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Background: Mitochondrial DNA (mtDNA) variants have been implicated in
keratoconus (KC). The present study aimed to characterize the mtDNA
heteroplasmy profile in KC and explore the association of mitochondrial
heteroplasmic levels with KC.

Methods: Mitochondrial sequencing of peripheral blood samples and corneal
tomography were conducted in 300 KC cases and 300 matched controls. The
number of heteroplasmic and homoplasmic variants was calculated across the
mitochondrial genome. Spearman’s correlation was used to analyze the
correlation between the number of heteroplasmic variants and age. The
association of mtDNA heteroplasmic level with KC was analyzed by logistic
regression analysis. Moreover, the relationship between mitochondrial
heteroplasmic levels and clinical parameters was determined by linear
regression analysis.

Results: The distribution of mtDNA heteroplasmic variants showed the highest
number of heteroplasmic variants in the non-coding region, while the COX3 gene
exhibited the highest number in protein-coding genes. Comparisons of the
number of heteroplasmic and homoplasmic non-synonymous variants in
protein-coding genes revealed no significant differences between KC cases
and controls (all p > 0.05). In addition, the number of heteroplasmic variants
was positively associated with age in all subjects (r = 0.085, p = 0.037). The logistic
regression analyses indicated that the heteroplasmic levels of m.16180_
16181delAA was associated with KC (p < 0.005). Linear regression analyses
demonstrated that the heteroplasmic levels of m.16180_16181delAA and
m.302A>C were not correlated with thinnest corneal thickness (TCT), steep
keratometry (Ks), and flat keratometry (Kf) (all p > 0.05) in KC cases and
controls separately.

Conclusion: The current study characterized the mtDNA heteroplasmy profile in
KC, and revealed that the heteroplasmic levels of m.16180_16181delAA were
associated with KC.
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1 Introduction

Keratoconus (KC) is a progressive corneal ectatic disorder
characterized by corneal thinning, irregular astigmatism, and
vision deterioration (Rabinowitz, 1998). The disease is typically
bilateral and usually happens in adolescence (Lucas and Burdon,
2020). It is also one of the most frequent causes of corneal
transplantation (Sarezky et al., 2017). Although the exact cause of
KC is still unclear in most patients, the genetic, environmental, and
behavioral factors were reported to be associated with its
pathogenesis (Ferrari and Rama, 2020; Hao et al, 2022
Santodomingo-Rubido et al., 2022). Recently, several studies have
reported that oxidative stress plays an important role in the
development of KC (Navel et al., 2021; Vallabh et al,, 2017), and
mitochondria have been implicated in the pathogenesis of KC due to
its crucial role in oxidative stress (Roy et al., 2019).

The human mitochondrial genome comprises circular double-
stranded DNA that encodes 37 genes, of which thirteen genes are
subunits of respiratory complexes, twenty-two genes encode
mitochondrial tRNAs, and a further two encode rRNA. Generally,
the mutation rate within the mitochondrial genome is much higher
than the nuclear genome (Hahn and Zuryn, 2019). In addition, the
mutations of mitochondrial DNA (mtDNA) could emerge as
homoplasmy or heteroplasmy. The mtDNA homoplasmy represents
a uniform type of mtDNA in an individual (Parakatselaki and
Ladoukakis, 2021), while the mtDNA heteroplasmy represents two
or more types of mtDNA simultaneously existing in the same individual
(Stefano et al, 2017). A recent study reported that mitochondrial
heteroplasmy is pathogenic and could lead to a greater disease
burden in several diseases (Wallace and Chalkia, 2013).

Previous studies have identified multiple mtDNA variants in KC.
Eighty-four mtDNA variants, including two novel frameshift mutations
in the mitochondrial complex I gene, have been reported in Indian
patients with KC (Pathak et al., 2011). Similarly, Abu-Amero et al.
(2014b) reported ten non-synonymous mtDNA mutations in KC
patients from Saudi Arabia, with one non-synonymous variant
heteroplasmic. Our previous study observed an increased number of
non-synonymous mtDNA variants in KC patients, though not
statistically significant (Xu et al., 2021). Currently, there is a paucity
of information regarding mtDNA heteroplasmy in KC from China.
Therefore, we aimed to characterize the mtDNA heteroplasmy profile
and explore the association of mitochondrial heteroplasmic levels with
KC in the present study.

2 Materials and methods
2.1 Study population

A total of 300 KC patients (221 males and 79 females, with a
mean age of 20.69 + 4.68 years) were consecutively recruited
between June 2018 and June 2021 in Henan Eye Hospital. The
ratio of male to female was 2.80:1 in this study. The ratio was
consistent with our previous study (Yang et al., 2021) indicating that
the ratio was 2.65:1 in central China, and the study population was
more representative. In addition, 300 controls without KC
(224 males and 76 females, with a mean age of 2044 =
4.21 years) were also enrolled. KC patients were diagnosed based
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on the following criteria: corneal tomography revealing an
asymmetric bowtie pattern with or without skewed axes or
keratoconus sign detected by slit lamp examination, such as
localized stromal thinning, conical protrusion, Vogt’s striae,
Fleischer’s ring or anterior stromal scar (Mas Tur et al, 2017).
While for the control group, the slit lamp examination showed
normal cornea, and the elevation map in the tomographic map was
within the normal limits. All the subjects were unrelated individuals
and matched by age and sex with KC cases.

2.2 Clinical examination

All the subjects underwent clinical examinations. Basic
characteristics were collected through medical records. The slit
lamp examinations and corneal tomography measurements were
performed by an experienced operator. Corneal tomography was
carried out based on the Scheimplfug technique using Pentacam HR
(Oculus, Wetzlar, Germany). Moreover, the thinnest corneal
thickness (TCT), steep keratometry (Ks), and flat keratometry
(Kf) were collected. Considering the characteristic of higher Ks in
KC, the eye with a higher Ks in each subject was included in the
current analysis.

2.3 Mitochondrial DNA sequencing and
bioinformatics analysis

Total DNA was extracted from peripheral blood samples with
QIAamp DNA Blood kits (Qiagen, Hilden, Germany) according to
the manufacturer’s instructions. The mitochondrial genome was
amplified by long-range PCR using human mitochondrial genome
specific primers. The detailed procedure of mtDNA sequencing has
been described in our previous article (Xu et al, 2021). After
sequencing on Illumina NovaSeq System (Illumina, San Diego,
CA, United States), Fastq data were obtained and aligned to the
mitochondrial reference sequence (revised Cambridge Reference
Sequence, rCRS) by Burroughs-Wheeler Aligner (BWA) (Li and
Durbin, 2009). The quality control of the sequencing data was
conducted for each sample. The mean Q20 of the samples in
R1 and R2 were 0.947 + 0.047 and 0.969 + 0.038 separately. The
mean Q30 of the samples in R1 and R2 were 0.921 + 0.051 and 0.843 +
0.077 separately. The Genome Analysis Toolkit (GATK) (McKenna
et al,, 2010) was used to identify variants. Variants with a frequency
range of 0.1-0.9 were considered heteroplasmic, while variants with a
frequency of <0.1 or a frequency of >0.9 were considered
homoplasmic. The ratio of the mutant allele was used to represent
the heteroplasmic level. As previously recommended (Cosemans et al.,
2023), only heteroplasmic variants with a prevalence of at least 10% in
the study population were included for further analysis.

2.4 Statistical analyses

Statistical analyses were performed using SPSS 21.0 (SPSS Inc.,
Chicago, IL, United States). Quantitative variables were expressed
using mean * standard deviation (SD) and analyzed by the Student’s
t-test. The distribution of sex was analyzed by the chi-squared test.
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TABLE 1 Clinical characteristics of the study population.

KC (n = 300) Controls (n = 300) p
Sex (male/female) 221/79 224/76 0.780
Age (years) 20.69 + 4.68 20.44 + 4.21 0.486
TCT (um) 434.16 £ 57.28 547.62 + 28.81 <0.001*
Ks (D) 57.43 + 11.38 43.46 = 1.51 <0.001*
Kf (D) 52.62 +9.70 42.33 + 1.40 <0.001*

TCT, thinnest corneal thickness; Ks, steep keratometry; Kf, flat keratometry.

The number of heteroplasmic and homoplasmic mtDNA variants was
calculated in protein-coding genes (including ATP6, ATPS, COX1,
COX2, COX3, CYTB, NDI, ND2, ND3, ND4, ND4L, ND5, and ND6),
rRNA genes, tRNA genes, and non-coding region. A comparison of
heteroplasmic and homoplasmic non-synonymous variants numbers
in protein-coding genes was carried out by Fisher’s exact test or chi-
squared test. The Spearman’s correlation was used to demonstrate the
correlation between the number of heteroplasmic variants and age.
Logistic regression analysis was adopted to explore the association of
mtDNA heteroplasmic level with KC, and the f3 coefficient, stand
error (SE), and odds ratio (OR) values were recorded. An adjusted
significance level of p = 0.05/10 = 0.005 was applied. In addition, linear
regression analysis was used to explore the relationship between
mtDNA heteroplasmic levels and clinical parameters, and the f
coefficient, SE, and t values were recorded.

3 Results
3.1 Clinical characteristics of study subjects

The clinical characteristics were compared between 300 KC
cases and 300 controls. As is shown in Table 1, there were no
significant differences in age and sex between KC cases and controls
(p > 0.05). The TCT in KC cases was significantly lower than that in
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controls (p < 0.05). In contrast, the Ks and Kf in KC cases were
significantly higher than those in controls (p < 0.05).

3.2 Distribution of heteroplasmic and
homoplasmic mtDNA variants

The distribution of heteroplasmic and homoplasmic mtDNA
variants across the mitochondrial genome was shown in Figure 1.
Firstly, the heteroplasmic and homoplasmic variants were calculated
in all the subjects (Supplementary Table S1). A total of
311 heteroplasmic variants and 1936 homoplasmic variants were
identified. The non-coding region harbored the highest (125 out of
311) heteroplasmic variants among different mitochondrial regions.
While in the protein-coding genes, the COX3 gene exhibited the
highest heteroplasmic variants (Figure 1A). Then the heteroplasmic
and homoplasmic mtDNA variants were calculated in KC cases and
controls separately (Supplementary Tables S2, S3). In KC cases, nearly
half of the heteroplasmic variants (92 out of 200) were observed in the
non-coding region (Figure 1B). Similarly, 91 out of 199 variants were
located in the non-coding region in the controls (Figure 1C). Among
the protein-coding genes, the COX3 gene contained 13 heteroplasmic
variants in KC cases, followed by 12 heteroplasmic variants in the
ATP6 region. While in the control group, 13 heteroplasmic variants
were observed in the COX3 gene and CYTB gene separately, followed
by 10 heteroplasmic variants in the ND5 region.

In addition, the number of heteroplasmic and homoplasmic
non-synonymous variants in protein-coding genes was compared
between KC cases and controls (Figure 2; Supplementary Table S4).
Finally, no statistically significant differences were found between
the two groups. The correlation between the number of
heteroplasmic variants and age was further analyzed in all
subjects, KC cases, and controls separately (Figure 3). The
number of heteroplasmic variants was significantly positively
associated with age in all subjects (r = 0.085, p = 0.037), while
the number of heteroplasmic variants was not associated with age in
KC cases and controls separately (all p > 0.05).
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3.3 Association of mtDNA heteroplasmic population was shown in Supplementary Table S5. The

level with KC heteroplasmic levels of variants in KC cases and controls were

shown in Supplementary Table S6, and the associations

The association of mtDNA heteroplasmic level with KC  of heteroplasmic levels with KC were shown in Table 2. The

was explored by logistic regression with adjusting age and sex.  results showed that the heteroplasmic level of m.16180_

Ten heteroplasmic variants were included in the analysis. The  16181delAA were associated with KC after Bonferroni
prevalence of the ten heteroplasmic variants in our study  correction (p = 0.004, OR = 0.001, 95%CI: 0-0.097).
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TABLE 2 Logistic regression analysis of mitochondrial heteroplasmic level and
KC with adjusting age and sex.

Variant B SE p OR (95%Cl)
m.302A>C -2546 0981 0009  0.078 (0.011-0.536)
m.302insCC -026 1023 0799 0771 (0.104-5.721)
m.302insCCC -0419 067 | 0532 0.658 (0.177-2.447)
m.302insCCCC -0.583 0745 = 0434 0.558 (0.13-2.403)
m.310T>C 0431 1353 0750 = 1.539 (0.109-21.813)
m.16180delA 0891 2163 0680  2.438 (0.035-169.000)
m.16180_16181delAA | -7.162 = 2462  0.004 0.001 (0-0.097)
m.16182A>C -0.531 1835 0772 0.588 (0.016-21.454)
m.16182insC ~3.995 | 4242 0346 0.018 (0-75.175)
m.16183A>C -2.673 1585 0092 0.069 (0.003-1.542)

3.4 Correlation of mtDNA heteroplasmic
level with clinical characteristics

Moreover, linear regression analyses were performed between
m.302A>C,m.16180_16181delAA and clinical parameters including
TCT, Ks, and Kf in KC cases and controls separately. As is shown in
Table 3, the heteroplasmic levels of m.302A>C and m.16180_
16181delAA were not correlated with TCT, Ks, and Kf (all p > 0.05).

4 Discussion

The pathogenesis of KC is complex, and multiple studies have
indicated an association of the mitochondrial genome with KC
(Pathak et al,, 2011; Abu-Amero et al., 2014b; Vallabh et al., 2017).
In this study, we presented an extensive profile of mitochondrial
heteroplasmy in KC. The results showed that the COX3 gene harbored
the highest number of heteroplasmic variants among different
protein-coding genes. In addition, a positive association was found

10.3389/fgene.2023.1251951

between the number of heteroplasmic variants and age in all the
subjects. Logistic regression analyses indicated that the heteroplasmic
level of m.16180_16181delAA was associated with KC.

KC is a corneal disorder with complex etiology. Currently, growing
evidence suggests that oxidative stress may play an important role
in its pathogenesis (Navel et al, 2021; Monteiro de Barros and
Chakravarti, 2022). Oxidative stress refers to the imbalance of two
opposite and antagonistic forces, production of reactive oxygen species
(ROS) and antioxidants (Sies, 2020). Actually, mitochondria are the
most important source of ROS in most mammalian cells (Hernansanz-
Agustin and Enriquez, 2021). Therefore, the mitochondrial dysfunction
might lead to the imbalance of oxidative stress, finally resulting in the
occurrence of diseases. Recently, multiple studies indicated an
association of mitochondrial genome with KC, and several mtDNA
variants have been identified in KC (Atilano et al.,, 2005; Abu-Amero
etal, 2014a). As is reported previously, most of the pathogenic mtDNA
variants are heteroplasmic, and mitochondrial heteroplasmy tends to
show high pathogenicity (Ye et al., 2014; Nandakumar et al,, 2021).
Mitochondrial heteroplasmy is the co-existence of multiple mtDNA
variants in a single source, and it is now generally accepted to play
important roles in many diseases (Parakatselaki and Ladoukakis, 2021).
However, the profile of mitochondrial heteroplasmy in KC has not been
characterized up to now. The present study elucidated the genetic
profile of mitochondrial heteroplasmy in KC. A comparison of
heteroplasmic variants number among different regions showed that
the heteroplasmic variants were mostly located in the non-coding
region, consistent with Fendt et al. (2020) who reported that most
heteroplasmic variants were located in the non-coding region in oral
squamous cell carcinoma. While in the protein-coding genes, the COX3
gene exhibited the highest heteroplasmic variants. Since most mtDNA
variants implicated in diseases are heteroplasmic, we inferred that the
COX3 gene might have important roles in KC. Although the
heteroplasmic levels of variants in COX3 gene exhibited no
association with KC in the current study, our previous study
identified an association between the COX3 gene and KC through
gene-based SKAT analysis (Xu et al., 2021). Therefore, we speculated
that each variant in COX3 gene might have a minor effect on KC, the
combined effects of multiple variants resulted in the occurrence of the

TABLE 3 Liner regression analyses between heteroplasmic variants and TCT, Ks, Kf in KC cases and controls.

Parameter

Control

TCT
m.302A>C —4.895 36.277 -0.135 0.893 6.063 16.808 0.361 0.720
m.16180_16181delAA 93.906 80.090 1.173 0.248 0.899 42.770 0.021 0.983
e B \ .
m.302A>C 0.247 5.405 0.046 0.964 0.441 0.734 0.601 0.551
m.16180_16181delAA —-0.698 13.969 —-0.050 0.960 -3.259 2.552 -1.277 0.209
£ - \ —
m.302A>C -1.891 4.270 —0.443 0.660 0.219 0.723 0.303 0.764
m.16180_16181delAA -7.823 11.013 -0.710 0.482 -2.877 2.300 -1.251 0.218

TCT, thinnest corneal thickness; Ks, steep keratometry; Kf, flat keratometry.

Frontiers in Genetics

frontiersin.org


https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1251951

Xu et al.

disease. Abu-Amero et al. (2014b) detected ten potentially pathogenic
non-synonymous mtDNA mutations in KC, of which one non-
synonymous variant was heteroplasmic, and the other nine were
homoplasmic. Similarly, we also found a lower number of
heteroplasmic non-synonymous variants in KC. However, there
were no significant differences between heteroplasmic and
homoplasmic non-synonymous variants. It has been reported that
mtDNA heteroplasmy is associated with age (Nandakumar et al,
2021; Stewart and Chinnery, 2021). Therefore, we analyzed the
correlation between the number of heteroplasmic variants and age.
The results showed that the number of heteroplasmic variants was
positively correlated with age in all subjects. However, there was no
correlation when KC cases and controls were analyzed separately, which
might be attributed to different phenotypes and sample sizes.
Different mitochondrial heteroplasmy levels have been
implicated in many diseases. As is reported by Geng et al.
(2019), the heteroplasmic levels in peripheral blood leukocytes
were closely associated with clinical manifestations and valuable
for evaluating the clinical severity of the m.3243A>G mutation.
(2021) found the m.13095T>C and

m.13105A>G heteroplasmic levels were higher in age-related

Besides, Atilano et al.

macular degeneration, with the higher heteroplasmic levels
possibly representing potential biomarkers. In the present study,
the association of heteroplasmic levels with KC was analyzed. The
results showed that the heteroplasmic level of m.16180_16181delAA
was associated with KC after adjusting the age and sex. In detail, the
lower heteroplasmic level of m.16180_16181delAA owned a higher
risk of KC. The m.16180_16181delAA was located in the non-
coding region. Currently, multiple mtDNA variants in non-coding
regions were reported to be associated with certain diseases. Deng
et al. (2021) analyzed the correlation of mtDNA varjants in the
D-loop region with polycystic ovary syndrome, and found that the
variants m.G207A, m.16036insGG, and m.16049insG were
associated with decreased risk of the disease. Wu et al. (2018)
identified mtDNA  variants in the D-loop
associated with Parkinson’s disease. However, the linkage of
m.16180_16181delAA with other diseases hasn’t been reported.
The lower TCT, higher Ks, and higher Kf were typical clinical
characteristics of KC in corneal tomography (Mas Tur et al., 2017).

several region

However, the genetic correlation between those clinical parameters
and the mitochondrial genome was not clear. Considering the
association between the heteroplasmic levels of mtDNA variants
and KC, we speculated that there might exist a correlation between
the mitochondrial heteroplasmic levels and TCT, Ks, and Kf. The
association analysis indicated that the heteroplasmic level of
m.16180_16181delAA was associated with KC after Bonferroni
correction (p = 0.004), and the heteroplasmic level of m.302A>C
was associated with KC before correction (p = 0.009). Therefore, we
explored the correlation between m.16180_16181delAA, m.302A>C
heteroplasmic levels and TCT, Ks, Kf. Nevertheless, our findings
showed that the heteroplasmic levels in m.16180_16181delAA and
m.302A>C were not correlated with TCT, Ks and Kf in KC cases and
controls, indicating that the differences of m.16180_16181delAA
and m.302A>C heteroplasmic levels might not be attributed to TCT,
Ks, and Kf. It is reported that the mitochondria dysfunction has been
observed in KC. Given that the mitochondrial heteroplasmy played
important roles in maintaining the mitochondrial function (Stefano
et al., 2017), we inferred that the heteroplasmic levels of m.16180_
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16181delAA and m.302A>C might affect the risk of KC through
influencing mitochondrial function. The mitochondrial dysfunction
results in the change of oxidative stress, thus leading to the
occurrence of KC.

Several limitations should be noted in the present study. Firstly, we
only included peripheral blood samples to explore the mtDNA
heteroplasmy in KC due to the difficulty of acquiring the cornea.
Secondly, the mtDNA content, smoking status, and BMI were not
adjusted in the analysis. Those influencing factors would be collected and
analyzed in our following search. Thirdly, the mitochondrial function of
heteroplasmic variants and the molecular basis of the relationship
between mtDNA heteroplasmy and KC were not explored in the
present study. Further studies will be conducted in the future.

In conclusion, the present study characterized the profile of
mtDNA heteroplasmy in KC, and revealed that the heteroplasmic
level of m.16180_16181delAA was associated with KC. The data
implied that mitochondrial heteroplasmy might be involved in the
pathogenesis of KC. Further research is required to better understand
the complex interactions between mitochondrial heteroplasmy and KC.
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