamellia Sealy of subgen. Protocamellia Chang in
Flora Reipublicae Popularis Sinicae, as they demonstrate some
primitive characters, such as multiple large and persistent
bracteoles and sepals (Chang, 1998). Geographically, C.
albogigas was recorded only in Fengkai, Guangdong, while C.
granthamiana was recorded in the western and eastern areas of
Guangdong and Hong Kong, China. Currently, C. albogigas is
treated as a synonym of C. granthamiana in the Flora of China
(Min and Bartholomew, 2007) and C. granthamiana is listed as
vulnerable on the IUCN Red List (http://www.iucnredlist.org).

For the better understanding of threats to endangered species,
phylogenetics and population genetics have been widely used in
conservation genetics and (or) conservation biology to
investigate the causes of species decline, such as habitat
fragmentation, genetic drift, and barriers to gene flow, and
identify counteracting measures and conservation units.
However, recent advancements in genomic tools have further
enabled the utilization of vastly expanded datasets of single-
nucleotide polymorphisms (SNPs), providing unprecedented
insights into the importance of genetic diversity in
conservation (Willi, et al., 2022). Currently, we are reviewing
all specimen records in the Chinese Virtual Herbarium (https://
www.cvh.ac.cn/) and the online Flora of China (http://www.
iplant.cn/). We have successfully collected three populations of
C. granthamiana and one population of C. albogigas in
Guangdong, China. Furthermore, we utilized the shallow-
genome sequencing method to de novo assemble the
chloroplast genomes and construct a plastid phylogenetic tree.
At the same time, we performed the restriction-site-associated
DNA sequencing method on all the sampled populations.
Through these efforts, we endeavored to investigate whether
C. albogigas and C. granthamiana constitute one species or
two, assess the population structure and genetic diversity of
these species, and eventually provide some valuable
information for their conservation.

2 Materials and methods

2.1 Sample collection and Illumina
sequencing

Fresh leaves were sampled for the three populations of C.
granthamiana and one population of C. albogigas. For each
population, geographical information was recorded using a
Garmin GPS unit (GPSMAP 62sc, Shanghai, Table 1; Figure 1).
Specimens were deposited in the herbarium of Sun Yat-sen (SYS)
University, China. The type specimen of C. granthamiana was
recorded in Hong Kong, China. In Sun Yat-sen University, five
individuals of C. granthamiana or C. albogigas were cultivated: one
was transplanted from Hong Kong, China (C. granthamiana), and
the others were transplanted from Fengkai, Guangdong, China (C.
albogigas). As it is difficult to make clear which individual was
transplanted from Hong Kong, China, we sampled fresh leaves from
all five individuals (Table 1).

For each population, one individual was randomly selected for
shallow-genome sequencing, while RAD-seq was performed on the
four populations. For the five individuals sampled from the Bamboo
Garden of Sun Yat-sen University, both RAD-seq and shallow-
genome sequencing were performed. The fresh leaves were dried
and preserved on silica gel in sealed bags and then sent to JieRui
BioScience Co., Ltd. (Guangzhou, China) for DNA extraction,
library preparation, and Illumina sequencing.

Briefly, genomic DNA for each sample was extracted using the
modified CTABmethod (Doyle and Doyle, 1987) and purified using
magnetic beads. For shallow-genome sequencing, a library was
constructed for each sample using the TruePrep DNA Library
Prep Kit and then sent for Illumina sequencing on the NovaSeq
6000 platform according to the standard operation procedure. For
RAD-seq, the purified genomic DNA was digested with EcoR I and
Mse I restriction enzymes, barcodes and Illumina adapter sequences
were ligated to the digested DNA fragments, and subset fragments
with different barcodes were pooled together. Then, the pooled
fragments were purified and size-selected to 350–550 bp in agarose,
and these selected fragments were amplified using PCR. Finally, we
removed residual primers and purified PCR libraries using magnetic
beads, and Illumina sequencing was conducted on the NovaSeq
6000 platform according to the standard operation procedure.

TABLE 1 Geographical information for sampled populations of C. granthamiana and C. albogigas.

Population ID Location Latitude and longitude N HO HE FIS Ind. ID

Camellia granthamiana

P1 Qiniangshan N22°31ʹ27.65ʺ, E114°32ʹ30.56ʺ 20 0.110 0.151 0.135 P1-1

P2 Zijin N23°42ʹ29.13ʺ, E115°11ʹ54.25ʺ 20 0.102 0.147 0.143 P2-1

P3 Zijin N23°44ʹ17.05ʺ, E115°18ʹ41.44ʺ 18 0.108 0.162 0.174 P3-1

Camellia albogigas

P4 Heishiding N23°26ʹ36.80ʺ, E111°56ʹ54.20ʺ 20 0.105 0.120 0.065 P4-1

Cultivar

D Sun Yat-sen University N23°05ʹ44.75ʺ, E113°17ʹ30.54ʺ 5 D-1 . . . D-5

N, number of individuals; HO, observed heterozygosity; HE, expected heterozygosity; FIS, inbreeding coefficient; Ind. ID, ID of individuals for shallow-genome sequencing.
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2.2 Plastid genome assembly and
phylogenetic tree construction

The raw data were produced from Illumina sequencing, and nine
plastid genomes were successfully assembled using NOVOPlasty 2.7.2.pl
(Dierckxsens, et al., 2017), in which the plastid genomeC. granthamiana
(NC_038181.1) was used as a reference and its rbcL gene was used as a
seed. Furthermore, plastid genomes for 111 samples ofCamellia and one
sample of Polyspora hainanensis were downloaded from the NCBI
website (https://www.ncbi.nlm.nih.gov/). In total, 120 plastid genome
sequences were aligned using MAFFT, which performs well in reducing
CPU time and increasing the accuracy of alignments for sequences with
large insertions or extensions (Katoh et al., 2002). Sites with missing/
ambiguous data and gaps were excluded using MEGA X (Kumar et al.,
2018), and a phylogenetic tree based on the maximum likelihood
method was constructed using IQ-TREE v2.2.0 (Nguyen, et al., 2015)
by setting “-m MFP -bb 2000.”

2.3 RAD-seq data processing and population
analyses

The raw reads produced from the Illumina platform were processed
using Stacks 2.55 software (Catchen, et al., 2013). Initially, the procedure
process_radtags was used to demultiplex RAD tags, and five samples
were randomly selected from each population to determine the optimal
values for M (number of mismatches allowed between stacks within
samples) and n (number of mismatches allowed between stacks between
samples). Then, the Perl script denovo-map.pl was applied to process all
the samples, and the procedure populations was used to filter the results
by setting “--min-maf 0.05 --max-obs-het 0.8 -R 0.6 –write-random-
snp,” in which one random SNP was extracted for each locus.

Principal coordinate analysis (PCA) was performed using
PLINK v1.90 (Chang, et al., 2015), and a Python script was used
to draw the scatter diagram. Then, Bayesian cluster analysis was
conducted using ADMIXTURE v1.3.0 software (Alexander, et al.,
2009). The number of groups (K) was set in the range of 2–6, and the
optimal K was determined with the lowest cross-validation (CV) error.
The produced VCF file was transformed to a PHY file using the Python
script vcf2phylip.py (Ortiz, 2019), and a phylogenetic tree was
constructed using the IQ-TREE programby setting “-mMFP -bb 2000.”

Applying the software Arlequin (Excoffier and Lischer, 2010), an
analysis of molecular variance (AMOVA) was performed. In this
analysis, four populations were assigned to three groups according
to PCA and ADMIXTURE analysis, pairwise FST was calculated
based on the Kimura 2Pmethod, andNMwas estimated based on the
formula NM = 1/(4*FST + 1). The Mantel test was performed using
GenAlEx 6.5 (Peakall and Smouse, 2012) to calculate the correlation
between genetic distance FST/(1-FST) and geographic distance (ln) by
setting 999 permutations (Diniz, et al., 2013).

2.4 Historical demographic changes

Unfolded site frequency spectra (SFS) were generated using
easySFS (https://github.com/isaacovercast/easySFS). The values
were projected downward to maximize the number of segregating
sites for both species. Stairway Plot v. 2.1.1 was used to infer recent
historical dynamics of the effective population size of C.
granthamiana and C. albogigas based on unfolded SFS (Liu and
Fu, 2015). Using whole-genome sequencing, the nucleotide
substitution rate of walnut was estimated to be 2.29 × 10−9 per
site per year (Luo, et al., 2015), which is quite close to other woody
perennials such as palms (2.61 × 10−9, Gaut et al., 1996), poplar

FIGURE 1
Geographical locations and ADMIXTURE analysis of the samples ofC. granthamiana andC. albogigas. P1, P2, P3, P4, and D: population ID. Map data:
Google, TerraMetrics.
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(2.5 × 10−9, Buschiazzo, et al., 2012), 6.5 times slower than
Arabidopsis lineage (1.5 × 10−8, Koch, et al., 2000), and 4.7 times
slower thanMedicago lineage (1.08 × 10−8, Young et al., 2011). These
data suggested that the molecular clock in plants is related to the life-
cycle length (Luo, et al., 2015). In this analysis, the mutation rate was
set to 2.29 × 10−9 per site per year according to walnut, which starts
to bear fruit in 4 years (Chen, 2020), and the generation time for C.
granthamiana was set to 5 years based on field observations.

3 Results

3.1 Plastid phylogenetic tree

For shallow-genome sequencing, approximately 6 G raw data were
produced for each sample, and nine plastid genomes were successfully
assembled and circularized in this study (Table 1). The length of these
plastid genomes was smallest for the three samples P2-1, P3-1, and D-2

FIGURE 2
Phylogenetic tree of 72Camellia species constructed from 120 plastid genomes based on themaximum likelihoodmethod. At the nodes of the tree,
maximum likelihood ultrafast bootstrap support values are shown for the main clades.

Frontiers in Genetics frontiersin.org04

Chen et al. 10.3389/fgene.2023.1252148

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://org.doi/10.3389/fgene.2023.1252148


(156,971–156,980 bp), at amedium level for the otherfive samplesD-1, D-
3,D-4,D-5, andP4-1 (157,001–157,010 bp), andwas largest for the sample
P1-1 (158,031 bp). Manual inspection of these nine plastid genome
sequences showed no ambiguity at base “N,” and two heterozygous
positions with base “M” were corrected to base “C” according to other
plastid sequences.

Together with the 111 plastid genomes downloaded from NCBI, the
phylogenetic tree containing 72Camellia species (Figure 2) could be further
divided into eight clades (A–H), although relationships among these clades
were not fully resolvedwith high support values. The representative sample
of the population P4 (P4-1) and the four samples collected from Sun Yat-
sen University (D-1, D-3, D-4, and D-5) clustered together with the two
plastid genomes downloaded from NCBI with high support values (PP:
100), forming subclade H3. The three representative samples of the
population P1–P3 (P1-1, P2-1, and P3-1) and one sample collected
from Sun Yat-sen University (D-2) clustered together with the other
five Camellia species, forming subclade H2; subclade H2 formed a sister
relationship with H3 and then clustered together with subclade H1.

3.2 RAD-seq data processing

A total of 12 G raw data were produced for the 77 samples of
Camellia, and the number of tags retained for each sample ranged from
178,956 to 3,101,602 (average number of tags: 2,240,608). After filtering
with the program “populations,” a total of 9,036 loci containing
7,152 variant sites were retained for further analysis. The observed
heterozygosity (HO) ranged from 0.102 to 0.110, the expected
heterozygosity (HE) ranged from 0.120 to 0.162, and the inbreeding
coefficient (FIS) ranged from 0.065 to 0.174 (Table 1).

3.3 Population structure

In PCA (Figure 3), the first, second, and third axes account for
16.42%, 9.86%, and 7.47% of total variances, respectively. The first

and second axes divided the four natural populations into three
clusters: P1 and P4 were ascribed to an independent cluster,
respectively, while P2 and P3 were ascribed to the same cluster.
Among the five individuals cultivated at Sun Yat-sen University,
four shared the same cluster with P1, while the remaining one (D-2)
remained separate from all other populations.

ADMIXTURE analysis (Figure 1) showed that the least value of CV
was obtained when K = 3, P1 and P4 were assigned to one group each,
and P2 and P3 shared the same group. Among the five individuals
cultivated at Sun Yat-sen University, D-1, D-3, D-4, and D-5 were
assigned to the same group as population P4 and the last individual was
assigned to the admixture of the three groups. AMOVA showed that the
genetic variation of C. granthamiana is primarily maintained within
populations (44.02%, FST = 0.215, p < 0.001, Table 2).

A phylogenetic tree constructed from RAD-seq data (Figure 4)
showed that individuals collected from the same population formed an
independent monogroup, and four clades (C1–C4) could be found: the
clade C1 (including all individuals of the population P1) was clustered
together with C4 (including all individuals of the population P4), while
C2 (including all the individuals of the population P2) was clustered
together with C3 (including all the individuals of the population P3).
Among the five cultivated samples at Sun Yat-sen University, D-1, D-3,
D-4, and D-5 formed a monogroup and then clustered together with all
the individuals sampled from P4, forming the clade C4 with a high
support value (100%), while the last individual, D-2, was placed at the
root of the clade C4 with a weak support value.

Pairwise FST estimation (Table 3) showed that the significant FST
values were detected between each pair of populations, and the highest
FST valuewas detected between the populations P2 and P4 (FST= 0.628),
while the lowest FSTwas detected between P2 and P3 (FST = 0.365). The
Mantel test showed that the genetic distance estimated using FST/(1-FST)
between geographical distance (ln) was highly correlated (Figure 5, r =
0.912), although the p-value was not significant (p = 0.088).

3.4 Demographic history reconstruction

Based on the site frequency spectrum of the 7,152 variant sites,
the effective population size (NE) of C. granthamiana was estimated
to have expanded quickly since ca. 60,000 years ago (YA), reached a
maximum level 40,000 YA, then remained stable till 4,000 YA, and
kept declining to date (Figure 6).

4 Discussion

4.1 Treating C. albogigas as a synonym of C.
granthamiana

The type specimen of C. granthamiana was recorded in Hong
Kong, China, and we have not successfully collected fresh leaf tissue
from Hong Kong yet. It is fortunate that in the Bamboo Garden of
Sun Yat-sen University, both C. albogigas and C. granthamianawere
cultivated and introduced from their respective localities. The
plastid and nuclear tree supported that four of five cultivated
individuals (D-1, D-3, D-4, and D-5) clustered together with C.
albogigas (population P4) with high support values (Figures 2, 4),
supporting that these four individuals should be transplanted from

FIGURE 3
Principal coordinate analysis of the 78 individuals of C.
granthamiana and C. albogigas. P1, P2, P3, P4, and D: population ID.
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the type locality of C. albogigas. In the plastid tree, the last cultivated
individual (D-2) clustered with P1-1, whose geographic location
(Qiniangshan, Shenzhen, China) is just near Hong Kong, China,
revealing that this individual should be introduced from the type
locality of C. granthamiana (Hong Kong, China). It is interesting
that D-2 is located at the root of clade P4 with a weak support value
in the nuclear tree (Figure 4), while it is shown to be the admixture of
the three groups in the ADMIXTURE analysis (Figure 1) and at the
center of the other three clusters in the PCA (Figure 3). These data
indicated an ancient position of D-2, which was introduced from
Hong Kong, China.

In the Flora of China (Min and Bartholomew, 2007),C. albogigas
was treated as a synonym of C. granthamiana despite some minor
morphological differentiations between them (Chang, 1998). In this

TABLE 2 Analysis of molecular variance for the four populations of C. granthamiana.

Source of variation d.f. Sum of squares Variance components Percentage of variation

Among groups 2 4,689.442 44.771 21.47 FCT = 0.214

Among populations within groups 1 1,382.899 71.951 34.51 FSC = 0.439a

Within populations 67 6,149.350 91.781 44.02 FST = 0.215a

Total 70 12,221.691 208.503

ap < 0.001.

FIGURE 4
Phylogenetic tree constructed from nuclear RAD-seq data of the C. granthamiana and C. albogigas. At the nodes of the tree, maximum likelihood
ultrafast bootstrap support values are shown for the four main clades.

TABLE 3 Pairwise FST (below the diagonal lines) and NM (above the diagonal
lines) among the four populations of C. granthamiana.

P1 P2 P3 P4

P1 -- 0.303 0.312 0.318

P2 0.575a -- 0.407 0.285

P3 0.552a 0.365a -- 0.312

P4 0.537a 0.628a 0.552a --

ap < 0.001.

FIGURE 5
Mantel test between pairwise genetic distance (FST/1-FST) and
geographical distance (ln) of the four populations of C. granthamiana
and C. albogigas.
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study, the only population of C. albogigas (P4) clustered together
with the population P1 of C. granthamiana (Figures 1, 3),
supporting this research. Although the plastid tree (Figure 2)
showed that P4-1 was in subclade H2, P1-1, P2-1, and P3-3 were
placed in subclade H3. The plastid genome of P4-1 could possibly
result from plastid capture, which is frequently observed in many
plant species (Liu, et al., 2020; Yang, et al., 2021). The occurrence of
plastid capture, usually caused by repeated hybridization events,
could also lead to the minor differences in morphological characters
between C. albogigas and C. granthamiana.

4.2 Population differentiation within C.
granthamiana

PCA and ADMIXTURE analysis (Figures 1, 3) showed that the four
populations could be divided into three clusters (groups); AMOVA
revealed that 21.47% genetic variation was maintained among groups
(Table 2), and significant FST values were detected between each
population pair (Table 3). These data supported a strong population
structure within the species, possibly due to isolation by distance, as a
high correlation was found between genetic and geographical distances
(r = 0.912), and the lack of statistical significance (p = 0.088) could be
caused by the limited number of populations (Figure 5). The
demographic history construction (Figure 6) showed that the effective
population size expanded since 60,000 YA, remained stable, and
declined since 4,000 YA, suggesting that the species could be thriving
during the Last Glacial Maximum and maintained its populations till
4,000 YA. At this time, human activities became more prevalent, which
could have significantly affected the survival of the species and led to
habitat fragmentation of many forest species (Aguilar, et al., 2006;
Salmona, et al., 2017; Valenzuela-Aguayo, et al., 2020). The
inbreeding coefficient FIS of the species is estimated to be
0.065–0.174 (Table 1), suggesting a self-crossing tendency of the
species that may have also resulted from habitat fragmentation. This
self-crossing tendency could further facilitate the effect of genetic drift on
small populations and lead to a strong population structure. In short, the
species could have been widely distributed around Guangdong Province
but experienced substantial retreat due to human disturbance over the
past 4,000 years. It was only sporadically recorded in few locations up to

date and then diverged significantly due to isolation by distance (Schaal
and Leverich, 1996; Young, et al., 1996; Honnay, et al., 2005).

4.3 Genetic diversity and conservation of the
species

It is inspiring that the four populations of C. granthamiana
maintained a medium level of genetic diversity (HE: 0.120–0.162,
Table 1), which is much higher than other endemic species, such as
Firmiana danxiaensis (average HE: 0.115, RAD-seq, Chen, et al.,
2023), Primulina danxiaensis (average HE: 0.064, RAD-seq, Chen,
et al., 2021), and Thuja sutchuenensis (average HE: 0.082, RAD-seq,
Yao et al., 2021), and lower than Hemiculter leucisculus in the
Xinjiang Tarim River (average HE: 0.198, RAD-seq, Sun et al.,
2022). Although only four populations were recorded, the largest
geographical distance between them is close to 350 km; it is
anticipated that more individuals (populations) will be found in
the future. The significant differentiation between these populations
and the strong population structure (Table 2; Figure 3) suggested
that all the populations possess their own unique genetic variations
and that more attention should be paid for their conservation.
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