
Fully automated annotation of
mitochondrial genomes using a
cluster-based approach with de
Bruijn graphs

Lisa Fiedler1*, Martin Middendorf1† and Matthias Bernt2†

1Department of Computer Science, Leipzig University, Leipzig, Germany, 2Helmholtz Centre for
Environmental Research—UFZ, Leipzig, Germany

A wide range of scientific fields, such as forensics, anthropology, medicine, and
molecular evolution, benefits from the analysis of mitogenomic data. With the
development of new sequencing technologies, the amount of mitochondrial
sequence data to be analyzed has increased exponentially over the last few
years. The accurate annotation of mitochondrial DNA is a prerequisite for any
mitogenomic comparative analysis. To sustain with the growth of the available
mitochondrial sequence data, highly efficient automatic computational methods
are, hence, needed. Automatic annotation methods are typically based on
databases that contain information about already annotated (and often pre-
curated) mitogenomes of different species. However, the existing approaches
have several shortcomings: 1) they do not scale well with the size of the database;
2) they do not allow for a fast (and easy) update of the database; and 3) they can
only be applied to a relatively small taxonomic subset of all species. Here, we
present a novel approach that does not have any of these aforementioned
shortcomings, (1), (2), and (3). The reference database of mitogenomes is
represented as a richly annotated de Bruijn graph. To generate gene
predictions for a new user-supplied mitogenome, the method utilizes a
clustering routine that uses the mapping information of the provided sequence
to this graph. The method is implemented in a software package called DeGeCI
(De Bruijn graph Gene Cluster Identification). For a large set of mitogenomes, for
which expert-curated annotations are available, DeGeCI generates gene
predictions of high conformity. In a comparative evaluation with MITOS2, a
state-of-the-art annotation tool for mitochondrial genomes, DeGeCI shows
better database scalability while still matching MITOS2 in terms of result quality
and providing a fully automated means to update the underlying database.
Moreover, unlike MITOS2, DeGeCI can be run in parallel on several processors
to make use of modern multi-processor systems.

KEYWORDS

annotation, gene prediction, mitochondria, genome, mitogenome, Metazoa, de Bruijn
graph, clustering

OPEN ACCESS

EDITED BY

Min Zeng,
Central South University, China

REVIEWED BY

Junwei Luo,
Henan Polytechnic University, China
Xingyu Liao,
King Abdullah University of Science and
Technology, Saudi Arabia

*CORRESPONDENCE

Lisa Fiedler,
lfiedler@informatik.uni-leipzig.de

†These authors have contributed equally
to this work

RECEIVED 30 June 2023
ACCEPTED 24 July 2023
PUBLISHED 10 August 2023

CITATION

Fiedler L, Middendorf M and Bernt M
(2023), Fully automated annotation of
mitochondrial genomes using a cluster-
based approach with de Bruijn graphs.
Front. Genet. 14:1250907.
doi: 10.3389/fgene.2023.1250907

COPYRIGHT

© 2023 Fiedler, Middendorf and Bernt.
This is an open-access article distributed
under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Abbreviations: DeGeCI, De Bruijn graph Gene Cluster Identification; CC, connected component; FN,
false negative; FP, false positive; RFD, relative frequency distribution; SGT, single genome trail.

Frontiers in Genetics frontiersin.org01

TYPE Methods
PUBLISHED 10 August 2023
DOI 10.3389/fgene.2023.1250907

https://www.frontiersin.org/articles/10.3389/fgene.2023.1250907/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1250907/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1250907/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1250907/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2023.1250907&domain=pdf&date_stamp=2023-08-10
mailto:lfiedler@informatik.uni-leipzig.de
mailto:lfiedler@informatik.uni-leipzig.de
https://doi.org/10.3389/fgene.2023.1250907
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2023.1250907

1 Introduction

Mitochondria are spherical organelles found in most eukaryotic
cells. Their genome, the mitogenome, differs in various aspects from
their nuclear counterpart, which include their size, structure, and
composition. In Metazoa, the mitogenome is commonly organized
as a double-stranded circular DNA molecule with an average length
of approximately 16, 500 nt and a small core set of 37 genes,
comprised of 13 protein-coding genes, 22 tRNAs, two rRNAs,
and one non-coding region, which contains most of the
regulatory elements (Wolstenholme, 1992). Although the gene
content is generally well conserved, the gene arrangement varies
greatly among animal mitogenomes. This renders them an attractive
target for a variety of comparative analyses, such as phylogenetic
reconstruction or genome rearrangement studies. To facilitate such
analyses to be performed systematically on a large scale, automated,
standardized annotation of the mitogenome is an indispensable
prerequisite.

The widest selection of publicly available mitochondrial
genome data can be found in the GenBank (Benson et al.,
2000) and RefSeq (Pruitt et al., 2007) databases. GenBank
offers access to original sequence data, whereas RefSeq
provides a non-redundant expert-curated collection of original
GenBank entries. Several databases and tool sets have been built
on these data repositories to generate (de novo) annotations for
user-supplied sequence data, e.g., DOGMA (Wyman et al., 2004),
MOSAS (Sheffield et al., 2010), MitoFish (Iwasaki et al., 2013),
and MITOS (Bernt et al., 2013). These approaches identify genes
using either the sequence similarity search against sequence
databases, containing gene sequences of published
mitogenomes, or search with curated (hidden Markov/
covariance) gene models. All the aforementioned approaches
identify protein-coding genes using BLASTX and/or BLASTN
searches against an internal database. DOGMA, MOSAS, and
MitoFish further apply this technique to rRNA gene detection,
whereas MITOS uses Infernal (Eddy, 2002; Nawrocki et al., 2009)
and covariance models for mitochondrial rRNAs to serve this
purpose. For tRNA annotation, MITOS uses covariance models
(Eddy and Durbin, 1994), DOGMA employs COVE, MOSAS
applies ARWEN and tRNAscan-SE (Lowe and Eddy, 1997), and
MitoFish makes use of MiTFi. Meanwhile, an updated and
improved version, MITOS2, was developed, which is based on
a more current RefSeq release and allows us to search for protein-
coding genes with profile hidden Markov models (HMMs)
(Donath et al., 2019). One drawback of DOGMA and MOSAS
is that they require some manual improvements on the result set.
MOSAS’s restriction to insects and MitoFish’s restriction to
fishes limit their scope of application. The fast-growing
amount of available mitogenomes creates two problems for all
of the aforementioned approaches: 1) the runtime for the
sequence similarity search increases approximately linearly
with the database size and 2) the necessary curation of gene
models impedes automatic updates that allow the inclusion of
new sequence data that becomes available over time.

de Bruijn graphs (Bruijn, 1946; Good, 1946) are an important
data structure for compact sequence data representation. To this
end, sequences are decomposed into small segments, the so-called k-
mers, which form the vertices of this graph. Two vertices are

connected if the suffix of length k − 1 of the first vertex is equal
to the prefix of length k − 1 of the second vertex. In the field of
bioinformatics, de Bruijn graphs have often been used for DNA
fragment assembly, such as in Pevzner et al. (2001), Pevzner et al.
(2004), and Zerbino and Birney (2008). The latter employs a
modified de Bruijn graph, the A-Bruijn graph, which can also be
used for repeat classifications. Another variant is the manifold de
Bruijn graph (Lin and Pevzner, 2014), which allows using (k + 1)-
mers of variable lengths, choosing larger values for high-coverage
regions and smaller values for low-coverage regions. However, the
focus of these applications has been on nuclear genomes. Their huge
sequence length, as opposed to mitochondrial genomes, explains the
emergence of vastly compressed storage structures proposed in the
literature to keep the required amount of memory as small as
possible. One such structure is introduced by Bowe et al. (2012).
Almodaresi et al. (2017) extended this approach by additionally
allowing us to store a single property, the “color,” per edge. For many
applications, such as variant detection, the approach is sufficient
where keeping track of the identity of each of the contributing
sequences is the only focus. However, if several properties need to be
considered, this storage structure cannot be used. Another
downside, which also applies to A-Bruijn and manifold de Bruijn
graphs, is that they are all generated based on a fixed set of input
genomes. When additional sequences need to be embedded or some
contained sequences need to be removed, the entire graph must be
reconstructed, which is already, for a moderate amount of genomes
and/or long sequence lengths, a time-consuming task.

This work presents DeGeCI (De Bruijn graph Gene Cluster
Identification), a new method for the efficient automatic gene
detection of mitochondrial genomes. This method uses a
collection of mitogenomes, whose sequence data are
represented as a richly annotated Mitochondrial De Bruijn
Graph (MDBG). To annotate an input sequence rin, a
subgraph MDBG[Krin] induced by all (k + 1)-mers of rin is
initially constructed. Unmapped sequence portions result in
disconnected components in this subgraph, which are bridged
in the following step. To this end, alternative trails in the MDBG,
exhibiting a high sequence similarity to the respective unmapped
subsequences of rin, are identified and added to MDBG[Krin]
(Section 2.2.2). Using a clustering approach, DeGeCI aggregates
annotations of the subgraph to obtain gene predictions for the
input sequence (Section 2.2.3). In this study, we use a
comprehensive set of all 8,015 mitogenomes contained in
RefSeq 89, covering all major metazoan taxonomic groups, to
construct the database graph. Gene predictions are computed for
a large and taxonomically representative sample of mitogenomes
and are compared to existing expert-curated annotations and
MITOS2 (Section 4.3).

2 Methods

2.1 Graph structure

Given a string (i.e., a sequence of characters), a k-mer is a
substring of length k. A string can be disassembled into all of its (k +
1)-mers by sliding a window of length (k + 1) over the string while
retaining duplicates. A genome r is a string composed of nucleotides

Frontiers in Genetics frontiersin.org02

Fiedler et al. 10.3389/fgene.2023.1250907

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1250907

A, C, T, and G, where circular genomes are linearized by “cutting”
the genome at an arbitrary but fixed location.

In the proposed de Bruijn graph, MDBG (V, E), over a set of
genomes G with the vertex set V and edge set E, each (k + 1)-mer
x1x2 . . . xk+1 of every genome in G leads to two vertices v and v′ in V,
representing the k-prefix x1x2 . . . xk and k-suffix x2 . . . xk+1,
respectively. These are connected by directed edges (v and v′),
which represent the (k + 1)-mer itself. For circular genomes, the
(k + 1)-mers that connect both sides of the linearized string
representation are also included. Thus, while each linear genome
of length |r| contributes |r| − kmany (k + 1)-mers, a circular genome
of this length contributes |r| many (k + 1)-mers to the graph. The
complementary DNA strand (negative strand), with an opposite
reading direction, is taken into account by adding the reverse
complement of each (k + 1)-mer to MDBG. Each edge (v and v′)
is annotated with a label r, denoting the genome from which this
edge originates, the strandedness σ ∈ { +, − }, and the position p (with
respect to the positive strand) of nucleotide xk+1 of (v and v′) in
genome r. This allows for an unambiguous reconstruction of each
genome in G from MDBG (V, E). It should be noted that each (k +
1)-mer that is contained in multiple different genomes or is
contained multiple times in the same genome (i.e., due to
repeats) results in a pair of vertices that is connected by multiple
edges, the so-called parallel edges. The MDBG is thus a multigraph.
Figure 1 illustrates an example of the de Bruijn graph of a circular
genome r with the sequence ACTGAA for k = 3 on the positive
strand.

A trail in a graph is a sequence of distinct edges that joins a
sequence of vertices. Let (i, j, r, σ) be the trails inMDBG, denoting a
single genome trail (SGT), which is composed of edges
corresponding to the subsequence from the position i to j in the
genome r located on the strand σ. For a circular genome, i >j, if the
associated subsequence extends over the string boundary of the
linearized genome representation. In the de Bruijn graph depicted in
Figure 1, one such SGT is exemplarily highlighted.

2.2 Workflow

For the de novo annotation of an input genome rin, DeGeCI
requires only its nucleotide sequence. The DeGeCI pipeline consists
of six major stages, which are summarized in Figure 2. The following
sections present the individual steps involved.

2.2.1 Subgraph construction
Initially, DeGeCI generates the set Krin of all (k + 1)-mers of

the input genome rin. Next, the subgraph MDBG[Krin], which is
induced by all (k + 1)-mers in the database graphMDBG that are
also contained in Krin, is constructed. For each such matching
(k + 1)-mer in Krin, an edge is added to MDBG[Krin] and labeled
with rin, the related sequence position p, and the strand σrin of
rin. Thus, there are at least two edges between each pair of
vertices in the subgraph: one of rin and one of a database
genome r.

2.2.2 Connected component bridging
Even if dense taxon sampling is provided in the database graph,

input species with a poorly conserved gene content can lead to (k +
1)-mers in Krin that do not map to any edge in the MDBG for a
reasonable value of k (see Section 4.2.1). These non-matching (k +
1)-mers decompose the genome’s continuous sequence of (k + 1)-
mers in the consecutive blocks of matching (k + 1)-mers.
Consequently, the subgraph MDBG[Krin] is composed of smaller
subgraphs, each of which is induced by one such subsequence block
of (k + 1)-mers. Going forward, these subgraphs will be called
connected components (CCs). Thus, two vertices are part of the
same CC if there is an SGT of the input genome rin that
connects them.

While two CCs of MDBG[Krin] are not connected by SGTs of
rin, there may be SGTs of other genomes in the database graph
MDBG, which connect them. More precisely, there might be an SGT
t1 of some genome r ∈ G in one CC CI and another SGT t2 of this
genome in another CC CT in MDBG[Krin], which might be
connected by a third SGT t3 of r in MDBG. Such connecting
trails t3 between two seeding SGTs, t1 and t2, could constitute
suitable alternative trails for the unmapped sequence segments in
MDBG[Krin], thereby bridging pairs of CCs CI and CT.

To identify such connecting trails, an algorithm called CC-

BRIDGING was developed. The pseudocode is given in Algorithm 1.
For each CC CI, induced by subsequence sI, bridging is initially
attempted with CC CT, induced by subsequence sT, which among all
inducing subsequences of CCs in MDBG[Krin] is (in the reading
direction) located closest to sI in the input genome (line 6). This
serves to retain sequence locality. For this pair of CCs, the algorithm
identifies bridging trails between suitable pairs of seeding trails (line
16). The individual steps of this bridging routine are outlined in
Section 2.2.2.1. To prevent a large number of mostly unsuitable
seeding trails being validated, only a small portion of both CCs is
considered at first. The portions are only extended if no appropriate
bridging trails can be identified within them. This is controlled by a
parameterN ∋ g≥g0 � 2, which might get adapted during program
execution (line 20). If at least one of the two CCs was already
searched completely, CT is updated to the next closest CC (line 23)
and the aforementioned routine starts over again. This is repeated
until valid bridging trails are found or if the distance δsI,sT between

FIGURE 1
de Bruijn graph of a circular genome r with the sequence
ACTGAA for k = 3 and positive strand σ = +. The SGT (3, 2, r, +) is
exemplarily shown. The corresponding edges in the graph are
highlighted in bold.

Frontiers in Genetics frontiersin.org03

Fiedler et al. 10.3389/fgene.2023.1250907

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1250907

the inducing subsequences is more than twice as large as either of
their lengths (line 14). The latter is a rough filter for speed-up
purposes, with the reasoning that the larger the distance between the

inducing subsequences and the smaller their lengths, the less likely it
is to find suitable bridging trails between their CCs. Figure 3
visualizes this setup.

FIGURE 2
DeGeCI workflow for the de novo annotation of an input genome rin.

Frontiers in Genetics frontiersin.org04

Fiedler et al. 10.3389/fgene.2023.1250907

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1250907

Algorithm 1. CC-BRIDGING.

2.2.2.1 Validation of seeding trails
The validation of the seeding trails for two CCs, CI and CT (line

16 in Algorithm 1), consists of the following two steps:

Step 1: Identification of bridging candidates. The method searches
for seeding SGTs (m′, n′, r, σ) ∈ CI and (o′, l′, r, σ) ∈ CT so that there
are mapping input genome SGTs (m, n, rin, σrin) ∈ CI and
(o, l, rin, σrin) ∈ CT, and it is not possible to further extend these
mappings. Here, mapping means that all (k + 1)-mers of the
respective database SGT coincide with those of the input SGT.
For each such pair of seeding SGTs, a possible bridging trail is given
by (n′ + 1, o′ − 1, r, σ).

The two input genome SGTs should be as close as possible to each
other to ensure sequence locality. The smallest possible distance between
them is δsI,sT since the inducing subsequences sI and sT are separated by
this value. Here, we accept SGTs with a distance of up to gδsI,sT, where g
is the integer parameter introduced in the previous section. This allows
us to adapt the cutoff distance in consecutive method iterations.

Another important aspect to consider is the sequence similarity
of the bridging trail with the unmapped subsequence of rin. By
requesting a small relative distance |(o − n) − (o′ − n′)|/(o − n) of
both SGT pairs, the likelihood of a high sequence similarity can be
increased without actually evaluating it at this point of the
algorithm. In this contribution, we impose an upper bound of
0.2. Examples illustrating the application of the aforementioned
two criteria are depicted in Figure 4.

If there is more than one pair of seeding SGTs of the same
database genome r, the validation routine only retains the pair that is
the closest, together with respect to the mapping input genome
SGTs, and, in case of a tie, has a lower relative distance.

The algorithm operates on the positions of SGT mappings. Two
SGTs of the same genome that correspond to the same sequence,
i.e., are a repeat in that genome, have different positions because they
are located in different regions of the genome. The algorithm thus
treats them exactly the same as any other SGT. Therefore, repeats are
not a special case for the algorithm.

Step 2: Pairwise sequence alignments. For each of the remaining
SGT pairs, the corresponding bridging trails are examined for
sequence similarity to the input genome. To this end, the
algorithm conducts local pairwise sequence alignments with
affine gap costs (cf. Supplementary Material: Section 5 for
details) between the unmapped input sequence segment and
sequences that correspond to the bridging trails. Alignments are
accepted if they have an E-value of at most 10–3.

2.2.3 Gene annotation
The basis for the annotation of the input genome rin is a

collection of gene annotations A of the database genomes. An
element (n, m, r, σg, g) of A denotes that gene g is annotated on
the strand σg from position n to m in the genome r ∈ G. A special
gene g0 is used to label regions where no gene is annotated. This
serves to avoid a bias toward a small number of random predictions
in a later stage of the method. Moreover, each copy or fragment of
the same gene gets a different label g and, hence, results in a new
annotation in A.

For each pair of mapping SGTs (i, j, rin, σrin) and (i′, j′, r, σ)
that have been obtained from the subgraph MDBG[Krin] or the
bridging routine in the previous steps, the position overlap of [i′,
j′] with all annotations (n, m, r, σg, g) ∈ A is evaluated. This
results in sub-annotations (n′, m′, r, σg, g), where [n′, m′] =
[i′, j′] ∩ [n, m], yielding an annotation for rin from i + (n′ − i′) to
j − (j′ − m′), which is located on the strand σg if σ � σrin and
otherwise on the opposing strand. This is because σ ≠ σrin means
that the mapping database SGT and input SGT reside on different
strands, indicating that the encoding sequences of both genes are
located on opposite strands. Figure 5 illustrates an example of the
aforementioned annotation process for one database and input
genome SGT mapping.

FIGURE 3
Identification of bridging trails for componentsCI andCT. In this example, there are three pairs of seeding SGTs (t1i , t1j), (t2i , t2j), and (t3i , t3j) of genomes
r′′′, r″, and r′, respectively. The corresponding bridging trails are (n′′′

1 + 1,o′′′
1 − 1, r′′′, σ′′′), (n2′′ + 1,o2′′ − 1, r′′, σ′′), and (n3′ + 1,o3′ − 1, r′, σ′).

Frontiers in Genetics frontiersin.org05

Fiedler et al. 10.3389/fgene.2023.1250907

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1250907

An annotation in A generally results in multiple smaller sub-
annotations for rin, which get separated by small sequence
dissimilarities between the input genome and the database
genome. If two such fragments originate from the same
annotation in A and are separated by a distance smaller than the
shortest gene that is typically present in the class of species under
consideration (e.g., approximately 70 nt for metazoan

mitogenomes), it can be assumed that the missing region in
between also encodes the same gene. Thus, DeGeCI iteratively
replaces such fragments with a single longer annotation of the
respective gene.

It is to be expected that flawed annotations inA and/or random
(k + 1)-mer matches cause some incorrect gene predictions for rin.
DeGeCI thus utilizes aggregations of annotations, so that the

FIGURE 4
Two scenarios for a pair of seeding SGTs of database genome r in CCs CI and CT, for which a distance of δsI ,sT � 12 shall be assumed. The distance
between the input genome SGTs is 20 in both cases. This means that even with the initial setting of g = g0 = 2, these trails are sufficiently close to one
another, i.e., closer than g0δsI ,sT � 24. Thus, only the relative distance determines whether to retain SGTs. In the top figure, database and input genome
SGTs have a relative distance of zero. The seeding SGTs will, hence, be considered further. In the bottom figure, the relative distance of both SGT
pairs is |20 − 30|/20 = 0.5, which exceeds the upper bound of 0.2. These trails are, hence, rejected.

FIGURE 5
Input genome SGT (i, j, rin, σrin) � (5, 11, rin ,+) mapping to a database SGT (i′, j′, r, σ) =(20,26, r, −) (vertical black lines). The example assumes an
annotation (n,m, r, σg, g) = (1, 25, r, + ,g) inA. In other words, the encoding sequence for g is located on the opposing strand of themapping database SGT.
This leads to a sub-annotation (n′,m′, r, σg, g) = (20, 25, r, + ,g) (dark blue box on the top), resulting in an annotation of gene g from position 5 to 10 in rin on
the negative strand (light blue box at the bottom), since σrin � +≠− � σ.

Frontiers in Genetics frontiersin.org06

Fiedler et al. 10.3389/fgene.2023.1250907

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1250907

predominant and, therefore, more likely predictions can be
identified. To this end, the following clustering routine CLUSTERG

was developed. The goal of the routine is to identify as large a region
in the input genome as possible where the same few genes are most
likely to occur, thereby filtering out noise contained in database gene
annotations. Starting from the database gene annotations for each
position of rin, the routine builds a hierarchy of gene prediction
clusters by greedily merging the annotations of neighboring
positions in a bottom-up fashion. The frequency with which
annotations for specific genes occur at a given position
determines the likelihood of these genes being correct predictions
for that position. Moreover, positions with a similar gene
distribution are likely to belong together. This distribution is thus
used as a quality measure for identifying the merge quality of two
neighboring clusters. For merged clusters, the gene annotations that
occur in only one of the clusters are removed to derive an
increasingly consistent prediction for combined position ranges
of merged clusters. Lastly, gene annotations with a high
probability are retrieved from different levels of the generated
hierarchy of clusters. The detailed steps are described in the
following sections.

2.2.3.1 Aggregating gene predictions
The pseudocode of CLUSTERG is given in Algorithm 2. The

algorithm is performed individually with gene predictions A+
rin

for the positive strand σ = + and gene predictions A−
rin

for the
negative strand σ = − of the input genome rin.

Algorithm 2. CLUSTERG.
Initially, every position i of rin constitutes a cluster Pi,i. Each

such cluster is initialized with a relative frequency distribution
(RFD) using gene predictions Aσ

rin
(line 7). This RFD is defined as

pi,i g() � ωgSg
i,i

∑~gω~gS ~g
i,i

≕
Ŝg

i,i

∑~gŜ
~g

i,i

, (1)

where Sg
i,i is the sum of the lengths of gene g predictions for the

strand σ that include position i and ωg is the reciprocal of the length
of the gene on average. This assigns higher probabilities to longer
and, hence, more trustworthy predictions while preventing bias
toward long genes. To warrant a certain degree of reliability,
genes are only included in distribution 1 if there are at least two
predictions of different database genomes. Moreover, clusters
without predictions are removed (line 5).

Once the clusters are initialized, the iterative merging begins
(line 9). At each iteration point, the pair of clusters with the highest
quality (defined in the following steps) among all mergeable clusters
is identified (lines 15–20). Two clusters Pi,j and Pm,n are considered
mergeable if they are neighboring clusters, i.e., m − j = 1, and their
distributions share at least one gene (line 14).

To evaluate the quality of a merge of two clusters Pi,j and Pm,n,
the joined RFD,

pi,n g() �
χ Ŝg

i,j≠0∧Ŝ
g
m,n≠0() Ŝg

i,j + Ŝg

m,n()
∑~gχ

Ŝ ~g
i,j≠0∧Ŝ

~g
m,n≠0() Ŝ ~g

i,j + Ŝ ~g

m,n()
(2)

is considered. Here, χP equals one if predicate P is true and zero
otherwise, setting the probability of a gene to zero if it does not
appear in both contributing distributions. This is to prevent the
annotation of a gene at positions that are not predicted by any of the
genomes in the database.

Given such a joined RFD of n genes, the smallest number t ≤n of
genes necessary to obtain a cumulated relative frequency of at least
0.95 is identified. Merged clusters with a low value of t feature a
joined RFD where much weight falls on few genes. This indicates
that the two entering clusters can be combined to a consistent
prediction, assigning a higher quality to the merge.

At some point, there will most likely be more than one pair of
clusters with the smallest value of t among all mergeable clusters. In
such a case, clusters with a higher maximum score max {Sg} are
preferred. If there is a tie, the pair with the largest number of
predictions is selected. Finally, in the rare case of remaining ties, the
routine selects a pair at random (line 23).

Merging is repeated until no clusters are left that can be joined
(line 21). For every merged cluster Pi,n, references to the two
contributing clusters Pi,j (line 26) and Pm,n (line 27) are
maintained. It should be noted that merging generally stops
before all positions are merged into a single cluster. This
happens, for example, because there might be neighboring
clusters that do not share a single common gene and therefore
will never be merged. The outcome is, hence, a family of
dendrograms D.

The last step is to retrieve annotations from clusters in D (line
29), described as follows: initially, clusters P+

i,j ∈ D are selected
where the highest relative frequency max{pi,j(g)}≔pi,j (g+) of their
RFD is at least 0.7. A high value of pi,j (g

+) means that the vast
majority of predictions in Pi,j are for g+, increasing the likelihood
that g+ is the correct annotation for the sequence segment associated
with the cluster. Hence, gene g+ is considered as a putative
prediction for this segment.

Next, clusters P+
i,j are discarded if there are other clusters

P+
m,n with the same gene g+ and [i, j] ⊂ [m, n]. This is because P+

i,j

Frontiers in Genetics frontiersin.org07

Fiedler et al. 10.3389/fgene.2023.1250907

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1250907

does not lead to any information gain regarding the region where
g+ is presumably encoded. However, if g+ is different in both
clusters, P+

i,j is retained to allow for overlapping predictions.
Figure 6 shows an example of this retrieval routine.

For each of the remaining clusters P+
m,n, gene g

+ is accepted as
the prediction from m to n for the strand σ.

2.2.3.2 Handling unannotated regions
We recall that in the initial RFD Eq. 1, each prediction of

gene g is scaled with weight ωg, which is the reciprocal of the
length of such a gene on average. However, there is no reasonable
definition of such a length for unannotated regions, i.e., where
g = g0. Thus, prior to clustering, positions p of rin, presumably
not encoding any actual gene, are identified as follows: there are
more predictions with g = g0 than with the total number of
predictions of the two (or one if there is only one) best scoring
genes g ≠ g0 at p or the cumulative relative frequency of these
genes falls below 0.8. The rationale behind taking the two best
scoring genes into account is that two genes may well overlap,

but the precise gene boundaries may vary slightly among
different genomes.

2.3 Implementation

DeGeCI is available as a free open-source software package1.
It is implemented in Apache Spark (Veith and de Assuncao,
2019) using its Java API, facilitating parallel program execution.
The database graph MDBG is stored in an indexed PostgreSQL
database (Stonebraker, 1987). PostgreSQL dump files for the
database population are available for RefSeq 89 and RefSeq 2042.

FIGURE 6
Gene prediction retrieval from the clusters in D. All clusters with maximum relative frequencies of at least 0.7 are marked with an asterisk. Of these,
clusters P+

1,2 and P+
1,3 are discarded, since both have the same gene g+ = g as P+

1,5 and [1, 2] ⊂ [1, 3] ⊂ [1, 5]. Thus, only clusters P1,5 and P4,5 (framed by
rectangles) are selected.

1 https://git.informatik.uni-leipzig.de/lfiedler/degeci

2 https://doi.org/10.5281/zenodo.7010767

Frontiers in Genetics frontiersin.org08

Fiedler et al. 10.3389/fgene.2023.1250907

https://git.informatik.uni-leipzig.de/lfiedler/degeci
https://doi.org/10.5281/zenodo.7010767
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1250907

To initiate the annotation of an input genome, its nucleotide
sequence can be provided either as a FASTA file or as a sequence
string. The final gene annotation is provided as a bed file.

3 Materials

To create the database graph MDBG, a comprehensive set of
all 8,015 metazoan mitogenomes contained in RefSeq 89 was
used. The k-mer size was set to k = 16, following a careful
empirical analysis presented in Section 4.2.1. The curated
GenBank files of the RefSeq dataset served as a basis for the
gene annotation of SGT mappings. To achieve a consistent
nomenclature among all entries, an important prerequisite to
derive joint annotation, each GenBank entry was parsed
following the guidelines suggested by Boore (2006). The
details are compiled in Supplementary Material: Section 2.

To assess the quality of the proposed method, DeGeCI was
applied to a sample of 100 genomes of RefSeq 89 (for a complete
list, see Supplementary Material: Section 6), for which expert-
curated annotations exist. These annotations served as ground
truth data, allowing us to assess the accuracy of the produced
gene predictions. This sample was drawn by randomly selecting
different numbers of genomes from each of the major metazoan
groups contained in this RefSeq release. The number of species
per group was chosen with respect to the frequency in which they
occurred in RefSeq 89 (and, therefore, MDBG). This comprises
seven Spiralia, 27 Arthropoda, 32 Actinopterygii, four Amphibia,
15 Mammalia, 13 Sauropsida, and two non-bilaterian species. In
order to not to bias the gene predictions of an input genome of
the sample with its annotation in the database graph, all edges of
this genome in the database graph were excluded during the
subgraph construction step of DeGeCI.

4 Results

This contribution presents a new de Bruijn graph-based method,
DeGeCI, for de novo gene annotations of mitochondrial genomes. In
the following, we compare DeGeCI with MITOS2 (Bernt et al.,
2013), a widely used state-of-the-art annotation tool for
mitochondrial genomes. Both MITOS2 and DeGeCI are based on
an internal database of mitogenomic sequences of the RefSeq
database and require only nucleotide sequences as input, allowing
for a fair comparison.

While both tools are based on an internal database of
mitogenomic sequences, the underlying approaches are essentially
different. MITOS2 uses profile hidden Markov models in
combination with methods from Donath et al. (2019) and the
HMMER software suite (Eddy, 2011) or BLASTX searches
(Altschul et al., 1990) for the annotation of protein-coding genes.
To detect non-coding RNAs, i.e., tRNAs and rRNAs, MITOS2 uses
Infernal (Eddy, 2002; Nawrocki et al., 2009) in the glocal search
mode and curated covariance models. Contrarily, DeGeCI is a
stand-alone application that relies on no third-party
bioinformatics software. Both proteins and RNAs are annotated
using the mapping information of the input genome to a database
graph, in combination with a subsequent clustering approach.

4.1 Benchmarking procedure

To allow for a comparative evaluation with MITOS2, the
following definitions are adopted from Bernt et al. (2013). For
each DeGeCI/MITOS2 prediction, the corresponding RefSeq
prediction is the annotation that has the largest position overlap
with the DeGeCI/MITOS2 prediction, given that at least 75% of the
DeGeCI/MITOS2 positions are shared with the RefSeq predictions.
Each such allocation of a DeGeCI/MITOS2 annotation to a RefSeq
annotation is classified as equal if both predict the same gene on the
same strand, classified as different if both predict different genes,
and classified as having a strand difference if both predict the same
gene but on opposing strands. DeGeCI/MITOS2 predictions, where
no corresponding RefSeq prediction is found, are classified as false
positives (FPs). Analogously, RefSeq predictions without
corresponding DeGeCI/MITOS2 predictions are classified as false
negatives (FNs).

4.2 Parameter settings

For MITOS2, the default parameter setting and appropriate
genetic codes were used for each of the 100 considered species. The
parameters for DeGeCI were set as follows.

4.2.1 (k + 1)-mer size
To determine a suitable value for the (k + 1)-mer size of the

database graph, the right balance has to be found between a too-
small value, leading to a great number of random (k + 1)-mer
matches, and a too-large value, concealing many sequence
similarities among the genomes.

To this end, the following experiment was conducted 100 times
for every k ∈ K ≔ {6, 8, 10, 12, 14, 16, 18} in turn. First, the multiset
(i.e., a set allowing for duplicate entries) St of all (k + 1)-mers of the
8,015 mitochondrial sequences in RefSeq 89 was generated. Next, all
sequences were concatenated into a single long sequence, which was
subsequently randomly shuffled. From this sequence, a multiset Sr

of random (k + 1)-mers was then constructed. By creating the
random set in this way, it features the same nucleotide composition
and an almost identical size |Sr| � |St| −N(k + 1) as St, where N is
the number of cyclic genomes in RefSeq 89. The average (taken over
all 100 experiments) fraction �rhit of (k + 1)-mers in Sr that are also
contained in St at least wmin ≥1 times can then be used to estimate
the likelihood of randomly finding (k + 1)-mers of the true genome
sequences in unrelated sequences of same composition.

Figure 7 depicts these ratios for all k ∈ K and wmin ∈ {1, 2, 3, 4}.
For k ≤8, each (k + 1)-mer in St is also contained in Sr at least four
times (i.e., �rhit � 100%). Even all 4k+1 distinct (k + 1)-mers that can
be generated from an alphabet of nucleotides A, C, T, and G are
contained within St in this case, as shown in Figure 8. This
demonstrates that larger k values need to be used to achieve that
the (k + 1)-mers carry at least some meaningful information.
However, it is not until k = 16 that a significance level of 1%
(dashed line) is achieved, at least for wmin >1 (Figure 7), and hardly
any of all 4k+1 distinct (k + 1)-mers occurs in St (Figure 8). For k ≥18,
�rhit < 1% even forwmin = 1. However, now, more than three-quarters
of the (k + 1)-mers in St are unique (see Figure 9). This conceals
many sequence similarities between the genomes in the database

Frontiers in Genetics frontiersin.org09

Fiedler et al. 10.3389/fgene.2023.1250907

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1250907

graph, rendering this choice unsuitable for the presented approach.
Thus, k = 16 is used instead.

4.2.2 Sequence alignments
For sequence alignments, we applied match costs of 1, mismatch

costs of −2, and gap penalties of −2 for opening and extending a
gap. The E-value threshold was set at 10–3. These are common
settings, which assume 95% of sequence conservation.

4.3 Comparison with MITOS2

Table 1 summarizes the annotation quality of DeGeCI and
MITOS2 for all predictions together and also for the different
groups of genes: proteins, tRNAs, and rRNAs. RefSeq 89 was
used as a reference database for both tools. DeGeCI identified all
of the rRNA and protein and 99% of tRNA RefSeq predictions with

an equal gene and strand annotation. Thus, DeGeCI obtains an even
larger number of correct predictions than MITOS2 (only 99.1% of
the protein and 98.7% of the tRNA RefSeq predictions). A genewise
and taxonomic breakdown of the results of both tools is compiled in
Supplementary Material: Supplementary Tables S1–S11.

The main cause for the few RefSeq tRNA predictions without equal
DeGeCI predictions is the annotation of opposing strands,
i.e., corresponding RefSeq and DeGeCI predictions, which are
classified as having a strand difference. This affects 11 predictions
(see Supplementary Material: Supplementary Table S12 for details). In
each such case, more than 95% of DeGeCI positions are shared with
RefSeq positions, suggesting a high agreement of both predictions.
DeGeCI also always annotates the negative strand, whereas RefSeq
annotates the positive strand. Since a special “complement” tag needs to
be set for a RefSeq annotation to indicate that the gene is located on the
negative strand, there is a reason to presume that this tag was simply
forgotten in the corresponding RefSeq entries. The fact that all

FIGURE 7
Average fraction �rhit of random (k + 1)-mers that are also contained in the true (k + 1)-mer multiset St at least wmin times. Error bars are hardly
noticeable, indicating small statistical fluctuations.

FIGURE 8
Percentage of unique true (k + 1)-mers on all possible 4k+1 unique (k + 1)-mers.

Frontiers in Genetics frontiersin.org10

Fiedler et al. 10.3389/fgene.2023.1250907

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1250907

11 predictions were also annotated with the opposite strand by
MITOS2 supports this hypothesis. Furthermore, nine of the RefSeq
predictions stem from the same genome, and not a single gene of this
genome is marked with the complement tag, indicating a systematic
error in these RefSeq annotations.

There is one DeGeCI prediction that annotates a different gene
rather than the corresponding RefSeq prediction, i.e., which has the
classification as “different.” It involves the annotation of a different
anticodon type of a leucine tRNA. As discussed in Bernt et al. (2013),
there are inconsistencies in the naming scheme of RefSeq
annotations, resulting in misannotations of the anticodon types

of serine and leucine tRNAs (also cf. Supplementary Material:
Section 2). Again, MITOS2 identifies the same discrepancy,
leaving little doubt that the anticodon type of the RefSeq
prediction should be different (cf. Supplementary Material:
Supplementary Table S13).

The remaining nine RefSeq predictions without the
corresponding equal DeGeCI prediction are FNs (25 in
MITOS2), accounting for only 0.2% of the RefSeq entries
(≈ 0.7% for MITOS2). Three of them are also not predicted by
MITOS2 (i.e., three FNs are shared by both tools), indicating an
increased likelihood that they are misannotations in RefSeq.

There are very few (three) DeGeCI annotations that are
classified as FPs, all of which are tRNAs. MITOS2, on the other
hand, predicts 13 FPs, which are all proteins. For a complete list of
FNs of both tools, see Supplementary Material: Supplementary
Tables S14, S15 and for their FPs, see Supplementary Table S16.

4.4 Accuracy of gene predictions

The majority of the DeGeCI predictions are in much better
agreement with the RefSeq predictions than the threshold of 75%
overlap requires (cf. Supplementary Material: Supplementary Table

FIGURE 9
Number of unique true (k + 1)-mers on the log scale.

TABLE 1 Comparison of DeGeCI and MITOS2 predictions with RefSeq
89 annotations. Here, the number of RefSeq predictions nRefSeq , equal
predictions (equal), predictions with different strand annotations (Δ±),
predictions where gene annotations are different (different), false negatives
(FNs), and false positives (FPs) of both tools for each type of gene (protein,
tRNA, rRNA, and all) are shown. The percentage of equal DeGeCI/
MITOS2 predictions with respect to RefSeq predictions is given in parentheses.
Results that have better agreement with RefSeq predictions are highlighted in
bold.

nRefSeq Equal Δ± Different FN FP

Protein 1,302 DeGeCI 1,302
(100%)

0 0 0 0

MITOS2 1,290
(99.1%)

0 17 12 13

tRNA 2,162 DeGeCI 2,141
(99.0%)

11 1 9 3

MITOS2 2,134
(98.7%)

11 4 13 0

rRNA 200 DeGeCI 200
(100%)

0 0 0 0

MITOS2 200
(100%)

0 0 0 0

All 3,664 DeGeCI 3,643
(99.4%)

11 1 9 3

MITOS2 3,624
(98.9%)

11 21 25 13

TABLE 2 Percentages of corresponding DeGeCI/MITOS2 and RefSeq
predictions with start and stop positions of less than Δ nt. The higher rates are
highlighted in bold.

Δ
nt

Protein [%] tRNA [%] rRNA [%]

DeGeCI MITOS2 DeGeCI MITOS2 DeGeCI MITOS2

5 85 90 96 99 78 70

10 94 92 98 100 80 79

25 97 94 100 100 88 90

50 99 97 100 100 94 96

70 99 98 100 100 100 98

100 100 99 100 100 100 100

Frontiers in Genetics frontiersin.org11

Fiedler et al. 10.3389/fgene.2023.1250907

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1250907

S17). More precisely, the average fractions of the DeGeCI positions
that are shared with those predicted by RefSeq exceed 98.7%, and the
average fractions of RefSeq positions that are shared with those
predicted by DeGeCI exceed 97.3% for all types of genes (similar for
MITOS2).

DeGeCI also predicts start and end positions with fairly high
precision. Table 2 shows that in 96% of the tRNA, 85% of the
protein, and 78% of rRNA predictions, the start and stop
positions vary by less than 5 nt from the RefSeq annotations.
As can be seen from the table, 8% more of DeGeCI′s rRNA
predictions were generated with this precision. For proteins and
tRNAs, slightly more of the MITOS2 position predictions have a
maximum deviation of 5 nt (5% and 3%). One has to keep in
mind, however, that MITOS2 also produced more FP and FN
predictions for both of these categories (see Table 1). Moreover,
for proteins, a possible explanation for this discrepancy could be
as follows: after producing protein position predictions,
MITOS2 searches the proximity of every start and end
position for start and stop codons, respectively. If valid start
or stop codons are found, the gene boundary predictions are
adapted accordingly. While this approach presumably improves
the accuracy of the protein boundary predictions, there are
several lineage-specific variations in the standard genetic code
for mitogenomes. Thus, to detect appropriate start and end
codons for the input genome, the adequate genetic code table
must be specified by the user. Since DeGeCI tries to minimize the
required amount of knowledge about the input genome and/or
user expertise, this is currently not implemented in the DeGeCI
pipeline. However, we would like to point out that such an
extension would be possible. As soon as slightly larger
deviations are considered (i.e., Δ nt ≥10), DeGeCI again
produces more protein predictions than MITOS2 (see bold
entries in Table 2).

4.5 RefSeq 204 as a reference database

We also validated DeGeCI′s performance using the more recent
RefSeq release RefSeq 204, which contains 9,877 species, for the
database graph. Using this larger database, two previous FNs and
one FP could be eliminated in the sample set. None of the remaining
predictions was impaired (for details, see Supplementary Material:
Supplementary Table S18). Since MITOS2 currently only offers
prepared databases for RefSeq 39, RefSeq 63, and RefSeq 89, a
comparative analysis with MITOS2 could not be carried out for
RefSeq 204.

4.6 Runtime and scalability

To generate its reference database, MITOS2 needs to retrieve
amino acid sequences from the RefSeq release to be used. From these
sequences, a new BLAST database needs to be built. Moreover,
HMM models need to be generated that use these sequences
together with their phylogenetic classification. Lastly, new
covariance models need to be built for RNAs, which require
manual user interaction. All these steps taken together render
database updates a rather tedious task. Contrarily, DeGeCI allows
for a fully automated effortless inclusion of additional species to the
existing database or the creation of a new database (for details, see
Supplementary Material: Section 4), facilitating keeping pace with
the increasing amount of available mitochondrial sequence data.

Another important aspect to consider is the scalability of the
time requirements for the annotation process with respect to the
database size. To compare the impact of the database size on the
runtime of both tools, DeGeCI and MITOS2, the sample set was
annotated using different RefSeq releases with a different number of
species as a reference database. Table 3 shows the average runtimes
for the annotation of one input genome on a computer with an
AMD RyzenTM 7 1700 processor with 3 GHz. Since MITOS2 cannot
be run in parallel, DeGeCI was run in the single-thread mode for a
fair comparison. MITOS2 shows a clear increase in runtime with
larger RefSeq releases, whereas DeGeCI is hardly affected by the
database growth. DeGeCI also almost always runs considerably
faster, e.g., even more than six times as fast as RefSeq 89. The
only exception is for RefSeq 39. This is because the small number of
species in this RefSeq release results in large unmapped regions in
the subgraph, causing comparably long bridging times. DeGeCI
runtimes were also measured for RefSeq 204, which includes even
more species, showing that the trend of hardly impacted runtimes
continues.

Nowadays, every modern CPU offers multiple hardware
threads. DeGeCI has the advantage that it can (unlike MITOS2)
be run in parallel. Preliminary tests on RefSeq 89 with two threads
resulted in an average runtime of 1.4 min compared to 2.32 min for
one thread. This corresponds to a speed-up value of approximately
1.66 and an efficiency value of approximately 0.83.

5 Discussion

This contribution describes a new method, DeGeCI, for an
efficient, automatic de novo annotation of mitochondrial
genomes. The underlying reference database, which comprises a

TABLE 3 Comparison of runtimes. Here, the number nRefSeq of entries in the respective RefSeq release and the average runtime �tDeGeCI of DeGeCI with one thread
and �tMITOS2 of MITOS2 (cannot be run in parallel) are shown. Except for RefSeq 39, DeGeCI runs noticeably faster than MITOS2, and increases in the database size
hardly impact the runtime.

Number of species �tDeGeCI (one thread) [min] �tMITOS2 [min] �tMITOS2/�tDeGeCI

RefSeq 39 1,878 4.22 3.77 0.89

RefSeq 63 3,842 2.74 9.11 3.32

RefSeq 89 8,015 2.32 14.40 6.21

RefSeq 204 9,877 2.39 – –

Frontiers in Genetics frontiersin.org12

Fiedler et al. 10.3389/fgene.2023.1250907

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1250907

comprehensive collection of mitogenomes, is represented as a richly
annotated de Bruijn graph. To generate gene predictions for an input
genome sequence, DeGeCI utilizes a clustering technique that is
based on the mapping information of this sequence to the graph.
DeGeCI produces gene predictions of high conformity with expert-
curated annotations of RefSeq, particularly showing the high
precision of gene boundaries. Compared to the standard
annotation tool MITOS2, DeGeCI generates predictions of at
least equal quality, requires less time for annotation when using
larger databases, and features better database scalability. Different
from MITOS2, the new method, DeGeCI, offers a fully automated
update of the reference database and can be run in parallel.
Altogether, we could demonstrate that DeGeCI is well suited for
large-scale annotations of mitochondrial sequence data.

5.1 Limitations

Similar to all database-based annotation approaches (e.g.,
MITOS, DOGMA, MOSAS, and MitoFish), DeGeCI requires a
database containing annotated mitochondrial genome
information that includes a certain minimum diversity of species
to enable high-quality annotation of mitogenomes across a broad
taxonomic spectrum. Otherwise, the annotation quality might be
lower, and there might be many and/or relatively large unmapped
sequence segments of the input genome. The latter leads to larger
annotation times, since a comparably large amount of runtime is
required to bridge these unmapped segments in the corresponding
subgraph (cf. Section 2.2.2).

DeGeCI has been developed with the prior aim in mind to
embed complete genomic sequences of mitochondria. These are
generally generated by applying a mixture of long-read and short-
read sequencing techniques. Due to the higher error rates associated
with long-read sequencing data, using only long-read sequencing
data for graph construction might affect the quality of gene
predictions obtained using DeGeCI.

5.2 Future work

The implementation of a taxonomic filter that would allow the use
of only database species of a user-supplied taxonomic classification is
our agenda for future work. The use of such a filter could be
advantageous with respect to annotation time or quality when a
specific taxonomic group of the input sequence is known.

As discussed in Section 4.4, the result accuracy of the DeGeCI
protein boundary predictions could likely be improved by scanning
the proximity for start and stop codons. Since this requires the user
to specify adequate genetic code tables and thus a certain degree of
knowledge about the input sequence and/or user expertise, this is
currently not part of DeGeCI. This could be implemented in a future
version of DeGeCI, allowing the optional refinement of protein
predictions.

The focus of this study has been on mitochondrial genomes. An
application of the presented methods to nuclear genomes could,
hence, be an interesting aspect to be explored in future studies.

Suitable parameter settings for k could be determined similarly as
suggested in this work.

Moreover, the implementation of a public web server version of
DeGeCI is planned.

Data availability statement

Publicly available datasets were analyzed in this study. These data
can be found at: https://doi.org/10.5281/zenodo.8101631 (RefSeq
mitochondrial nucleotide sequences for releases 89 and 204).

Author contributions

LF, MM, and MB conceived the idea. MM and MB supervised the
study and edited the manuscript. LF implemented the software,
performed the computational analysis, and drafted the manuscript.
All authors collaborated on the design of the algorithms and the overall
workflow, the interpretation of the results, and the writing of the
manuscript. All authors contributed to the article and approved the
submitted version.

Funding

The research reported in this manuscript was funded by the
Open Access Publishing Fund of Leipzig University supported by
the German Research Foundation within the program Open
Access Publication Funding. The authors further wish to
thank the German Research Foundation for funding project
21210538.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors, and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fgene.2023.1250907/
full#supplementary-material

Frontiers in Genetics frontiersin.org13

Fiedler et al. 10.3389/fgene.2023.1250907

https://doi.org/10.5281/zenodo.8101631
https://www.frontiersin.org/articles/10.3389/fgene.2023.1250907/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2023.1250907/full#supplementary-material
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1250907

References

Almodaresi, F., Pandey, P., and Patro, R. (2017). “Rainbowfish: a succinct colored de
Bruijn graph representation,” in 17th International Workshop on Algorithms in
Bioinformatics (WABI 2017), Boston, MA, USA, August 21–23, 2017, 15. 1–18.
doi:10.4230/LIPIcs.WABI.2017.18

Altschul, S. F., Gish,W., Miller,W., Myers, E.W., and Lipman, D. J. (1990). Basic local
alignment search tool. J. Mol. Biol. 215, 403–410. doi:10.1016/S0022-2836(05)80360-2

Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., Rapp, B. A., and Wheeler,
D. L. (2000). GenBank. Nucleic Acids Res. 28, 15–18. doi:10.1093/nar/28.1.15

Bernt, M., Donath, A., Jühling, F., Externbrink, F., Florentz, C., Fritzsch, G., et al.
(2013). Mitos: improved de novo metazoan mitochondrial genome annotation. Mol.
Phylogenetics Evol. 69, 313–319. doi:10.1016/j.ympev.2012.08.023

Boore, J. L. (2006). Requirements and standards for organelle genome databases.
OMICS A J. Integr. Biol. 10, 119–126. doi:10.1089/omi.2006.10.119

Bowe, A., Onodera, T., Sadakane, K., and Shibuya, T. (2012). “Succinct de Bruijn
graphs,” in Algorithms in bioinformatics. Editors B. Raphael and J. Tang (Berlin,
Heidelberg: Springer). 225–235. doi:10.1007/978-3-642-33122-0_18

Bruijn, de, N. G. (1946). A combinatorial problem. Proc. Sect. Sci. Koninklijke Nederl.
Akademie van Wetenschappen te Amsterdam 49, 758–764.

Donath, A., Jühling, F., Al-Arab, M., Bernhart, S. H., Reinhardt, F., Stadler, P. F., et al.
(2019). Improved annotation of protein-coding genes boundaries in metazoan
mitochondrial genomes. Nucleic acids Res. 47, 10543–10552. doi:10.1093/nar/gkz833

Eddy, S. R. (2002). A memory-efficient dynamic programming algorithm for optimal
alignment of a sequence to an rna secondary structure. BMC Bioinforma. 3, 1. doi:10.
1186/1471-2105-3-18

Eddy, S. R. (2011). Accelerated profile hmm searches. PLoS Comput. Biol. 7, e1002195.
doi:10.1371/journal.pcbi.1002195

Eddy, S. R., and Durbin, R. (1994). RNA sequence analysis using covariance models.
Nucleic Acids Res. 22, 2079–2088. doi:10.1093/nar/22.11.2079

Good, I. J. (1946). Normal recurring decimals. J. Lond. Math. Soc. s1-21, 167–169.
doi:10.1112/jlms/s1-21.3.167

Iwasaki, W., Fukunaga, T., Isagozawa, R., Yamada, K., Maeda, Y., Satoh, T. P., et al.
(2013). MitoFish and MitoAnnotator: a mitochondrial genome database of fish with an

accurate and automatic annotation pipeline. Mol. Biol. Evol. 30, 2531–2540. doi:10.
1093/molbev/mst141

Lin, Y., and Pevzner, P. A. (2014). “Manifold de Bruijn graphs,” in s in bioinformatics.
Editors D. Brown and B. Morgenstern (Berlin, Heidelberg: Springer), 296–310.

Lowe, T. M., and Eddy, S. R. (1997). tRNAscan-SE: a program for improved detection
of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25, 955–964. doi:10.
1093/nar/25.5.955

Nawrocki, E. P., Kolbe, D. L., and Eddy, S. R. (2009). Infernal 1.0: inference of RNA
alignments. Bioinformatics 25, 1335–1337. doi:10.1093/bioinformatics/btp157

Pevzner, P. A., Tang, H., and Tesler, G. (2004). De novo repeat classification and
fragment assembly. Genome Res. 14, 1786–1796. doi:10.1101/gr.2395204

Pevzner, P. A., Tang, H., and Waterman, M. S. (2001). An Eulerian path approach to
DNA fragment assembly. Proc. Natl. Acad. Sci. 98, 9748–9753. doi:10.1073/pnas.
171285098

Pruitt, K. D., Tatusova, T., and Maglott, D. R. (2007). NCBI reference sequences
(RefSeq): a curated non-redundant sequence database of genomes, transcripts and
proteins. Nucleic Acids Res. 2007, D61. doi:10.1093/nar/gkl842

Sheffield, N. C., Hiatt, K. D., Valentine, M. C., Song, H., and Whiting, M. F. (2010).
Mitochondrial genomics in orthoptera using mosas. Mitochondrial DNA 21, 87–104.
doi:10.3109/19401736.2010.500812

Stonebraker, M. (1987). The design of the Postgres storage system. Tech. rep.
California: Univ Berkeley Electronics Research Lab California.

Veith, A. d. S., and de Assuncao, M. D. (2019). Apache Spark. Cham: Springer
International Publishing. doi:10.1007/978-3-319-77525-8_37

Wolstenholme, D. R. (1992). Animal mitochondrial DNA: Structure and evolution.
United States: Academic Press, 173–216. doi:10.1016/S0074-7696(08)62066-5

Wyman, S. K., Jansen, R. K., and Boore, J. L. (2004). Automatic annotation of
organellar genomes with DOGMA. Bioinformatics 20, 3252–3255. doi:10.1093/
bioinformatics/bth352

Zerbino, D. R., and Birney, E. (2008). Velvet: algorithms for de novo short read
assembly using de Bruijn graphs. Genome Res. 18, 821–829. doi:10.1101/gr.
074492.107

Frontiers in Genetics frontiersin.org14

Fiedler et al. 10.3389/fgene.2023.1250907

https://doi.org/10.4230/LIPIcs.WABI.2017.18
https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1093/nar/28.1.15
https://doi.org/10.1016/j.ympev.2012.08.023
https://doi.org/10.1089/omi.2006.10.119
https://doi.org/10.1007/978-3-642-33122-0_18
https://doi.org/10.1093/nar/gkz833
https://doi.org/10.1186/1471-2105-3-18
https://doi.org/10.1186/1471-2105-3-18
https://doi.org/10.1371/journal.pcbi.1002195
https://doi.org/10.1093/nar/22.11.2079
https://doi.org/10.1112/jlms/s1-21.3.167
https://doi.org/10.1093/molbev/mst141
https://doi.org/10.1093/molbev/mst141
https://doi.org/10.1093/nar/25.5.955
https://doi.org/10.1093/nar/25.5.955
https://doi.org/10.1093/bioinformatics/btp157
https://doi.org/10.1101/gr.2395204
https://doi.org/10.1073/pnas.171285098
https://doi.org/10.1073/pnas.171285098
https://doi.org/10.1093/nar/gkl842
https://doi.org/10.3109/19401736.2010.500812
https://doi.org/10.1007/978-3-319-77525-8_37
https://doi.org/10.1016/S0074-7696(08)62066-5
https://doi.org/10.1093/bioinformatics/bth352
https://doi.org/10.1093/bioinformatics/bth352
https://doi.org/10.1101/gr.074492.107
https://doi.org/10.1101/gr.074492.107
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1250907

	Fully automated annotation of mitochondrial genomes using a cluster-based approach with de Bruijn graphs
	1 Introduction
	2 Methods
	2.1 Graph structure
	2.2 Workflow
	2.2.1 Subgraph construction
	2.2.2 Connected component bridging
	2.2.2.1 Validation of seeding trails
	2.2.3 Gene annotation
	2.2.3.1 Aggregating gene predictions
	2.2.3.2 Handling unannotated regions

	2.3 Implementation

	3 Materials
	4 Results
	4.1 Benchmarking procedure
	4.2 Parameter settings
	4.2.1 (k + 1)-mer size
	4.2.2 Sequence alignments

	4.3 Comparison with MITOS2
	4.4 Accuracy of gene predictions
	4.5 RefSeq 204 as a reference database
	4.6 Runtime and scalability

	5 Discussion
	5.1 Limitations
	5.2 Future work

	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References

